Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; : 1-39, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37584238

RESUMO

Proanthocyanidins (PAs) are a class of polymers composed of flavan-3-ol units that have a variety of bioactivities, and could be applied as natural biologics in food, pharmaceuticals, and cosmetics. PAs are widely found in fruit and vegetables (F&Vegs) and are generally extracted from their flesh and peel. To reduce the cost of extraction and increase the number of commercially viable sources of PAs, it is possible to exploit the by-products of plants. Leaves are major by-products of agricultural production of F&Vegs, and although their share has not been accurately quantified. They make up no less than 20% of the plant and leaves might be an interesting resource at different stages during production and processing. The specific structural PAs in the leaves of various plants are easily overlooked and are notably characterized by their stable content and degree of polymerization. This review examines the existing data on the effects of various factors (e.g. processing conditions, and environment, climate, species, and maturity) on the content and structure of leaf PAs, and highlights their bioactivity (e.g. antioxidant, anti-inflammatory, antibacterial, anticancer, and anti-obesity activity), as well as their interactions with gut microbiota and other biomolecules (e.g. polysaccharides and proteins). Future research is also needed to focus on their precise extraction, bioactivity of high-polymer native or modified PAs and better application type.


The Leaf proanthocyanidins (LPAs) are mostly oligomeric procyanidins, with a small proportion of leaves containing A-type procyanidins.Foliage is a sustainable source of PAs.LPAs are a potential source of valuable bioactive compounds.The content, structure, extraction and identification and bio-activity of LPAs are discussed.Processing improvement is beneficial to enhance the production of LPA.

2.
Carbohydr Polym ; 281: 119086, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074113

RESUMO

During processing of plant-based foods, cell wall polysaccharides and polyphenols, such as procyanidins, interact extensively, thereby affecting their physicochemical properties along with their potential health effects. Although hemicelluloses are second only to pectins in affinity for procyanidins in cell walls, a detailed study of their interactions lacks. We investigated the interactions between representative xylose-containing water-soluble hemicelluloses and procyanidins. Turbidity, ITC and DLS were used to determine the relative affinities, and theoretical calculations further ascertained the interactions mechanisms. Xyloglucan and xylan exhibited respectively the strongest and weakest interactions with procyanidins. The different arabinoxylans interacted with procyanidins in a similar strength, intermediate between xyloglucans and xylans. Therefore, the strength of the interaction depended on the structure itself rather than on some incidental properties, e.g., viscosity and molar mass. The arabinose side-chain of arabinoxylan did not inhibit interactions. The computational investigation corroborated the experimental results in that the region of interaction between xyloglucan and procyanidins was significantly wider than that of other hemicelluloses.


Assuntos
Proantocianidinas , Parede Celular/química , Pectinas/química , Polissacarídeos/química , Proantocianidinas/química , Xilanos/química , Xilose/análise
3.
Compr Rev Food Sci Food Saf ; 20(5): 4841-4880, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34288366

RESUMO

Flavanols, a subgroup of polyphenols, are secondary metabolites with antioxidant properties naturally produced in various plants (e.g., green tea, cocoa, grapes, and apples); they are a major polyphenol class in human foods and beverages, and have recognized effect on maintaining human health. Therefore, it is necessary to evaluate their changes (i.e., oxidation, polymerization, degradation, and epimerization) during various physical processing (i.e., heating, drying, mechanical shearing, high-pressure, ultrasound, and radiation) to improve the nutritional value of food products. However, the roles of flavanols, in particular for their polymerized forms, are often underestimated, for a large part because of analytical challenges: they are difficult to extract quantitatively, and their quantification demands chemical reactions. This review examines the existing data on the effects of different physical processing techniques on the content of flavanols and highlights the changes in epimerization and degree of polymerization, as well as some of the latest acidolysis methods for proanthocyanidin characterization and quantification. More and more evidence show that physical processing can affect content but also modify the structure of flavanols by promoting a series of internal reactions. The most important reactivity of flavanols in processing includes oxidative coupling and rearrangements, chain cleavage, structural rearrangements (e.g., polymerization, degradation, and epimerization), and addition to other macromolecules, that is, proteins and polysaccharides. Some acidolysis methods for the analysis of polymeric proanthocyanidins have been updated, which has contributed to complete analysis of proanthocyanidin structures in particular regarding their proportion of A-type proanthocyanidins and their degree of polymerization in various plants. However, future research is also needed to better extract and characterize high-polymer proanthocyanidins, whether in their native or modified forms.


Assuntos
Cacau , Polifenóis , Antioxidantes , Manipulação de Alimentos , Humanos , Chá
4.
Compr Rev Food Sci Food Saf ; 19(6): 3574-3617, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33337054

RESUMO

Cell wall polysaccharides (CPSs) and polyphenols are major constituents of the dietary fiber complex in plant-based foods. Their digestion (by gut microbiota) and bioefficacy depend not only on their structure and quantity, but also on their intermolecular interactions. The composition and structure of these compounds vary with their dietary source (i.e., fruit or vegetable of origin) and can be further modified by food processing. Various components and structures of CPSs and polyphenols have been observed to demonstrate common and characteristic behaviors during interactions. However, at a fundamental level, the mechanisms that ultimately drive these interactions are still not fully understood. This review summarizes the current state of knowledge on the internal factors that influence CPS-polyphenol interactions, describes the different ways in which these interactions can be mediated by molecular composition or structure, and introduces the main methods for the analysis of these interactions, as well as the mechanisms involved. Furthermore, a comprehensive overview is provided of recent key findings in the area of CPS-polyphenol interactions. It is becoming clear that these interactions are shaped by a multitude of factors, the most important of which are the physicochemical properties of the partners: their morphology (surface area and porosity/pore shape), chemical composition (sugar ratio, solubility, and non-sugar components), and molecular architecture (molecular weight, degree of esterification, functional groups, and conformation). An improved understanding of the molecular mechanisms that drive interactions between CPSs and polyphenols may allow us to better establish a bridge between food processing and the bioavailability of colonic fermentation products from CPSs and antioxidant polyphenols, which could ultimately lead to the development of new guidelines for the design of healthier and more nutritious foods.


Assuntos
Parede Celular/química , Polifenóis/química , Polissacarídeos/química , Fibras na Dieta , Manipulação de Alimentos , Estrutura Molecular , Células Vegetais/química
5.
Food Funct ; 11(10): 9144-9156, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33026020

RESUMO

An early mechanism for the health benefits of dietary plant phenols is their antioxidant activity in the upper digestive tract. Indeed, these non-essential micronutrients abundant in fruits and vegetables can efficiently fight the iron-induced peroxidation of dietary lipids in the gastric compartment, a recognized form of postprandial oxidative stress. In this work, this phenomenon is investigated through a simple model based on nano-emulsions of trilinoleylglycerol, which permits a direct spectroscopic monitoring and mechanistic insights sustained by extensive kinetic analysis. Polyphenols belonging to the main dietary classes are tested, in particular, flavonols, anthocyanins, flavanols and oligomeric procyanidins. Overall, the common polyphenols tested are good inhibitors of lipid peroxidation induced by metmyoglobin (heme iron) in the early stage of digestion (pH 5-6). For instance, under our peroxidation conditions (2 µM heme, 0.7 mM linoleic acid equivalent, 4.5 mM Brij®35), IC50 concentrations in the range 0.4-1.9 µM were estimated for the set of polyphenols, with oligomeric procyanidins being less inhibitory than the flavanol monomers. However, the polyphenols are ineffective at lower pH (pH 4) when the hematin cofactor is dissociated from its protein (globin). On the other hand, a moderate protection against lipid peroxidation induced by free iron (e.g., released by the oxidative degradation of hematin) persists. This protocol, which combines simplicity and nutritional relevance, could provide a basis for standard tests aimed at assessing the antioxidant capacity of foods and food additives.


Assuntos
Antioxidantes/química , Ferro/química , Fenóis/química , Triglicerídeos/química , Antioxidantes/metabolismo , Emulsões/química , Emulsões/metabolismo , Mucosa Gástrica/química , Mucosa Gástrica/metabolismo , Humanos , Ferro/metabolismo , Modelos Biológicos , Oxirredução , Fenóis/metabolismo , Triglicerídeos/metabolismo
6.
Food Funct ; 11(6): 5077-5090, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32463404

RESUMO

Food matrix interactions with polyphenols can affect their bioavailability and as a consequence may modulate their biological effects. The aim of this study was to determine if the matrix and its processing would modulate the bioavailability and the postprandial nutrigenomic response to a dietary inflammatory stress of apple flavan-3-ol monomers. We carried out an acute randomized controlled study in minipigs challenged with a high fat meal (HFM) supplemented with raw fruit, puree, or apple phenolic extract with matched content of flavan-3-ol monomers. Fasting and postprandial blood samples were collected over 3 h to quantify flavan-3-ol monomers in sera by UPLC-Q-TOF/MS and to isolate peripheral blood mononuclear cells (PBMCs) for assessing the changes in the gene expression profile using a microarray analysis. When compared to the extract-supplemented meal, the peak of the total flavan-3-ol concentration was reduced by half with both raw apple and puree supplements. The apple matrices also affected the gene expression profile as revealed by the Principal Component Analysis of the microarray data from PBMCs which discriminated the supplementation of HFM with the polyphenol extract from those with raw apples or puree. A total of 309 genes were identified as differentially expressed by the apple-derived products compared to HFM, with 63% modulated only in the presence of the food matrix (apple and puree). The number of differentially modulated genes was higher with the puree (246) than with the unprocessed apple (182). Pathway enrichment analyses revealed that genes affected by the apple-derived products control inflammation and leukocyte transendothelial migration both involved in the onset of atherosclerotic processes. Overall, this study showed that the two apple matrices reduce the postprandial serum concentration of flavon-3-ols whereas they increase the nutrigenomic response of PBMCs. The biological processes identified as modulated by the apple products suggest an attenuation of the transient pro-inflammatory response induced by a HFM. The differences observed between the nutrigenomic responses support that the apple matrix and its processing affect the nutrigenomic response, probably by increasing the bioavailability of other apple phytochemicals. To conclude, this study raises awareness for considering the impact of the food matrix and its processing on the biological response of polyphenols in nutritional studies.


Assuntos
Flavonoides/metabolismo , Malus , Polifenóis/metabolismo , Animais , Disponibilidade Biológica , Dieta Hiperlipídica , Masculino , Nutrigenômica , Período Pós-Prandial , Distribuição Aleatória , Suínos
7.
Carbohydr Polym ; 230: 115644, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887907

RESUMO

Given the high prevalence of arabinan side chains in pectic polysaccharides, this work aims to unveil the impact of their structural diversity on pectic polysaccharides-polyphenol interactions. To assess the effect of arabinan branching degree, sugar beet arabinans (branched and debranched) were used and compared to the well-known structure of apple arabinan and other pectic polysaccharides. Furthermore, arabinans contribution to pectic polysaccharides/polyphenol interactions was assessed. The interactions were evaluated using chlorogenic acid, phloridzin and procyanidins (degree of polymerization of 9). Linear arabinans had 8-fold and 2-fold higher retention for chlorogenic acid and phloridzin, respectively, than branched arabinans. This trend was also observed for the interaction of arabinans with procyanidins. However, arabinans with covalently linked polyphenols showed lower interactions. The interactions involved between arabinans and polyphenols explained 1-28 % of the interactions of pectic polysaccharides, allowing us to conclude that the whole polysaccharide structure is more relevant for polyphenol interactions than each part.

8.
Food Chem ; 296: 142-149, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31202298

RESUMO

Little data are available on the impact of pomace pre-treatment, notably drying, on the nature and yield of polyphenols. Pomace from two apple varieties ('Avrolles' and 'Kermerrien'), pressed with and without oxidation, were air-dried to different degrees. Drying led to the loss of native molecules, notably 5-O-caffeoylquinic acid and flavan-3-ols. Total polyphenol yields, after sequential pressurized liquid extraction (water 10 MPa, 70 °C, then ethanol 48%, 10 MPa, 70 °C), varied between 5 and 15 g/kg dry weight but showed no marked trend with drying. Extracts from dried pomace contained few native polyphenols. Water extracts from 'Kermerrien' contained flavonols, flavanols and phloridzin and those from 'Avrolles' contained phloridzin. Water:ethanol extracts were rich in procyanidins, especially from 'Avrolles', where they represented >80% of analysable polyphenols. Presence of polyphenol molecules with modified structures in the extracts of dried pomaces might lead to different biological properties than those with native molecules.


Assuntos
Dessecação/métodos , Malus/química , Extratos Vegetais/química , Polifenóis/química , Flavanonas/química , Malus/metabolismo , Polifenóis/isolamento & purificação , Polissacarídeos/química , Proantocianidinas/química
9.
Food Chem ; 294: 9-18, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31126510

RESUMO

Hot water is an easily implementable process for polyphenols extraction. To evaluate the effect of this process on apple pomace, the overall polyphenolic composition was assessed before and after hot water extraction, followed by extractions with aqueous/organic solutions. As determined by UHPLC-DAD, flavan-3-ols were the main apple native polyphenols. Their amount decreased 50% after hot water extraction, while the other classes remained unchanged. Dihydrochalcones and hydroxycinnamic acid oxidation products, were also observed, alongside with non-extractable oxidised procyanidins that represented more than 4-fold the amount of native apple polyphenols in the pomace. Microwave superheated-water extraction of the insoluble cell wall material in water/acetone solutions and the high amounts of polyphenols that were insoluble in water/ethanol solutions suggested that oxidised procyanidins could be covalently linked to polysaccharides. These complexes represented up to 40% of the available polyphenols from apple pomace, potentially relevant for agro-food waste valuation.


Assuntos
Malus/química , Polifenóis/química , Cromatografia Líquida de Alta Pressão , Malus/metabolismo , Micro-Ondas , Extratos Vegetais/química , Polifenóis/isolamento & purificação , Proantocianidinas/química , Proantocianidinas/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray , Água/química
10.
Nutrients ; 11(3)2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893845

RESUMO

B-type oligomeric procyanidins in apples constitute an important source of polyphenols in the human diet. Their role in health is not known, although it is suggested that they generate beneficial bioactive compounds upon metabolization by the gut microbiota. During apple processing, procyanidins interact with cell-wall polysaccharides and form stable complexes. These interactions need to be taken into consideration in order to better assess the biological effects of fruit constituents. Our objectives were to evaluate the impact of these interactions on the microbial metabolization of cell walls and procyanidins, and to investigate the potential anti-inflammatory activity of the resulting metabolome, in addition to analyzing the taxonomical changes which the microbiota undergo. In vitro fermentation of three model apple matrices with microbiota from 4 healthy donors showed that the binding of procyanidins to cell-wall polysaccharides, whether covalently or non-covalently, substantially reduced procyanidin degradation. Although cell wall-unbound procyanidins negatively affected carbohydrate fermentation, they generated more hydroxyphenylvaleric acid than bound procyanidins, and increased the abundance of Adlercreutzia and Gordonibacter genera. The best results in terms of production of anti-inflammatory bioactive metabolites were observed from the apple matrix with no bonds between procyanidins and cell wall polysaccharides, although the matrix with non-covalent bonds was not far behind.


Assuntos
Anti-Inflamatórios/farmacologia , Bactérias/efeitos dos fármacos , Frutas/química , Microbioma Gastrointestinal/efeitos dos fármacos , Malus/química , Proantocianidinas/metabolismo , Anti-Inflamatórios/química , Bactérias/metabolismo , Parede Celular , Fermentação , Humanos , Proantocianidinas/química
11.
Food Chem ; 240: 615-625, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28946320

RESUMO

Apricot polyphenols and carotenoids were monitored after industrial and domestic cooking, and after 2months of storage for industrial processing. The main apricot polyphenols were flavan-3-ols, flavan-3-ol monomers and oligomers, with an average degree of polymerization between 4.7 and 10.7 and caffeoylquinic acids. Flavonols and anthocyanins were minor phenolic compounds. Upon processing procyanidins were retained in apricot tissue. Hydroxycinnamic acids, flavan-3-ol monomers, flavonols and anthocyanins leached in the syrup. Flavonol concentrations on per-can basis were significantly increased after processing. Industrial processing effects were higher than domestic cooking probably due to higher temperature and longer duration. After 2months of storage, among polyphenols only hydroxycinnamic acids, flavan-3-ol monomers and anthocyanins were reduced. Whichever the processing method, no significant reductions of total carotenoids were observed after processing. The cis-ß-carotene isomer was significantly increased after processing but with a lower extent in domestic cooking. Significant decreased in total carotenoid compounds occurred during storage.


Assuntos
Prunus armeniaca , Carotenoides , Flavonoides , Polifenóis
12.
Food Res Int ; 95: 125-133, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28395820

RESUMO

The flesh and peel of 19 pear cultivars (8 Tunisian dessert cultivars, 8 European dessert cultivars and 3 French perry pear cultivars) were studied for their phenolic composition. Phenolic compounds were identified by HPLC/ESI-MS2 and individually quantified by HPLC-DAD. Five classes of polyphenols were present: flavan-3-ols, phenolic acids, flavonols, anthocyanins and simple phenolics (hydroquinones). The total phenolic content ranged between 0.1g/kg Fresh Weight (FW) ('Conference' cultivar) and 8.6g/kg FW ('Plant De Blanc' cultivar) in the flesh and between 1.6g/kg FW ('William vert' cultivar) and 40.4g/kg FW ('Arbi Chiheb' cultivar) in the peel. Procyanidins, analyzed after thioacidolysis, were the main phenolic compounds in all pear cultivars either in the pulp or the peel, their constitutive units being essentially (-)-epicatechin. Tunisian dessert pears and French perry pears are richer in procyanidins with very high degree of polymerization (>100) for Tunisian pears. Peel procyanidins were less polymerized (from 4 to 20). Pear peel phenolic profile was more complex especially for Tunisian cultivars, with flavonols and in some cultivars anthocyanins.


Assuntos
Frutas/química , Fenóis/análise , Pyrus/química , Antocianinas/análise , Catequina/análise , Europa (Continente) , Flavonóis/análise , Hidroquinonas/análise , Hidroxibenzoatos/análise , Extratos Vegetais/análise , Polifenóis/análise , Proantocianidinas/análise , Tunísia
13.
Food Chem ; 213: 58-68, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27451155

RESUMO

The seasonal variations of the content and diversity of phenolic compounds, as well as the antioxidant activity of leaves, stems and fruits of bilberry collected in May, July and September, were evaluated for two consecutive years. UPLC/MS(n) analyses showed the predominance of anthocyanins in fruits, caffeic acid derivatives in leaves whereas flavanol oligomers represented more than half of the phenolic compounds in stems. Thioacidolysis revealed degrees of polymerization between 2 and 4 and (-)-epicatechin as the main flavanol unit. The sum of the phenolic compounds by UPLC was highly correlated with the total polyphenol content and the antioxidant activity in the DPPH test for all the extracts except for May leaves. The latter were relatively rich in p-coumaric acid derivatives. Seasonal effects were more marked for leaves, which exhibited higher antioxidant activities and phenolic contents in July and September when these parameters were at their highest in July for stems.


Assuntos
Antocianinas/química , Frutas/química , Extratos Vegetais/química , Folhas de Planta/química , Polifenóis/química , Vaccinium myrtillus/química , Compostos de Bifenilo/química , Cromatografia Líquida de Alta Pressão , Ácidos Cumáricos/química , Sequestradores de Radicais Livres/química , Espectrometria de Massas , Picratos/química , Caules de Planta/química , Propionatos , Estações do Ano , Espectrometria de Massas por Ionização por Electrospray
14.
Carbohydr Polym ; 99: 527-36, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24274539

RESUMO

Interactions between seven hairy regions of pectins, rhamnogalacturonans II and arabinogalactan-proteins and procyanidins with different average degrees of polymerization, low (DP9) and high (DP30), were investigated by isothermal titration calorimetry and absorption analysis to study the impact of neutral sugar side chains of pectins on these associations. Associations between pectic fractions and procyanidins involved hydrophobic interactions and hydrogen bonds. No difference in association constants between various hairy regions and procyanidins DP9 was found. Nevertheless, arabinan chains showed lower association constants, and hairy regions of pectins with only monomeric side chains showed higher association with procyanidin DP30. Only very low affinities were obtained with rhamnogalacturonans II and arabinogalactan-proteins. Aggregation could be observed only with the procyanidins of DP30 and the protein-rich arabinogalactan-protein. Associations were obtained at both degrees of polymerization of the procyanidins, but differed depending on neutral sugar composition and the structure of pectic fractions.


Assuntos
Frutas/química , Malus/química , Mucoproteínas/química , Pectinas/química , Proantocianidinas/química , Calorimetria , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Proteínas de Plantas/química , Polimerização , Ligação Proteica , Espectrofotometria , Termodinâmica
15.
J Agric Food Chem ; 61(27): 6679-92, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23731189

RESUMO

After canning, pear pieces turn occasionally from whitish-beige to pink. Conditions were set up to obtain this discoloration systematically and investigate its mechanism. Canned pears showed a significantly lower L* coordinate compared with fresh pears, and the L* coordinate of canned pears decreased with decreasing pH. The values of the a* and b* coordinates increased significantly after processing, the increase being greater for the more acidic pH values, with corresponding redder colors. After canning, polyphenol concentrations decreased significantly, mainly due to loss of procyanidins. This supported the hypothesis of conversion of procyanidins to anthocyanin-like compounds. However, no soluble product was detected at 520 nm, the characteristic wavelength of anthocyanins. When purified procyanidins were treated at 95 °C at three different pH values (2.7, 3.3, and 4.0), procyanidin concentrations decreased after treatment, the more so as the pH was lower, and a pinkish color also appeared, attributed to tannin-anthocyanidin pigment. The pink color was bound to cell walls. Extraction of the neoformed pink entities was attempted by successive solvent extractions followed by cell wall degrading enzymes. The pink color persisted in the residues, and canned pears gave significantly higher amounts of residues after solvent and enzyme treatments than fresh pears. Procyanidins were the entities responsible for the appearance of pink discoloration. However, it seems that this pink discoloration also involved the formation of strong, probably covalent, bonds to the cell wall.


Assuntos
Biflavonoides/química , Catequina/química , Parede Celular/química , Pigmentos Biológicos/química , Proantocianidinas/química , Pyrus/química , Frutas/química , Polimerização
16.
Eur J Nutr ; 52(2): 833-46, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22699306

RESUMO

PURPOSE: Syrah red grapes are used in the production of tannin-rich red wines. Tannins are high molecular weight molecules, proanthocyanidins (PAs), and poorly absorbed in the upper intestine. In this study, gut microbial metabolism of Syrah grape phenolic compounds was investigated. METHODS: Syrah grape pericarp was subjected to an enzymatic in vitro digestion model, and red wine and grape skin PA fraction were prepared. Microbial conversion was screened using an in vitro colon model with faecal microbiota, by measurement of short-chain fatty acids by gas chromatography (GC) and microbial phenolic metabolites using GC with mass detection (GC-MS). Red wine metabolites were further profiled using two-dimensional GC mass spectrometry (GCxGC-TOFMS). In addition, the effect of PA structure and dose on conversion efficiency was investigated by GC-MS. RESULTS: Red wine exhibited a higher degree of C1-C3 phenolic acid formation than PA fraction or grape pericarp powders. Hydroxyphenyl valeric acid (flavanols and PAs as precursors) and 3,5-dimethoxy-4-hydroxybenzoic acid (anthocyanin as a precursor) were identified from the red wine metabolite profile. In the absence of native grape pericarp or red wine matrix, the isolated PAs were found to be effective in the dose-dependent inhibition of microbial conversions and short-chain fatty acid formation. CONCLUSIONS: Metabolite profiling was complementary to targeted analysis. The identified metabolites had biological relevance, because the structures of the metabolites resembled fragments of their grape phenolic precursors or were in agreement with literature data.


Assuntos
Colo/metabolismo , Modelos Biológicos , Preparações de Plantas , Vitis/química , Colo/microbiologia , Digestão , Ácidos Graxos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Hidroxibenzoatos/análise , Metaboloma , Metagenoma , Polifenóis/análise , Proantocianidinas/análise , Vinho/análise
17.
J Agric Food Chem ; 60(14): 3551-63, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22409403

RESUMO

The objectives of this study were (i) to test different conditions of freezing, thawing, and grinding during sample preparation and (ii) to evaluate the possibility of using mid-infrared spectroscopy for analyzing the composition of sugars, organic acids, and polyphenols in apples. Seven commercial apple cultivars were chosen for their large variability in composition (total polyphenols from 406 to 1033 mg kg(-1) fresh weight). The different conditions of sample preparation affected only the phenolic compounds and not sugars or organic acids. The regression models of the mid-infrared spectra showed a good ability to estimate sugar and organic acid contents (R(2) ≥ 0.96), except for citric acid. Good predictions were obtained for total phenolic, flavan-3-ols, and procyanidins (R(2) ≥ 0.94) provided oxidation was avoided during sample preparation. A rapid and simple procedure was then proposed for phenolic compounds using sodium fluoride during sample homogenization at ambient temperature and freeze-drying before spectra acquisition.


Assuntos
Carboidratos/análise , Ácidos Carboxílicos/análise , Frutas/química , Malus/química , Polifenóis/análise , Espectrofotometria Infravermelho , Manipulação de Alimentos/métodos , Conservação de Alimentos/métodos , Oxirredução , Especificidade da Espécie
18.
Ultrason Sonochem ; 17(6): 1066-74, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19945900

RESUMO

Apple pomace, a by-product of the cider production, has been studied as a potential source of polyphenols, compounds of great interest for the industry. Ultrasound has been used to improve extraction efficiency in terms of time needed and total polyphenol content. A preliminary study has been first investigated to optimize ethanol proportion of aqueous extractant (50%, v/v) and solid/liquid ratio (<15%, w/v). A response surface methodology has then been used to maximize total polyphenol content of extracts and investigate influence of parameters involved in extraction procedures for both total polyphenols content and composition of extracts. Optimal settings reached from a central composite design were applied for ultrasound-assisted extraction and were compared to conventional procedure: yields were increased by more than 20%. Ultrasound-assisted polyphenols extraction from apple pomace appears to be a relevant, rapid, sustainable alternative to conventional procedure, and that scale up of the process is possible.


Assuntos
Antioxidantes/isolamento & purificação , Fracionamento Químico/métodos , Flavonoides/isolamento & purificação , Manipulação de Alimentos , Indústria Alimentícia , Fenóis/isolamento & purificação , Sonicação/métodos , Química Verde , Malus/química , Polifenóis , Sonicação/economia
19.
J Agric Food Chem ; 55(19): 7896-904, 2007 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-17725315

RESUMO

The adsorption of procyanidins (condensed tannins) on cell-wall material was quantified by bringing into contact solutions of procyanidins and suspensions of cell-wall material. A model was developed on the basis of the Langmuir isotherm formulation and a factorial experimental design. The parameters that influenced the adsorption were the concentration and molecular weight of the procyanidins, the ionic strength of the solution, the temperature, and the apple cell-wall concentration. The model was applied to partitioning of procyanidins from apple between juice and mash. The parameters to be taken into account are the composition of the apples and, specifically, (i) the concentration and molecular weight of the procyanidins, (ii) their acidity and pH as a determinant of the ionic strength, and (iii) their cell-wall content and the temperature at pressing. To estimate the ability of the model to relate procyanidin concentrations in the juice to their concentration in the apple, apples of three varieties of widely different procyanidin compositions were pressed in conditions that prevent oxidation. In these conditions, yields in the juice were >80% for phenolic acids or catechin monomers but <50% for procyanidins, with the lowest rates obtained for the higher polymers in accordance with the model.


Assuntos
Bebidas/análise , Parede Celular/química , Frutas/química , Malus/química , Taninos/química , Adsorção , Flavonoides/química , Fenóis/química , Polifenóis
20.
J Agric Food Chem ; 52(1): 122-30, 2004 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-14709024

RESUMO

The rate of consumption of dissolved oxygen by apple polyphenol oxidase in cider apple juices did not correlate with polyphenol oxidase activity in the fruits and decreased faster than could be explained by the decrease of its polyphenolic substrates. The kinetics parameters of a crude polyphenol oxidase extract, prepared from apple (Braeburn cultivar), were determined using caffeoylquinic acid as a substrate. Three apple procyanidin fractions of n 80, 10.5, and 4 were purified from the parenchyma of cider apples of various cultivars. Procyanidins, caffeoylquinic acid, (-)-epicatechin, and a mixture of caffeoylquinic acid and (-)-epicatechin were oxidized by reaction with caffeoylquinic acid o-quinone in order to form oxidation products. All the fractions were evaluated for their inhibitory effect on PPO activity. Native procyanidins inhibited polyphenol oxidase activity, the inhibition intensity increasing with n. The polyphenol oxidase activity decreased by 50% for 0.026 g/L of the fraction of n 80, 0.17 g/L of the fraction of n 10.5, and 1 g/L of the fraction of n 4. The inhibitory effect of oxidized procyanidins was twice that of native procyanidins. Oxidation products of caffeoylquinic acid and (-)-epicatechin also inhibited polyphenol oxidase.


Assuntos
Biflavonoides , Catequina/farmacologia , Catecol Oxidase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Flavonoides/metabolismo , Frutas/enzimologia , Malus/enzimologia , Fenóis/metabolismo , Proantocianidinas , Ácido Quínico/análogos & derivados , Bebidas/análise , Catequina/metabolismo , Catecol Oxidase/metabolismo , Cromatografia Líquida de Alta Pressão , Cinética , Oxirredução , Polifenóis , Ácido Quínico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA