Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(8): 3321-3332, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36780646

RESUMO

Potential inversion refers to the situation where a protein cofactor or a synthetic molecule can be oxidized or reduced twice in a cooperative manner; that is, the second electron transfer is easier than the first. This property is very important regarding the catalytic mechanism of enzymes that bifurcate electrons and the properties of bidirectional redox molecular catalysts that function in either direction of the reaction with no overpotential. Cyclic voltammetry is the most common technique for characterizing the thermodynamics and kinetics of electron transfer to or from these molecules. However, a gap in the literature is the absence of analytical predictions to help interpret the values of the voltammetric peak potentials when potential inversion occurs; the cyclic voltammograms are therefore often analyzed by simulating the data, with no discussion of the possibility of overfitting and often no estimation of the error on the determined parameters. Here we formulate the theory for the voltammetry of freely diffusing or surface-confined two-electron redox species in the experimentally relevant irreversible limit where the peak separation depends on the scan rate. We explain why the model is intrinsically underdetermined, and we illustrate this conclusion by analysis of the voltammetry of a nickel complex with redox-active iminosemiquinone ligands. Being able to characterize the thermodynamics of two-electron electron-transfer reactions will be crucial for designing more efficient catalysts.

2.
Small ; 19(16): e2207229, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36670336

RESUMO

In this work, the mechanisms of radical generation on different functionalized graphene oxide (GO) conjugates under near-infrared (NIR) light irradiation are investigated. The GO conjugates are designed to understand how chemical functionalization can influence the generation of radicals. Both pristine and functionalized GO are irradiated by a NIR laser, and the production of different reactive oxygen species (ROS) is investigated using fluorimetry and electron paramagnetic resonance to describe the type of radicals present on the surface of GO. The mechanism of ROS formation involves a charge transfer from the material to the oxygen present in the media, via the production of superoxide and singlet oxygen. Cytotoxicity and effects of ROS generation are then evaluated using breast cancer cells, evidencing a concentration dependent cell death associated to the heat and ROS. The study provides new hints to understand the photogeneration of radicals on the surface of GO upon near infrared irradiation, as well as, to assess the impact on these radicals in the context of a combined drug delivery system and phototherapeutic approach. These discoveries open the way for a better control of phototherapy-based treatments employing graphene-based materials.

3.
Chemistry ; 28(35): e202200596, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35545956

RESUMO

Mechanisms combining organic radicals and metallic intermediates hold strong potential in homogeneous catalysis. Such activation modes require careful optimization of two interconnected processes: one for the generation of radicals and one for their productive integration towards the final product. We report that a bioinspired polymetallic nickel complex can combine ligand- and metal-centered reactivities to perform fast hydrosilylation of alkenes under mild conditions through an unusual dual radical- and metal-based mechanism. This earth-abundant polymetallic complex incorporating a catechol-alloxazine motif as redox-active ligand operates at low catalyst loading (0.25 mol%) and generates silyl radicals and a nickel-hydride intermediate through a hydrogen atom transfer (HAT) step. Evidence of an isomerization sequence enabling terminal hydrosilylation of internal alkenes points towards the involvement of the nickel-hydride species in chain walking. This single catalyst promotes a hybrid pathway by combining synergistically ligand and metal participation in both inner- and outer- sphere processes.


Assuntos
Alcenos , Níquel , Catálise , Catecóis , Flavinas , Ligantes , Metais
4.
ACS Appl Bio Mater ; 4(2): 1330-1339, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014484

RESUMO

Photodynamic therapy (PDT) is a promising technique to treat different kinds of disease especially cancer. PDT requires three elements: molecular oxygen, a photoactivatable molecule called the photosensitizer (PS), and appropriate light. Under illumination, the PSs generate, in the presence of oxygen, the formation of reactive oxygen species including singlet oxygen, toxic, which then destroys the surrounding tissues. Even if PDT is used with success to treat actinic keratosis or prostate cancer for example, PDT suffers from two major drawbacks: the lack of selectivity of most of the PSs currently used clinically as well as the need for oxygen to be effective. To remedy the lack of selectivity, targeting the tumor neovessels is a promising approach to destroy the vascularization and cause asphyxia of the tumor. KDKPPR peptide affinity for the neuropilin-1 (NRP-1) receptor overexpressed on endothelial cells has already been proven. To compensate for the lack of oxygen, we focused on photoactivatable alkoxyamines (Alks), molecules capable of generating toxic radicals by light activation. In this article, we describe the synthesis of a multifunctional platform combining three units: a PS for an oxygen-dependent PDT, a peptide to target tumor neovessels, and an Alk for an oxygen-independent activity. The synthesis of the compound was successfully carried out, and the study of its photophysical properties showed that the PS retained its capacity to form singlet oxygen and the affinity tests confirmed the affinity of the compound for NRP-1. Thanks to the electron paramagnetic resonance spectroscopy, a technique of choice for radical investigation, the radicals generated by the illumination of the Alk could be detected. The proof of concept was thus successfully established.


Assuntos
Sistemas de Liberação de Medicamentos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/uso terapêutico , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Estrutura Molecular , Oxigênio , Peptídeos , Fotoquímica
5.
Mol Biosyst ; 9(11): 2869-76, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24056937

RESUMO

CP12 is a widespread regulatory protein of oxygenic photosynthetic organisms that contributes to the regulation of the Calvin cycle by forming a supra-molecular complex with at least two enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK). CP12 shares some similarities with intrinsically disordered proteins (IDPs) depending on its redox state. In this study, site-directed spin labeling (SDSL) combined with EPR spectroscopy was used to probe the dynamic behavior of CP12 from Chlamydomonas reinhardtii upon binding to GAPDH, the first step towards ternary complex formation. The two N-terminal cysteine residues were labeled using the classical approach while the tyrosine located at the C-terminal end of CP12 was modified following an original procedure. The results show that the label grafted at the C-terminal extremity is in the vicinity of the interaction site whereas the N-terminal region remains fully disordered upon binding to GAPDH. In conclusion, GAPDH-CP12 is a fuzzy complex, in which the N-terminal region of CP12 keeps a conformational freedom in the bound form. This fuzziness could be one of the keys to facilitate binding of PRK to CP12-GAPDH and to form the ternary supra-molecular complex.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Proteínas de Plantas/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/química , Cinética , Modelos Moleculares , Fotossíntese , Proteínas de Plantas/química , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA