Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012478

RESUMO

E4F1 is essential for early embryonic mouse development and for controlling the balance between proliferation and survival of actively dividing cells. We previously reported that E4F1 is essential for the survival of murine p53-deficient cancer cells by controlling the expression of genes involved in mitochondria functions and metabolism, and in cell-cycle checkpoints, including CHEK1, a major component of the DNA damage and replication stress responses. Here, combining ChIP-Seq and RNA-Seq approaches, we identified the transcriptional program directly controlled by E4F1 in Human Triple-Negative Breast Cancer cells (TNBC). E4F1 binds and regulates a limited list of direct target genes (57 genes) in these cells, including the human CHEK1 gene and, surprisingly, also two other genes encoding post-transcriptional regulators of the ATM/ATR-CHK1 axis, namely, the TTT complex component TTI2 and the phosphatase PPP5C, that are essential for the folding and stability, and the signaling of ATM/ATR kinases, respectively. Importantly, E4F1 also binds the promoter of these genes in vivo in Primary Derived Xenograft (PDX) of human TNBC. Consequently, the protein levels and signaling of CHK1 but also of ATM/ATR kinases are strongly downregulated in E4F1-depleted TNBC cells resulting in a deficiency of the DNA damage and replicative stress response in these cells. The E4F1-depleted cells fail to arrest into S-phase upon treatment with the replication-stalling agent Gemcitabine, and are highly sensitized to this drug, as well as to other DNA-damaging agents, such as Cisplatin. Altogether, our data indicate that in breast cancer cells the ATM/ATR-CHK1 signaling pathway and DNA damage-stress response are tightly controlled at the transcriptional and post-transcriptional level by E4F1.


Assuntos
Proteínas Repressoras , Fatores de Transcrição , Neoplasias de Mama Triplo Negativas , Ubiquitina-Proteína Ligases , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Fosforilação , Proteínas Quinases/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Front Oncol ; 12: 857572, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494017

RESUMO

Cutaneous melanoma is a highly invasive tumor and, despite the development of recent therapies, most patients with advanced metastatic melanoma have a poor clinical outcome. The most frequent mutations in melanoma affect the BRAF oncogene, a protein kinase of the MAPK signaling pathway. Therapies targeting both BRAF and MEK are effective for only 50% of patients and, almost systematically, generate drug resistance. Genetic and non-genetic mechanisms associated with the strong heterogeneity and plasticity of melanoma cells have been suggested to favor drug resistance but are still poorly understood. Recently, we have introduced a novel mathematical formalism allowing the representation of the relation between tumor heterogeneity and drug resistance and proposed several models for the development of resistance of melanoma treated with BRAF/MEK inhibitors. In this paper, we further investigate this relationship by using a new computational model that copes with multiple cell states identified by single cell mRNA sequencing data in melanoma treated with BRAF/MEK inhibitors. We use this model to predict the outcome of different therapeutic strategies. The reference therapy, referred to as "continuous" consists in applying one or several drugs without disruption. In "combination therapy", several drugs are used sequentially. In "adaptive therapy" drug application is interrupted when the tumor size is below a lower threshold and resumed when the size goes over an upper threshold. We show that, counter-intuitively, the optimal protocol in combination therapy of BRAF/MEK inhibitors with a hypothetical drug targeting cell states that develop later during the tumor response to kinase inhibitors, is to treat first with this hypothetical drug. Also, even though there is little difference in the timing of emergence of the resistance between continuous and adaptive therapies, the spatial distribution of the different melanoma subpopulations is more zonated in the case of adaptive therapy.

3.
FEBS J ; 289(18): 5516-5526, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34817127

RESUMO

The 4th International meeting Metabolism and Cancer initially programed to take place in Bordeaux (France) was held virtually on May 27-29, 2021. The three-day event was followed by around 600 participants daily from 47 countries around the world. The meeting hosted 21 speakers including selected talks and a keynote lecture from the Nobel Prize winner Sir Peter J. Ratcliffe (Oxford, UK). Presentations and discussions were divided in four scientific sessions: (a) Redox and energy metabolism (b) Redox and hypoxia (c) Metabolic profiling and epigenetic control and (d) Signalling, fuelling and metabolism in cancer and a general public session on cancer and nutrition. This report summarises the presentations and outcomes of the 4th annual Metabolism and Cancer symposium. We provide here a summary of the scientific highlights of this exciting meeting.


Assuntos
Metabolismo , Neoplasias , Humanos , Neoplasias/metabolismo , Sociedades Médicas
4.
Nat Commun ; 12(1): 7037, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857760

RESUMO

Growing evidence supports the importance of the p53 tumor suppressor in metabolism but the mechanisms underlying p53-mediated control of metabolism remain poorly understood. Here, we identify the multifunctional E4F1 protein as a key regulator of p53 metabolic functions in adipocytes. While E4F1 expression is upregulated during obesity, E4f1 inactivation in mouse adipose tissue results in a lean phenotype associated with insulin resistance and protection against induced obesity. Adipocytes lacking E4F1 activate a p53-dependent transcriptional program involved in lipid metabolism. The direct interaction between E4F1 and p53 and their co-recruitment to the Steaoryl-CoA Desaturase-1 locus play an important role to regulate monounsaturated fatty acids synthesis in adipocytes. Consistent with the role of this E4F1-p53-Steaoryl-CoA Desaturase-1 axis in adipocytes, p53 inactivation or diet complementation with oleate partly restore adiposity and improve insulin sensitivity in E4F1-deficient mice. Altogether, our findings identify a crosstalk between E4F1 and p53 in the control of lipid metabolism in adipocytes that is relevant to obesity and insulin resistance.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Obesidade/genética , Proteínas Repressoras/genética , Estearoil-CoA Dessaturase/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética , Adipócitos/patologia , Tecido Adiposo/patologia , Adulto , Idoso , Animais , Índice de Massa Corporal , Ácidos Graxos Monoinsaturados/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Resistência à Insulina , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/patologia , Proteínas Repressoras/deficiência , Proteínas Repressoras/metabolismo , Transdução de Sinais , Estearoil-CoA Dessaturase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/metabolismo
5.
J Exp Med ; 218(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33760042

RESUMO

Mutations in IDH induce epigenetic and transcriptional reprogramming, differentiation bias, and susceptibility to mitochondrial inhibitors in cancer cells. Here, we first show that cell lines, PDXs, and patients with acute myeloid leukemia (AML) harboring an IDH mutation displayed an enhanced mitochondrial oxidative metabolism. Along with an increase in TCA cycle intermediates, this AML-specific metabolic behavior mechanistically occurred through the increase in electron transport chain complex I activity, mitochondrial respiration, and methylation-driven CEBPα-induced fatty acid ß-oxidation of IDH1 mutant cells. While IDH1 mutant inhibitor reduced 2-HG oncometabolite and CEBPα methylation, it failed to reverse FAO and OxPHOS. These mitochondrial activities were maintained through the inhibition of Akt and enhanced activation of peroxisome proliferator-activated receptor-γ coactivator-1 PGC1α upon IDH1 mutant inhibitor. Accordingly, OxPHOS inhibitors improved anti-AML efficacy of IDH mutant inhibitors in vivo. This work provides a scientific rationale for combinatory mitochondrial-targeted therapies to treat IDH mutant AML patients, especially those unresponsive to or relapsing from IDH mutant inhibitors.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Isocitrato Desidrogenase/genética , Leucemia Mieloide/genética , Mitocôndrias/genética , Mutação , Doença Aguda , Aminopiridinas/farmacologia , Animais , Linhagem Celular Tumoral , Doxiciclina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Glicina/análogos & derivados , Glicina/farmacologia , Células HL-60 , Humanos , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/metabolismo , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Leucemia Mieloide/tratamento farmacológico , Leucemia Mieloide/metabolismo , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxidiazóis/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Piperidinas/farmacologia , Piridinas/farmacologia , Triazinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
6.
PLoS Comput Biol ; 17(2): e1008730, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33571201

RESUMO

The correct identification of metabolic activity in tissues or cells under different conditions can be extremely elusive due to mechanisms such as post-transcriptional modification of enzymes or different rates in protein degradation, making difficult to perform predictions on the basis of gene expression alone. Context-specific metabolic network reconstruction can overcome some of these limitations by leveraging the integration of multi-omics data into genome-scale metabolic networks (GSMN). Using the experimental information, context-specific models are reconstructed by extracting from the generic GSMN the sub-network most consistent with the data, subject to biochemical constraints. One advantage is that these context-specific models have more predictive power since they are tailored to the specific tissue, cell or condition, containing only the reactions predicted to be active in such context. However, an important limitation is that there are usually many different sub-networks that optimally fit the experimental data. This set of optimal networks represent alternative explanations of the possible metabolic state. Ignoring the set of possible solutions reduces the ability to obtain relevant information about the metabolism and may bias the interpretation of the true metabolic states. In this work we formalize the problem of enumerating optimal metabolic networks and we introduce DEXOM, an unified approach for diversity-based enumeration of context-specific metabolic networks. We developed different strategies for this purpose and we performed an exhaustive analysis using simulated and real data. In order to analyze the extent to which these results are biologically meaningful, we used the alternative solutions obtained with the different methods to measure: 1) the improvement of in silico predictions of essential genes in Saccharomyces cerevisiae using ensembles of metabolic network; and 2) the detection of alternative enriched pathways in different human cancer cell lines. We also provide DEXOM as an open-source library compatible with COBRA Toolbox 3.0, available at https://github.com/MetExplore/dexom.


Assuntos
Perfilação da Expressão Gênica , Redes e Vias Metabólicas/fisiologia , Processamento Pós-Transcricional do RNA , Saccharomyces cerevisiae/genética , Algoritmos , Linhagem Celular Tumoral , Biologia Computacional , Simulação por Computador , Reações Falso-Positivas , Genoma , Humanos , Modelos Biológicos , Modelos Estatísticos , Linguagens de Programação , Software
7.
Cancers (Basel) ; 13(1)2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33406607

RESUMO

The p53 pathway is functionally inactivated in most, if not all, human cancers. The p53 protein is a central effector of numerous stress-related molecular cascades. p53 controls a safeguard mechanism that prevents accumulation of abnormal cells and their transformation by regulating DNA repair, cell cycle progression, cell death, or senescence. The multiple cellular processes regulated by p53 were more recently extended to the control of metabolism and many studies support the notion that perturbations of p53-associated metabolic activities are linked to cancer development, as well as to other pathophysiological conditions including aging, type II diabetes, and liver disease. Although much less documented than p53 metabolic activities, converging lines of evidence indicate that other key components of this tumor suppressor pathway are also involved in cellular metabolism through p53-dependent as well as p53-independent mechanisms. Thus, at least from a metabolic standpoint, the p53 pathway must be considered as a non-linear pathway, but the complex metabolic network controlled by these p53 regulators and the mechanisms by which their activities are coordinated with p53 metabolic functions remain poorly understood. In this review, we highlight some of the metabolic pathways controlled by several central components of the p53 pathway and their role in tissue homeostasis, metabolic diseases, and cancer.

8.
Sci Transl Med ; 12(547)2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522803

RESUMO

Well-differentiated and dedifferentiated liposarcomas (LPSs) are characterized by a systematic amplification of the MDM2 oncogene, which encodes a key negative regulator of the p53 pathway. The molecular mechanisms underlying MDM2 overexpression while sparing wild-type p53 in LPS remain poorly understood. Here, we show that the p53-independent metabolic functions of chromatin-bound MDM2 are exacerbated in LPS and mediate an addiction to serine metabolism that sustains nucleotide synthesis and tumor growth. Treatment of LPS cells with Nutlin-3A, a pharmacological inhibitor of the MDM2-p53 interaction, stabilized p53 but unexpectedly enhanced MDM2-mediated control of serine metabolism by increasing its recruitment to chromatin, likely explaining the poor clinical efficacy of this class of MDM2 inhibitors. In contrast, genetic or pharmacological inhibition of chromatin-bound MDM2 by SP141, a distinct MDM2 inhibitor triggering its degradation, or interfering with de novo serine synthesis, impaired LPS growth both in vitro and in clinically relevant patient-derived xenograft models. Our data indicate that targeting MDM2 functions in serine metabolism represents a potential therapeutic strategy for LPS.


Assuntos
Antineoplásicos , Lipossarcoma , Antineoplásicos/uso terapêutico , Humanos , Lipossarcoma/tratamento farmacológico , Lipossarcoma/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Serina/uso terapêutico , Proteína Supressora de Tumor p53/genética
9.
Mol Metab ; 33: 2-22, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31685430

RESUMO

BACKGROUND: The TP53 gene is one of the most commonly inactivated tumor suppressors in human cancers. p53 functions during cancer progression have been linked to a variety of transcriptional and non-transcriptional activities that lead to the tight control of cell proliferation, senescence, DNA repair, and cell death. However, converging evidence indicates that p53 also plays a major role in metabolism in both normal and cancer cells. SCOPE OF REVIEW: We provide an overview of the current knowledge on the metabolic activities of wild type (WT) p53 and highlight some of the mechanisms by which p53 contributes to whole body energy homeostasis. We will also pinpoint some evidences suggesting that deregulation of p53-associated metabolic activities leads to human pathologies beyond cancer, including obesity, diabetes, liver, and cardiovascular diseases. MAJOR CONCLUSIONS: p53 is activated when cells are metabolically challenged but the origin, duration, and intensity of these stresses will dictate the outcome of the p53 response. p53 plays pivotal roles both upstream and downstream of several key metabolic regulators and is involved in multiple feedback-loops that ensure proper cellular homeostasis. The physiological roles of p53 in metabolism involve complex mechanisms of regulation implicating both cell autonomous effects as well as autocrine loops. However, the mechanisms by which p53 coordinates metabolism at the organismal level remain poorly understood. Perturbations of p53-regulated metabolic activities contribute to various metabolic disorders and are pivotal during cancer progression.


Assuntos
Metabolismo Energético/genética , Doenças Metabólicas/metabolismo , Neoplasias/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Homeostase/genética , Humanos , Doenças Metabólicas/genética , Doenças Metabólicas/patologia , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética
11.
J Theor Biol ; 466: 84-105, 2019 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-30503930

RESUMO

Although novel targeted therapies have significantly improved the overall survival of patients with advanced melanoma, understanding and combatting drug resistance remains a major clinical challenge. Using partial differential equations, we describe the evolution of a cellular population through time, space, and phenotype dimensions, in the presence of various drug species. We then use this framework to explore models in which resistance is attained by either mutations (irreversible) or plasticity (reversible). Numerical results suggest that punctuated evolutionary assumptions are more consistent with results obtained from murine melanoma models than gradual evolution. Furthermore, in the context of an evolving tumour cell population, sequencing the treatment, for instance applying immunotherapy before BRAF inhibitors, can increase treatment effectiveness. However, drug strategies which showed success within a spatially homogeneous tumour environment were unsuccessful under heterogeneous conditions, suggesting that spatio-environmental heterogeneity may be the greatest challenge to tumour therapies. Plastic metabolic models are additionally capable of reproducing the characteristic resistant tumour volume curves and predicting re-sensitisation to secondary waves of treatment observed in patient derived xenograft (PDX) melanomas treated with MEK and BRAF inhibitors. Nevertheless, secondary relapse due to a pre-adapted subpopulation, remaining after the first wave of treatment, results in a more rapid development of resistance. Our model provides a framework through which tumour resistance can be understood and would suggest that carefully phased treatments may be able to overcome the development of long-term resistance in melanoma.


Assuntos
Imunoterapia , Melanoma , Modelos Biológicos , Mutação , Recidiva Local de Neoplasia , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Humanos , Melanoma/genética , Melanoma/imunologia , Melanoma/metabolismo , Melanoma/terapia , Camundongos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/terapia
13.
Mol Cell ; 69(4): 594-609.e8, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29452639

RESUMO

Accumulating evidence indicates that the MDM2 oncoprotein promotes tumorigenesis beyond its canonical negative effects on the p53 tumor suppressor, but these p53-independent functions remain poorly understood. Here, we show that a fraction of endogenous MDM2 is actively imported in mitochondria to control respiration and mitochondrial dynamics independently of p53. Mitochondrial MDM2 represses the transcription of NADH-dehydrogenase 6 (MT-ND6) in vitro and in vivo, impinging on respiratory complex I activity and enhancing mitochondrial ROS production. Recruitment of MDM2 to mitochondria increases during oxidative stress and hypoxia. Accordingly, mice lacking MDM2 in skeletal muscles exhibit higher MT-ND6 levels, enhanced complex I activity, and increased muscular endurance in mild hypoxic conditions. Furthermore, increased mitochondrial MDM2 levels enhance the migratory and invasive properties of cancer cells. Collectively, these data uncover a previously unsuspected function of the MDM2 oncoprotein in mitochondria that play critical roles in skeletal muscle physiology and may contribute to tumor progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Transformação Celular Neoplásica/patologia , Complexo I de Transporte de Elétrons/metabolismo , Regulação Neoplásica da Expressão Gênica , Mitocôndrias/patologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Movimento Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Complexo I de Transporte de Elétrons/genética , Genoma Mitocondrial , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Invasividade Neoplásica , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-mdm2/genética , Transdução de Sinais , Transcrição Gênica , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Mol Cell Oncol ; 3(5): e1210560, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27857973

RESUMO

The oncoprotein MDM2 is recognized as a major negative regulator of the p53 tumor suppressor but growing evidence indicates that its oncogenic activities extend beyond p53. We show that MDM2 is recruited to chromatin independently of p53 to regulate a transcriptional program implicated in amino acid metabolism and redox homeostasis.

15.
Mol Cell ; 62(6): 890-902, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27264869

RESUMO

The mouse double minute 2 (MDM2) oncoprotein is recognized as a major negative regulator of the p53 tumor suppressor, but growing evidence indicates that its oncogenic activities extend beyond p53. Here, we show that MDM2 is recruited to chromatin independently of p53 to regulate a transcriptional program implicated in amino acid metabolism and redox homeostasis. Identification of MDM2 target genes at the whole-genome level highlights an important role for ATF3/4 transcription factors in tethering MDM2 to chromatin. MDM2 recruitment to chromatin is a tightly regulated process that occurs during oxidative stress and serine/glycine deprivation and is modulated by the pyruvate kinase M2 (PKM2) metabolic enzyme. Depletion of endogenous MDM2 in p53-deficient cells impairs serine/glycine metabolism, the NAD(+)/NADH ratio, and glutathione (GSH) recycling, impacting their redox state and tumorigenic potential. Collectively, our data illustrate a previously unsuspected function of chromatin-bound MDM2 in cancer cell metabolism.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Serina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proliferação de Células , Cromatina/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Glicina/metabolismo , Células HCT116 , Homeostase , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Nus , Mutação , Oxirredução , Estresse Oxidativo , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/genética , Interferência de RNA , Hormônios Tireóideos/genética , Hormônios Tireóideos/metabolismo , Fatores de Tempo , Transcrição Gênica , Transfecção , Carga Tumoral , Proteína Supressora de Tumor p53/genética , Proteínas de Ligação a Hormônio da Tireoide
16.
J Exp Med ; 213(4): 483-97, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26951332

RESUMO

Acute myeloid leukemia (AML) is characterized by the accumulation of malignant blasts with impaired differentiation programs caused by recurrent mutations, such as the isocitrate dehydrogenase (IDH) mutations found in 15% of AML patients. These mutations result in the production of the oncometabolite (R)-2-hydroxyglutarate (2-HG), leading to a hypermethylation phenotype that dysregulates hematopoietic differentiation. In this study, we identified mutant R132H IDH1-specific gene signatures regulated by key transcription factors, particularly CEBPα, involved in myeloid differentiation and retinoid responsiveness. We show that treatment with all-trans retinoic acid (ATRA) at clinically achievable doses markedly enhanced terminal granulocytic differentiation in AML cell lines, primary patient samples, and a xenograft mouse model carrying mutant IDH1. Moreover, treatment with a cell-permeable form of 2-HG sensitized wild-type IDH1 AML cells to ATRA-induced myeloid differentiation, whereas inhibition of 2-HG production significantly reduced ATRA effects in mutant IDH1 cells. ATRA treatment specifically decreased cell viability and induced apoptosis of mutant IDH1 blasts in vitro. ATRA also reduced tumor burden of mutant IDH1 AML cells xenografted in NOD-Scid-IL2rγ(null)mice and markedly increased overall survival, revealing a potent antileukemic effect of ATRA in the presence of IDH1 mutation. This therapeutic strategy holds promise for this AML patient subgroup in future clinical studies.


Assuntos
Crise Blástica/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Isocitrato Desidrogenase/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação de Sentido Incorreto , Proteínas de Neoplasias/metabolismo , Tretinoína/farmacologia , Substituição de Aminoácidos , Animais , Crise Blástica/enzimologia , Crise Blástica/genética , Crise Blástica/patologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular/genética , Sobrevivência Celular , Feminino , Granulócitos/metabolismo , Granulócitos/patologia , Células HL-60 , Humanos , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Nus , Proteínas de Neoplasias/genética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Genom Data ; 5: 368-70, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26484288

RESUMO

This Data in Brief report describes the experimental and bioinformatic procedures that we used to analyze and interpret E4F1 ChIP-seq experiments published in Rodier et al. (2015) [10]. Raw and processed data are available at the GEO DataSet repository under the subseries # GSE57228. E4F1 is a ubiquitously expressed zinc-finger protein of the GLI-Kruppel family that was first identified in the late eighties as a cellular transcription factor targeted by the adenoviral oncoprotein E1A13S (Ad type V) and required for the transcription of adenoviral genes (Raychaudhuri et al., 1987) [8]. It is a multifunctional factor that also acts as an atypical E3 ubiquitin ligase for p53 (Le Cam et al., 2006) [2]. Using KO mouse models we then demonstrated that E4F1 is essential for early embryonic development (Le Cam et al., 2004), for proliferation of mouse embryonic cell (Rodier et al., 2015), for the maintenance of epidermal stem cells (Lacroix et al., 2010) [6], and strikingly, for the survival of cancer cells (Hatchi et al., 2007) [4]; (Rodier et al., 2015) [10]. The latter survival phenotype was p53-independent and suggested that E4F1 was controlling a transcriptional program driving essential functions in cancer cells. To identify this program, we performed E4F1 ChIP-seq analyses in primary Mouse Embryonic Fibroblasts (MEF) and in p53(-/-), H-Ras(V12)-transformed MEFs. The program directly controlled by E4F1 was obtained by intersecting the lists of E4F1 genomic targets with the lists of genes differentially expressed in E4F1 KO and E4F1 WT cells (Rodier et al., 2015). We describe hereby how we improved our ChIP-seq analyses workflow by applying prefilters on raw data and by using a combination of two publicly available programs, Cisgenome and QESEQ.

18.
Nat Commun ; 6: 8528, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26503169

RESUMO

Regeneration relies on coordinated action of multiple cell types to reconstitute the damaged tissue. Here we inactivate the endocytic adaptor protein Numb in skeletal muscle stem cells prior to chronic or severe muscle injury in mice. We observe two types of senescence in regenerating muscle; a transient senescence in non-myogenic cells of control and Numb mutant mice that partly depends on INK4a/ARF activity, and a persistent senescence in myogenic cells lacking Numb. The senescence levels of Numb-deficient muscle is reduced to wild type levels by an anti-oxidant treatment or p53 ablation, resulting in functional rescue of the regenerative potential in Numb mutants. Ex vivo experiments suggest that Numb-deficient senescent cells recruit macrophages to sustain inflammation and drive fibrosis, two hallmarks of the impaired muscle regeneration in Numb mutants. These findings provide insights into previously reported developmental and oncogenic senescence that are also differentially regulated by p53.


Assuntos
Senescência Celular , Proteínas de Membrana/metabolismo , Músculo Esquelético/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Feminino , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Músculo Esquelético/lesões , Proteínas do Tecido Nervoso/genética , Regeneração , Proteína Supressora de Tumor p53/genética
19.
Cell Rep ; 11(2): 220-33, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25843721

RESUMO

Recent data support the notion that a group of key transcriptional regulators involved in tumorigenesis, including MYC, p53, E2F1, and BMI1, share an intriguing capacity to simultaneously regulate metabolism and cell cycle. Here, we show that another factor, the multifunctional protein E4F1, directly controls genes involved in mitochondria functions and cell-cycle checkpoints, including Chek1, a major component of the DNA damage response. Coordination of these cellular functions by E4F1 appears essential for the survival of p53-deficient transformed cells. Acute inactivation of E4F1 in these cells results in CHK1-dependent checkpoint deficiency and multiple mitochondrial dysfunctions that lead to increased ROS production, energy stress, and inhibition of de novo pyrimidine synthesis. This deadly cocktail leads to the accumulation of uncompensated oxidative damage to proteins and extensive DNA damage, ending in cell death. This supports the rationale of therapeutic strategies simultaneously targeting mitochondria and CHK1 for selective killing of p53-deficient cancer cells.


Assuntos
Proteínas de Ligação a DNA/genética , Mitocôndrias/metabolismo , Neoplasias/genética , Proteínas Quinases/genética , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética , Animais , Sobrevivência Celular , Quinase 1 do Ponto de Checagem , Dano ao DNA/genética , Proteínas de Ligação a DNA/biossíntese , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Mitocôndrias/patologia , Células-Tronco Embrionárias Murinas/metabolismo , Neoplasias/metabolismo , Proteínas Quinases/biossíntese , Pirimidinas/biossíntese , Proteínas Repressoras , Estresse Fisiológico/genética , Fatores de Transcrição/biossíntese , Proteína Supressora de Tumor p53/biossíntese , Ubiquitina-Proteína Ligases
20.
Med Sci (Paris) ; 29(12): 1125-30, 2013 Dec.
Artigo em Francês | MEDLINE | ID: mdl-24356143

RESUMO

The p53 tumor suppressor is an essential downstream effector of various cellular stress response pathways that is functionally inactivated in most, if not all, tumors. Since its discovery more than 30 years ago, its role in the control of cell proliferation, senescence and cell survival has been widely described. However, growing evidences from several laboratories indicate that p53 has important transcriptional and non-transcriptional functions in the control of metabolism, including the regulation of glycolysis, glutaminolysis or mitochondrial respiration. Originally identified using in vitro cellular models, this previously underestimated role of p53 has been confirmed in vivo in various genetically engineered mouse models. These recent data suggest that p53 functions in various metabolic pathways significantly contribute to its role in adult tissue homeostasis, aging as well as tumor suppression.


Assuntos
Metabolismo/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Glicólise/genética , Glicólise/fisiologia , Homeostase , Humanos , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Metabolismo/genética , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA