Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 122: 67-70, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35091027

RESUMO

Glyphosate, the most widely used herbicide active substance worldwide, has raised many scientific, political and public debates in the context of its recent re-registration in the European Union, highlighting in particular a lack of data concerning its potential generational effects. In this study, we investigated the intergenerational toxicity of this active substance used alone or coformulated in glyphosate-based herbicides (GBHs) on the ability of rainbow trout (Oncorhynchus mykiss) to face a viral challenge. Juvenile trout from parents exposed for eight months to four different chemical exposure conditions (non-exposed control, pure glyphosate, Roundup Innovert®, and Viaglif Jardin® were experimentally infected with the infectious hematopoietic necrosis virus (IHNv). Various enzymatic and hemato-immunological markers were assessed before and after the viral challenge. Chemical contamination with GBHs strongly modulated viral trout susceptibility. Pure glyphosate induced a cumulative mortality of 35.8%, comparable to the control (37.0%), which was significantly reduced with Roundup Innovert® (-9.9%) and increased (+14.8%) with Viaglif Jardin®. No modification was observed for the biomarkers analysed for any conditions. These results demonstrate that the nature of the co-formulants associated to glyphosate in GHBs can modulate the susceptibility of fish to pathogens.


Assuntos
Doenças dos Peixes , Herbicidas , Vírus da Necrose Hematopoética Infecciosa , Oncorhynchus mykiss , Infecções por Rhabdoviridae , Animais , Glicina/análogos & derivados , Glicina/toxicidade , Herbicidas/toxicidade , Infecções por Rhabdoviridae/induzido quimicamente , Infecções por Rhabdoviridae/veterinária , Glifosato
2.
Sci Total Environ ; 801: 149462, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34411792

RESUMO

In the past few decades, glyphosate became the most used herbicide substance worldwide. As a result, the substance is ubiquitous in surface waters. Concerns have been raised about its ecotoxicological impact, but little is known about its generational toxicity. In this study, we investigate the impact of an environmentally relevant concentration of glyphosate and its co-formulants on an F2 generation issued from exposed generations F0 and F1. Trans, inter and multigenerational toxicity of 1 µgL-1 of the active substance was evaluated on early stages of development and juvenile rainbow trout (Oncorhynchus mykiss) using different molecular, biochemical, immuno-hematologic, and biometric parameters, behavior analysis, and a viral challenge. Reproductive parameters of generation F1 were not affected. However, developmental toxicity in generation F2 due to glyphosate alone or co-formulated was observed with head size changes (e.g. head surface up to +10%), and metabolic disruptions (e.g. 35% reduction in cytochrome-c-oxidase). Moreover, larvae exposed transgenerationally to Viaglif and intergenerationally to glyphosate and Roundup presented a reduced response to light, potentially indicating altered escape behavior. Overall methylation was, however, not altered and further experiments using gene-specific DNA metylation analyses are required. After several months, biochemical parameters measured in juvenile fish were no longer impacted, only intergenerational exposure to glyphosate drastically increased the susceptibility of rainbow trout to hematopoietic necrosis virus. This result might be due to a lower antibody response in exposed fish. In conclusion, our results show that generational exposure to glyphosate induces developmental toxicity and increases viral susceptibility. Co-formulants present in glyphosate-based herbicides can modulate the toxicity of the active substance. Further investigations are required to study the specific mechanisms of transmission but our results suggest that both non-genetic mechanisms and exposure during germinal stage could be involved.


Assuntos
Herbicidas , Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Glicina/análogos & derivados , Glicina/toxicidade , Herbicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Glifosato
3.
Sci Total Environ ; 784: 147162, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34088035

RESUMO

Glyphosate is a commonly used agrochemical active substance co-formulated in glyphosate-based herbicides (GBHs) whose environmental safety is still a subject of debate in the European Union. We evaluated the effects of acute sublethal exposure to glyphosate on rainbow trout by measuring changes in their metabolic and hemato-immunologic functions and their ability to survive a viral challenge. Juvenile fish were exposed for 96 h to 500 µg L-1 of glyphosate through the active substance alone or two GHBs, Roundup Innovert® and Viaglif Jardin®, and fish were then infected with the infectious hematopoietic necrosis virus. Red and white blood cell counts (RBCC and WBCC), as well as several enzymatic activities (citrate synthase, CS; cytochrome-c oxidase, CCO; lactate dehydrogenase, LDH; glucose-6-phosphate dehydrogenase, G6PDH; acetylcholinesterase, AChE), were measured 96 h after chemical contamination (S1), and 96 h post-viral infection (S2). Mortality rates were monitored, and virus titers at the mortality peaks and seropositivity of the survivors were analyzed at 60 days post-viral infection (S3). Cumulative mortalities, viral titers, and seropositivity induced by virus infection were similar among conditions. Hematological analysis revealed significant increases of 30% for RBCC for Roundup at S1, and of 22% for WBCC at S2. No changes were observed in metabolic enzyme activities at S1. At S2, CCO and G6PDH activities were significantly higher than controls in all the chemically contaminated groups (+61 to 62% and +65 to 138%, respectively). LDH and AChE activities were increased for the Viaglif (p = 0.07; +55%) and for glyphosate and Roundup conditions (p < 0.05, +62 to 79%), respectively. Rainbow trout acutely exposed to glyphosate or GBHs presented no major physiological changes. Viral infection revealed disruptions, potentially modulated by co-formulants, of hematological and metabolic parameters, showing that it is essential to consider the stressful natural environment of fish in the chemical assessment.


Assuntos
Herbicidas , Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Glicina/análogos & derivados , Glicina/toxicidade , Herbicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA