Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37764476

RESUMO

The spread of Human Immunodeficiency Virus (HIV) still represents a global public health issue of major concern, and would benefit from unveiling unique viral features as targets for drug design. In this respect, HIV-1 integrase (IN), due to the absence of homologs in human cells, is a popular target for the synthesis of novel selective compounds. Moreover, as drug-resistant viral strains are rapidly evolving, the development of novel allosteric inhibitors is acutely required. Recently, we have observed that Kuwanon-L, quinazolinones and thienopyrimidinones containing at least one polyphenol unit, effectively inhibited HIV-1 IN activity. Thus, in the present research, novel dihydroxyphenyl-based thienopyrimidinone derivatives were investigated for their LEDGF/p75-dependent IN inhibitory activity. Our findings indicated a close correlation between the position of the OH group on the phenyl moiety and IN inhibitory activity of these compounds. As catechol may be involved in cytotoxicity, its replacement by other aromatic scaffolds was also exploited. As a result, compounds 21-23, 25 and 26 with enhanced IN inhibitory activity provided good lead candidates, with 25 being the most selective for IN. Lastly, UV spectrometric experiments suggested a plausible allosteric mode of action, as none of the thienopirimidinones showed Mg2+ chelation properties otherwise typical of IN strand transfer inhibitors (INSTIs).

2.
J Biomol Struct Dyn ; 40(20): 9761-9773, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34155954

RESUMO

Initiation of protein-primed (-) strand DNA synthesis in hepatitis B virus (HBV) requires interaction of the viral polymerase with a cis-acting regulatory signal, designated epsilon (ε), located at the 5'-end of its pre-genomic RNA (pgRNA). Binding of polymerase to ε is also necessary for pgRNA encapsidation. While the mechanistic basis of this interaction remains elusive, mutagenesis studies suggest its internal 6-nt "priming loop" provides an important structural contribution. ε might therefore be considered a promising target for small molecule interventions to complement current nucleoside-analog based anti-HBV therapies. An ideal prerequisite to any RNA-directed small molecule strategy would be a detailed structural description of this important element. Herein, we present a solution NMR structure for HBV ε which, in combination with molecular dynamics and docking simulations, reports on a flexible ligand "pocket", reminiscent of those observed in proteins. We also demonstrate the binding of the selective estrogen receptor modulators (SERMs) Raloxifene, Bazedoxifene, and a de novo derivative to the priming loop.Communicated by Ramaswamy H. Sarma.


Assuntos
Vírus da Hepatite B , RNA Viral , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , RNA Viral/química , Genômica , Replicação Viral
3.
Nucleic Acids Res ; 49(22): 13179-13193, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34871450

RESUMO

Cellular and virus-coded long non-coding (lnc) RNAs support multiple roles related to biological and pathological processes. Several lncRNAs sequester their 3' termini to evade cellular degradation machinery, thereby supporting disease progression. An intramolecular triplex involving the lncRNA 3' terminus, the element for nuclear expression (ENE), stabilizes RNA transcripts and promotes persistent function. Therefore, such ENE triplexes, as presented here in Kaposi's sarcoma-associated herpesvirus (KSHV) polyadenylated nuclear (PAN) lncRNA, represent targets for therapeutic development. Towards identifying novel ligands targeting the PAN ENE triplex, we screened a library of immobilized small molecules and identified several triplex-binding chemotypes, the tightest of which exhibits micromolar binding affinity. Combined biophysical, biochemical, and computational strategies localized ligand binding to a platform created near a dinucleotide bulge at the base of the triplex. Crystal structures of apo (3.3 Å) and ligand-soaked (2.5 Å) ENE triplexes, which include a stabilizing basal duplex, indicate significant local structural rearrangements within this dinucleotide bulge. MD simulations and a modified nucleoside analog interference technique corroborate the role of the bulge and the base of the triplex in ligand binding. Together with recently discovered small molecules that reduce nuclear MALAT1 lncRNA levels by engaging its ENE triplex, our data supports the potential of targeting RNA triplexes with small molecules.


Assuntos
Herpesvirus Humano 8/metabolismo , Nucleotídeos/metabolismo , Poli A/metabolismo , RNA Longo não Codificante/metabolismo , RNA Viral/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Sequência de Bases , Cristalografia por Raios X , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Conformação de Ácido Nucleico , Nucleotídeos/genética , Poli A/química , Poli A/genética , Estabilidade de RNA/genética , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , RNA Viral/química , RNA Viral/genética , Sarcoma de Kaposi/virologia , Bibliotecas de Moléculas Pequenas/química
5.
Curr HIV Res ; 18(2): 114-131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32039686

RESUMO

The vast genetic variability of HIV has impeded efforts towards a cure for HIV. Lifelong administration of combined antiretroviral therapy (cART) is highly effective against HIV and has markedly increased the life expectancy of HIV infected individuals. However, the long-term usage of cART is associated with co-morbidities and the emergence of multidrug-resistant escape mutants necessitating the development of alternative approaches to combat HIV/AIDS. In the past decade, the development of single-cell antibody cloning methods has facilitated the characterization of a diverse array of highly potent neutralizing antibodies against a broad range of HIV strains. Although the passive transfer of these broadly neutralizing antibodies (bnAbs) in both animal models and humans has been shown to elicit significant antiviral effects, long term virologic suppression requires repeated administration of these antibodies. Adeno-associated virus (AAV) mediated antibody gene transfer provides a long-term expression of these antibodies from a single administration of the recombinant vector. Therefore, this vectored approach holds promises in the treatment and prevention of a chronic disease like HIV infection. Here, we provide an overview of HIV genetic diversity, AAV vectorology, and anti-HIV bnAbs and summarize the promises and challenges of the application of AAV in the delivery of bnAbs for HIV prevention and therapy.


Assuntos
Anticorpos Amplamente Neutralizantes/uso terapêutico , Dependovirus/genética , Anticorpos Anti-HIV/uso terapêutico , Infecções por HIV/prevenção & controle , Infecções por HIV/terapia , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/uso terapêutico , Animais , Antirretrovirais/uso terapêutico , Anticorpos Amplamente Neutralizantes/imunologia , Modelos Animais de Doenças , Expressão Gênica/genética , Terapia Genética , Variação Genética/genética , Anticorpos Anti-HIV/imunologia , HIV-1/genética , HIV-1/imunologia , Humanos , Imunoterapia Adotiva/métodos
6.
Methods Enzymol ; 623: 373-400, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31239054

RESUMO

Targeting RNA offers the potential in many diseases of a therapeutic treatment. Due to its large surface area and ability to adopt different conformations, targeting RNA has proven challenging. Medium-sized branched peptides are of the size to competitively bind RNA while remaining cell permeable, stable in vivo, and non-toxic. Additionally, the ease in generating a large library followed by high-throughput screening provides a way to suggest a scaffold with high diversity that is capable of targeting the structure and sequence of RNA. The ability to select various types of amino acid modifications in the branched peptide allows for variable structures and interactions of the branched peptide but can result in too large a task if not approached properly. In this chapter, we discuss a strategy to selectively recognize RNAs of interest through high throughput screening of branched peptides, validation of hits and biophysical characterization, leading by example with our experience in targeting HIV-1 RNAs with branched peptides.


Assuntos
HIV-1/metabolismo , Peptídeos/farmacologia , RNA Viral/metabolismo , Sítios de Ligação , Descoberta de Drogas/métodos , Infecções por HIV/virologia , HIV-1/química , Ensaios de Triagem em Larga Escala/métodos , Humanos , Biblioteca de Peptídeos , Peptídeos/química , RNA Viral/química
7.
Bioorg Med Chem ; 27(8): 1759-1765, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30879859

RESUMO

Interaction of HIV-1 rev response element (RRE) RNA with its cognate protein, Rev, is critical for HIV-1 replication. Understanding the mode of interaction between RRE RNA and ligands at the binding site can facilitate RNA molecular recognition as well as provide a strategy for developing anti-HIV therapeutics. Our approach utilizes branched peptides as a scaffold for multivalent binding to RRE IIB (high affinity rev binding site) with incorporation of unnatural amino acids to increase affinity via non-canonical interactions with the RNA. Previous high throughput screening of a 46,656-member library revealed several hits that bound RRE IIB RNA in the sub-micromolar range. In particular, the lead compound, 4B3, displayed a Kd value of 410 nM and demonstrated selectivity towards RRE. A ribonuclease protection assay revealed that 4B3 binds to the stem-loop structure of RRE IIB RNA, which was confirmed by SHAPE analysis with 234 nt long NL4-3 RRE RNA. Our studies further indicated interaction of 4B3 with both primary and secondary Rev binding sites.


Assuntos
HIV-1/genética , Peptídeos/química , RNA Viral/química , Elementos de Resposta/genética , Sítios de Ligação , Humanos , Conformação de Ácido Nucleico , Peptídeos/síntese química , Peptídeos/metabolismo , Ligação Proteica , RNA Viral/metabolismo , Ribonucleases/química , Ribonucleases/metabolismo
8.
ACS Chem Biol ; 14(2): 223-235, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30620551

RESUMO

Metastasis-associated lung adenocarcinoma transcript 1 ( Malat1/ MALAT1, mouse/human), a highly conserved long noncoding (lnc) RNA, has been linked with several physiological processes, including the alternative splicing, nuclear organization, and epigenetic modulation of gene expression. MALAT1 has also been implicated in metastasis and tumor proliferation in multiple cancer types. The 3' terminal stability element for nuclear expression (ENE) assumes a triple-helical configuration that promotes its nuclear accumulation and persistent function. Utilizing a novel small molecule microarray strategy, we identified multiple Malat1 ENE triplex-binding chemotypes, among which compounds 5 and 16 reduced Malat1 RNA levels and branching morphogenesis in a mammary tumor organoid model. Computational modeling and Förster resonance energy transfer experiments demonstrate distinct binding modes for each chemotype, conferring opposing structural changes to the triplex. Compound 5 modulates Malat1 downstream genes without affecting Neat1, a nuclear lncRNA encoded in the same chromosomal region as Malat1 with a structurally similar ENE triplex. Supporting this observation, the specificity of compound 5 for Malat1 over Neat1 and a virus-coded ENE was demonstrated by nuclear magnetic resonance spectroscopy. Small molecules specifically targeting the MALAT1 ENE triplex lay the foundation for new classes of anticancer therapeutics and molecular probes for the treatment and investigation of MALAT1-driven cancers.


Assuntos
RNA Longo não Codificante/metabolismo , Animais , Humanos , Camundongos , Simulação de Acoplamento Molecular , Ligação Proteica , RNA Longo não Codificante/genética
9.
Oncotarget ; 9(88): 35856-35869, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30533200

RESUMO

Background: We previously reported Kaposi sarcoma-associated herpesvirus (KSHV) microRNA sequence variants in clinical samples correlated with increased risk of multicentric Castleman's disease (MCD). We then demonstrated that microRNAs with variant sequence have different maturation and mature microRNA expression in vitro. Here, we illustrate the association between microRNA sequence and changes in mature microRNA levels within Kaposi sarcoma (KS) lesions. Methods: KSHV microRNA sequences were determined from 20 KS lesions and 4 control skin biopsies from individuals evaluated for KS. Levels of mature KSHV microRNAs were measured with 21 custom small RNA qRT-PCR assays using RNA RNU6B as endogenous control. Results: The levels of 13 KSHV-encoded microRNAs were elevated in KS lesions compared to control biopsies. MicroRNA 9-5p was strongly down regulated in South African vs. US biopsies. Low levels of K12-9-5p were associated with single nucleotide polymorphisms (SNPs) in miR-K12-9-5p, 4-5p, 5-3p, 7-3p and pri-miR-K12-3. One SNP in pri-miR-K12-3 resulted in down regulation of miR-K12-6-3p, 8-3p, 10-3p, 12-5p and the upregulation of 5-5p, illustrating sequence variants outside pre-microRNAs were also associated with changes in mature microRNA levels. Conclusions: The levels of mature KSHV-encoded microRNAs in KS lesions correlate with sequence variation reflecting changes in secondary and tertiary RNA structure.

10.
Artigo em Inglês | MEDLINE | ID: mdl-30061278

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent of Kaposi's sarcoma, belongs to the Herpesviridae family, whose members employ a multicomponent terminase to resolve nonparametric viral DNA into genome-length units prior to their packaging. Homology modeling of the ORF29 C-terminal nuclease domain (pORF29C) and bacteriophage Sf6 gp2 have suggested an active site clustered with four acidic residues, D476, E550, D661, and D662, that collectively sequester the catalytic divalent metal (Mn2+) and also provided important insight into a potential inhibitor binding mode. Using this model, we have expressed, purified, and characterized the wild-type pORF29C and variants with substitutions at the proposed active-site residues. Differential scanning calorimetry demonstrated divalent metal-induced stabilization of wild-type (WT) and D661A pORF29C, consistent with which these two enzymes exhibited Mn2+-dependent nuclease activity, although the latter mutant was significantly impaired. Thermal stability of WT and D661A pORF29C was also enhanced by binding of an α-hydroxytropolone (α-HT) inhibitor shown to replace divalent metal at the active site. For the remaining mutants, thermal stability was unaffected by divalent metal or α-HT binding, supporting their role in catalysis. pORF29C nuclease activity was also inhibited by two classes of small molecules reported to inhibit HIV RNase H and integrase, both of which belong to the superfamily of nucleotidyltransferases. Finally, α-HT inhibition of KSHV replication suggests ORF29 nuclease function as an antiviral target that could be combined with latency-activating compounds as a shock-and-kill antiviral strategy.


Assuntos
Endonucleases/química , Endonucleases/metabolismo , Herpesvirus Humano 8/enzimologia , Sarcoma de Kaposi/virologia , Varredura Diferencial de Calorimetria , Domínio Catalítico , DNA Viral/genética , Endodesoxirribonucleases/genética , Endonucleases/genética , Ativação Enzimática/efeitos dos fármacos , Inibidores de Integrase de HIV/farmacologia , Herpesvirus Humano 8/genética , Integrases/genética , Mutagênese Sítio-Dirigida , Fases de Leitura Aberta/genética , Estrutura Secundária de Proteína , Ribonuclease H/genética
11.
RNA Biol ; 15(1): 13-16, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29099331

RESUMO

As the notion of small molecule targeting of regulatory viral and cellular RNAs gathers momentum, understanding their structure, and variations thereof, in the appropriate biological context will play a critical role. This is especially true of the ∼1100-nt polyadenylated nuclear (PAN) long non-coding (lnc) RNA of Kaposi's sarcoma herpesvirus (KSHV), whose interaction with viral and cellular proteins is central to lytic infection. Nuclear accumulation of PAN RNA is mediated via a unique triple helical structure at its 3' terminus (within the expression and nuclear retention element, or ENE) which protects it from deadenylation-dependent decay. Additionally, significant levels of PAN RNA have been reported in both the cytoplasm of KSHV-infected cells and in budding virions, leading us to consider which viral and host proteins might associate with, or dissociate from, this lncRNA during its "journey" through the cell. By combining the power of SHAPE-mutational profiling (SHAPE-MaP) with large scale virus culture facilities of the National Cancer Institute, Frederick MD, Sztuba-Solinska et al. have provide the first detailed description of KSHV PAN nucleoprotein complexes in multiple biological contexts, complementing this by mapping sites of recombinant KSHV proteins on an in vitro-synthesized, polyadenylated counterpart.


Assuntos
Herpesvirus Humano 8/genética , RNA Longo não Codificante/genética , RNA Viral/genética , Replicação Viral/genética , Citoplasma/virologia , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/patogenicidade , Interações Hospedeiro-Patógeno/genética , Humanos , Nucleoproteínas/genética , RNA Longo não Codificante/química , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Viral/química
12.
Nucleic Acids Res ; 45(11): 6805-6821, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28383682

RESUMO

Kaposi's sarcoma-associated herpes virus (KSHV) polyadenylated nuclear (PAN) RNA facilitates lytic infection, modulating the cellular immune response by interacting with viral and cellular proteins and DNA. Although a number nucleoprotein interactions involving PAN have been implicated, our understanding of binding partners and PAN RNA binding motifs remains incomplete. Herein, we used SHAPE-mutational profiling (SHAPE-MaP) to probe PAN in its nuclear, cytoplasmic or viral environments or following cell/virion lysis and removal of proteins. We thus characterized and put into context discrete RNA structural elements, including the cis-acting Mta responsive element and expression and nuclear retention element (1,2). By comparing mutational profiles in different biological contexts, we identified sites on PAN either protected from chemical modification by protein binding or characterized by a loss of structure. While some protein binding sites were selectively localized, others were occupied in all three biological contexts. Individual binding sites of select KSHV gene products on PAN RNA were also identified in in vitro experiments. This work constitutes the most extensive structural characterization of a viral lncRNA and interactions with its protein partners in discrete biological contexts, providing a broad framework for understanding the roles of PAN RNA in KSHV infection.


Assuntos
Herpesvirus Humano 8/genética , RNA Mensageiro/metabolismo , RNA Nuclear/metabolismo , RNA Viral/metabolismo , Sítios de Ligação , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Citoplasma/metabolismo , Citoplasma/virologia , Herpesvirus Humano 8/metabolismo , Humanos , Sequências Repetidas Invertidas , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Fases de Leitura Aberta , Polimorfismo de Nucleotídeo Único , Ligação Proteica , RNA Mensageiro/genética , RNA Nuclear/genética , RNA Viral/genética , Células Tumorais Cultivadas , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
13.
Viruses ; 9(3)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28294975

RESUMO

Converting the single-stranded retroviral RNA into integration-competent double-stranded DNA is achieved through a multi-step process mediated by the virus-coded reverse transcriptase (RT). With the exception that it is restricted to an intracellular life cycle, replication of the Saccharomyces cerevisiae long terminal repeat (LTR)-retrotransposon Ty3 genome is guided by equivalent events that, while generally similar, show many unique and subtle differences relative to the retroviral counterparts. Until only recently, our knowledge of RT structure and function was guided by a vast body of literature on the human immunodeficiency virus (HIV) enzyme. Although the recently-solved structure of Ty3 RT in the presence of an RNA/DNA hybrid adds little in terms of novelty to the mechanistic basis underlying DNA polymerase and ribonuclease H activity, it highlights quite remarkable topological differences between retroviral and LTR-retrotransposon RTs. The theme of overall similarity but distinct differences extends to the priming mechanisms used by Ty3 RT to initiate (-) and (+) strand DNA synthesis. The unique structural organization of the retrotransposon enzyme and interaction with its nucleic acid substrates, with emphasis on polypurine tract (PPT)-primed initiation of (+) strand synthesis, is the subject of this review.


Assuntos
DNA Polimerase Dirigida por RNA/metabolismo , Retroelementos , Transcrição Reversa , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sequências Repetidas Terminais , DNA Polimerase Dirigida por RNA/química , DNA Polimerase Dirigida por RNA/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
14.
Methods Enzymol ; 566: 89-110, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26791977

RESUMO

Proton assignment of nuclear magnetic resonance (NMR) spectra of homopyrimidine/homopurine tract oligonucleotides becomes extremely challenging with increasing helical length due to severe cross-peak overlap. As an alternative to the more standard practice of (15)N and (13)C labeling of oligonucleotides, here, we describe a method for assignment of highly redundant DNA sequences that uses single-site substitution of the thymine isostere 2,4-difluoro-5-methylbenzene (dF). The impact of this approach in facilitating the assignment of intractable spectra and analyzing oligonucleotide structure and dynamics is demonstrated using A-tract and TATA box DNA and two polypurine tract-containing RNA:DNA hybrids derived from HIV-1 and the Saccharomyces cerevisiae long-terminal repeat-containing retrotransposon Ty3. Only resonances proximal to the site of dF substitution exhibit sizable chemical shift changes, providing spectral dispersion while still allowing chemical shift mapping of resonances from unaffected residues distal to the site of modification directly back to the unmodified sequence. It is further illustrated that dF incorporation can subtly alter the conformation and dynamics of homopyrimidine/homopurine tract oligonucleotides, and how these NMR observations can be correlated, in the cases of the TATA box DNA, with modulation in the TATA box-binding protein interaction using an orthogonal gel assay.


Assuntos
Imageamento por Ressonância Magnética/métodos , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Proteína de Ligação a TATA-Box/química , Sequência de Bases/genética , Purinas/química , Pirimidinas/química , RNA/química , Saccharomyces cerevisiae/química , TATA Box/genética
15.
Methods Mol Biol ; 1354: 91-117, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26714707

RESUMO

Functional analysis of viral RNA requires knowledge of secondary structure arrangements and tertiary base interactions. Thus, high-throughput and comprehensive methods for assessing RNA structure are highly desirable. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) has proven highly useful for modeling the secondary structures of HIV and other retroviral RNAs in recent years. This technology is not without its limitations however, as SHAPE data can be severely compromised when the RNA under study is structurally heterogeneous. In addition, the method reveals little information regarding the three-dimensional (3D) organization of an RNA. This chapter outlines four detailed SHAPE-related methodologies that circumvent these limitations. "Ensemble" and "in-gel" variations of SHAPE permit structural analysis of individual conformers within structurally heterogeneous mixtures of RNA, while probing strategies that utilize "through-space" cleavage reagents such as methidiumpropyl-EDTA (MPE) and peptides appended with an ATCUN (amino terminal copper/nickel binding motif) can provide insight into 3D organization. Combinational application of these techniques provides a formidable arsenal for exploring the structures of HIV RNAs and associated nucleoprotein complexes.


Assuntos
HIV/química , Sondas RNA/química , RNA Viral/química , Sítios de Ligação , Eletroforese Capilar/métodos , HIV/metabolismo , Infecções por HIV/virologia , Humanos , Modelos Moleculares , Eletroforese em Gel de Poliacrilamida Nativa/métodos , Conformação de Ácido Nucleico , Peptídeos/metabolismo , Dobramento de RNA , Sondas RNA/análise , Sondas RNA/isolamento & purificação , Sondas RNA/metabolismo , RNA Viral/análise , RNA Viral/isolamento & purificação , RNA Viral/metabolismo , Transcrição Reversa
16.
Mob Genet Elements ; 5(2): 1-4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442179

RESUMO

Replication of retroviruses and transposition of endogenous retroelements exploits a unique mechanism of post-transcriptional regulation as a means of exporting their incompletely-spliced mRNAs (which serve as both the genomic RNA and the template for protein synthesis). Following discovery of the Rev response element (RRE) that mediates nucleocytoplasmic export of the full-length and singly-spliced human immunodeficiency virus type 1 (HIV-1) genome, equivalent cis-acting regulatory elements have been characterized for both complex and simple retroviruses and retroelements, together with the obligate viral and host proteins with which they interact. The exception to this is the gammaretrovirus family of simple retroviruses, exemplified by reticuloendotheliosis virus (REV), murine leukemia virus (MLV) and xenotropic MLV-related retrovirus (XMRV). In this commentary, we discuss our recent data that reported structural and functional data on the MLV/XMRV post-transcriptional regulatory element (designated the PTE). The PTE was characterized by a highly-structured region of multiple stem-loops (SL1 - SL7) overlapping the pro and 5' portion of the pol open reading frames, comprising a bipartite export signal whose structures are separated by ∼1400 nt. In addition, structural probing suggested that SL3 nucleotides were involved in pseudoknot formation. These data, when compared with RNA transport elements of complex retroviruses (HIV) and simple murine retrotransposons (musD), collectively present an emerging picture that long-range tertiary interactions are critical mediators of their biological function.

17.
PLoS One ; 10(4): e0122953, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25860884

RESUMO

Converting single-stranded viral RNA into double stranded DNA for integration is an essential step in HIV-1 replication. Initial polymerization of minus-strand DNA is primed from a host derived tRNA, whereas subsequent plus-strand synthesis requires viral primers derived from the 3' and central polypurine tracts (3' and cPPTs). The 5' and 3' termini of these conserved RNA sequence elements are precisely cleaved by RT-associated RNase H to generate specific primers that are used to initiate plus-strand DNA synthesis. In this study, siRNA wad used to produce a replicative HIV-1 variant contained G(-1)A and T(-16)A substitutions within/adjacent to the 3'PPT sequence. Introducing either or both mutations into the 3'PPT region or only the G(-1)A substitution in the cPPT region of NL4-3 produced infectious virus with decreased fitness relative to the wild-type virus. In contrast, introducing the T(-16)A or both mutations into the cPPT rendered the virus(es) incapable of replication, most likely due to the F185L integrase mutation produced by this nucleotide substitution. Finally, the effects of G(-1)A and T(-16)A mutations on cleavage of the 3'PPT were examined using an in vitro RNase H cleavage assay. Substrate containing both mutations was mis-cleaved to a greater extent than either wild-type substrate or substrate containing the T(-16)A mutation alone, which is consistent with the observed effects of the equivalent nucleotide substitutions on the replication fitness of NL4-3 virus. In conclusion, siRNA targeting of the HIV-1 3'PPT region can substantially suppress virus replication, and this selective pressure can be used to generate infectious virus containing mutations within or near the HIV-1 PPT. Moreover, in-depth analysis of the resistance mutations demonstrates that although virus containing a G(-1)A mutation within the 3'PPT is capable of replication, this nucleotide substitution shifts the 3'-terminal cleavage site in the 3'PPT by one nucleotide (nt) and significantly reduces viral fitness.


Assuntos
HIV-1/fisiologia , Região 3'-Flanqueadora , Sequência de Bases , Linhagem Celular , Primers do DNA/genética , Primers do DNA/metabolismo , HIV-1/enzimologia , HIV-1/genética , Humanos , Mutação , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/antagonistas & inibidores , RNA Viral/genética , RNA Viral/metabolismo , Ribonuclease H/metabolismo , Alinhamento de Sequência , Replicação Viral
18.
Nucleic Acids Res ; 42(17): 11092-106, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25190459

RESUMO

Post-transcriptional regulatory mechanisms of several complex and simple retroviruses and retroelements have been elucidated, with the exception of the gammaretrovirus family. We found that, similar to the other retroviruses, gag gene expression of MuLV and XMRV depends on post-transcriptional regulation mediated via an RNA sequence overlapping the pro-pol open reading frame, termed the Post-Transcriptional Element (PTE). PTE function can be replaced by heterologous RNA export elements, e.g. CTE of simian type D retroviruses. Alternatively, Gag particle production is achieved using an RNA/codon optimized gag gene. PTE function is transferable and can replace HIV Rev-RRE-regulated expression of HIV gag. Analysis of PTE by SHAPE revealed a highly structured RNA comprising seven stem-loop structures, with the 5' and 3' stem-loops forming an essential bipartite signal. MuLV and XMRV PTE share 98% identity and have highly similar RNA structures, with changes mostly located to single-stranded regions. PTE identification strongly suggests that all retroviruses and retroelements share common strategies of post-transcriptional gene regulation to produce Gag. Expression depends on complex RNA structures embedded within retroviral mRNA, in coding regions or the 3' untranslated region. These specific structures serve as recognition signals for either cellular or viral proteins.


Assuntos
Regulação Viral da Expressão Gênica , Vírus da Leucemia Murina de Moloney/genética , RNA Mensageiro/química , RNA Viral/química , Sequências Reguladoras de Ácido Ribonucleico , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/genética , Produtos do Gene gag/genética , Produtos do Gene gag/metabolismo , Células HEK293 , Células HeLa , Humanos , Vírus da Leucemia Murina de Moloney/metabolismo , Conformação de Ácido Nucleico , RNA Mensageiro/metabolismo , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
19.
J Am Chem Soc ; 136(23): 8402-10, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24820959

RESUMO

Identifying small molecules that selectively bind to structured RNA motifs remains an important challenge in developing potent and specific therapeutics. Most strategies to find RNA-binding molecules have identified highly charged compounds or aminoglycosides that commonly have modest selectivity. Here we demonstrate a strategy to screen a large unbiased library of druglike small molecules in a microarray format against an RNA target. This approach has enabled the identification of a novel chemotype that selectively targets the HIV transactivation response (TAR) RNA hairpin in a manner not dependent on cationic charge. Thienopyridine 4 binds to and stabilizes the TAR hairpin with a Kd of 2.4 µM. Structure-activity relationships demonstrate that this compound achieves activity through hydrophobic and aromatic substituents on a heterocyclic core, rather than cationic groups typically required. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) analysis was performed on a 365-nucleotide sequence derived from the 5' untranslated region (UTR) of the HIV-1 genome to determine global structural changes in the presence of the molecule. Importantly, the interaction of compound 4 can be mapped to the TAR hairpin without broadly disrupting any other structured elements of the 5' UTR. Cell-based anti-HIV assays indicated that 4 inhibits HIV-induced cytopathicity in T lymphocytes with an EC50 of 28 µM, while cytotoxicity was not observed at concentrations approaching 1 mM.


Assuntos
Fármacos Anti-HIV/química , Repetição Terminal Longa de HIV/efeitos dos fármacos , RNA Viral/química , Bibliotecas de Moléculas Pequenas/química , Fármacos Anti-HIV/farmacologia , Linhagem Celular Tumoral , Efeito Citopatogênico Viral , Descoberta de Drogas , Fluorometria , Repetição Terminal Longa de HIV/genética , HIV-1/efeitos dos fármacos , HIV-1/patogenicidade , Humanos , Estrutura Molecular , Motivos de Nucleotídeos/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Linfócitos T/virologia
20.
Nat Struct Mol Biol ; 21(4): 389-96, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24608367

RESUMO

Retrotransposons are a class of mobile genetic elements that replicate by converting their single-stranded RNA intermediate to double-stranded DNA through the combined DNA polymerase and ribonuclease H (RNase H) activities of the element-encoded reverse transcriptase (RT). Although a wealth of structural information is available for lentiviral and gammaretroviral RTs, equivalent studies on counterpart enzymes of long terminal repeat (LTR)-containing retrotransposons, from which they are evolutionarily derived, is lacking. In this study, we report the first crystal structure of a complex of RT from the Saccharomyces cerevisiae LTR retrotransposon Ty3 in the presence of its polypurine tract-containing RNA-DNA hybrid. In contrast to its retroviral counterparts, Ty3 RT adopts an asymmetric homodimeric architecture whose assembly is substrate dependent. Moreover, our structure and biochemical data suggest that the RNase H and DNA polymerase activities are contributed by individual subunits of the homodimer.


Assuntos
DNA/química , DNA Polimerase Dirigida por RNA/química , Retroelementos , Ribonuclease H/química , Proteínas de Saccharomyces cerevisiae/química , Sítios de Ligação , Cristalografia por Raios X , DNA/genética , Dimerização , Modelos Moleculares , Estrutura Terciária de Proteína , DNA Polimerase Dirigida por RNA/fisiologia , Ribonuclease H/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA