Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(18): 5395-5402, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38684070

RESUMO

We investigated the role of ligand clustering and density in the activation of natural killer (NK) cells. To that end, we designed reductionist arrays of nanopatterned ligands arranged with different cluster geometries and densities and probed their effects on NK cell activation. We used these arrays as an artificial microenvironment for the stimulation of NK cells and studied the effect of the array geometry on the NK cell immune response. We found that ligand density significantly regulated NK cell activation while ligand clustering had an impact only at a specific density threshold. We also rationalized these findings by introducing a theoretical membrane fluctuation model that considers biomechanical feedback between ligand-receptor bonds and the cell membrane. These findings provide important insight into NK cell mechanobiology, which is fundamentally important and essential for designing immunotherapeutic strategies targeting cancer.


Assuntos
Membrana Celular , Células Matadoras Naturais , Células Matadoras Naturais/imunologia , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Ligantes , Ativação Linfocitária , Fenômenos Biomecânicos , Modelos Biológicos
2.
ACS Appl Mater Interfaces ; 16(14): 17846-17856, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38549366

RESUMO

We introduce a novel approach for colloidal lithography based on the dry particle assembly into a dense monolayer on an elastomer, followed by mechanical transfer to a substrate of any material and curvature. This method can be implemented either manually or automatically and it produces large area patterns with the quality obtained by the state-of-the-art colloidal lithography at a very high throughput. We first demonstrated the fabrication of nanopatterns with a periodicity ranging between 200 nm and 2 µm. We then demonstrated two nanotechnological applications of this approach. The first one is antireflective structures, fabricated on silicon and sapphire, with different geometries including arrays of bumps and holes and adjusted for different spectral ranges. The second one is smart 3D nanostructures for mechanostimulation of T cells that are used for their effective proliferation, with potential application in cancer immunotherapy. This new approach unleashes the potential of bottom-up nanofabrication and paves the way for nanoscale devices and systems in numerous applications.

3.
ACS Appl Mater Interfaces ; 15(26): 31103-31113, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37347217

RESUMO

The ex vivo activation and proliferation of cytotoxic T cells are critical steps in adoptive immunotherapy. Today, T cells are activated by stimulation with antibody-coated magnetic beads, traditionally used for cell separation. Yet, efficient and controlled activation and proliferation of T cells require new antibody-bearing materials, which, in particular, deliver mechanical and topographic cues sensed by T cells. Here, we demonstrate a new approach for the activation and proliferation of human cytotoxic T cells using an elastic microbrush coated with activating and costimulatory antibodies. We found that the microbrush topography affects the protrusion of the cell membrane and the elastic response to the forces applied by cells and can be optimized to yield the strongest activation of T cells. In particular, T cells stimulated by a microbrush showed a three-fold increase in degranulation and release of cytokines over T cells stimulated with state-of-the-art magnetic beads. Furthermore, the microbrush induced a T-cell proliferation of T cells that was more prolonged and yielded much higher cell doubling than that done by the state-of-the-art methods. Our study provides an essential insight into the physical mechanism of T-cell activation and proliferation and opens the floodgates for the design of novel stimulatory materials for T-cell-based immunotherapy.


Assuntos
Sinais (Psicologia) , Linfócitos T Citotóxicos , Humanos , Imunoterapia , Imunoterapia Adotiva/métodos , Ativação Linfocitária , Proliferação de Células
4.
Phys Chem Chem Phys ; 25(4): 3251-3257, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36625465

RESUMO

The binding of peptides and proteins through multiple weak interactions is ubiquitous in nature. Biopanning has been used to "hijack" this multivalent binding for the functionalization of surfaces. For practical applications it is important to understand how multivalency influences the binding interactions and the resulting behaviour of the surface. Considering the importance of optimization of the electronic properties of surfaces in diverse electronic and optoelectronic applications, we study here the relation between the multivalency effect and the resulting modulation of the surface work function. We use 12-mer peptides, which were found to strongly bind to oxide surfaces, to functionalize indium tin oxide (ITO) surfaces. We show that the affinity of the peptides for the ITO surface, and concurrently the effect on the ITO work function, are linearly affected by the number of basic residues in the sequence. The multivalent binding interactions lead to a peptide crowding effect, and a stronger modulation of the work function for adodecapeptide than for a single basic amino acid functionalization. The bioderived molecular platform presented herein can pave the way to a novel approach to improve the performance of optoelectronic devices in an eco-friendly manner.


Assuntos
Óxidos , Peptídeos , Propriedades de Superfície , Peptídeos/química , Eletrônica
5.
Small ; 17(14): e2007347, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33719212

RESUMO

The cytotoxic activity of natural killer (NK) cells is regulated by many chemical and physical cues, whose integration mechanism is still obscure. Here, a multifunctional platform is engineered for NK cell stimulation, to study the effect of the signal integration and spatial heterogeneity on NK cell function. The platform is based on nanowires, whose mechanical compliance and site-selective tip functionalization with antigens produce the physical and chemical stimuli, respectively. The nanowires are confined to micron-sized islands, which induce a splitting of the NK cells into two subpopulations with distinct morphologies and immune responses: NK cells atop the nanowire islands display symmetrical spreading and enhanced activation, whereas cells lying in the straits between the islands develop elongated profiles and show lower activation levels. The demonstrated tunability of NK cell cytotoxicity provides an important insight into the mechanism of their immune function and introduces a novel technological route for the ex vivo shaping of cytotoxic lymphocytes in immunotherapy.


Assuntos
Antineoplásicos , Nanofios , Antígenos , Citotoxicidade Imunológica , Imunoterapia , Células Matadoras Naturais
6.
ACS Biomater Sci Eng ; 7(1): 122-132, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33455204

RESUMO

Mechanosensing has been recently explored for T cells and B cells and is believed to be a part of their activation mechanism. Here, we investigated the mechanosensing of the third type of lymphocyte - natural killer (NK) cells, by showing that they modulate their immune activity in response to changes in the stiffness of a stimulating surface. Interestingly, we found that this immune response is bell-shaped and peaks for a stiffness of a few hundreds of kPa. This bell-shaped behavior was observed only for surfaces functionalized with the activating ligand major histocompatibility complex class I polypeptide-related sequence A but not for control surfaces, lacking immunoactive functionalities. We found that stiffness does not affect uniformly all the cells but increases the size of a little group of extra-active cells, which in turn contributes to the overall activation effect of the entire cell population. We further imaged the clustering of costimulatory adapter protein DAP10 on the NK cell membrane and found the same bell-shaped dependence to surface stiffness. Our findings reveal what seems to be ″the tip of the iceberg″ of mechanosensation of NK cells and provide an important insight into the mechanism of their immune signaling.


Assuntos
Células Matadoras Naturais , Receptores Imunológicos , Antígenos de Histocompatibilidade Classe I , Ligantes , Linfócitos T
7.
ACS Appl Mater Interfaces ; 12(20): 22399-22409, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32323968

RESUMO

Contact guidance has been extensively explored using patterned adhesion functionalities that predominantly mimic cell-matrix interactions. Whether contact guidance can also be driven by other types of interactions, such as cell-cell adhesion, still remains a question. Herein, this query is addressed by engineering a set of microstrip patterns of (i) cell-cell adhesion ligands and (ii) segregated cell-cell and cell-matrix ligands as a simple yet versatile set of platforms for the guidance of spreading, adhesion, and differentiation of mesenchymal stem cells. It was unprecedently found that micropatterns of cell-cell adhesion ligands can induce contact guidance. Surprisingly, it was found that patterns of alternating cell-matrix and cell-cell strips also induce contact guidance despite providing a spatial continuum for cell adhesion. This guidance is believed to be due to the difference between the potencies of the two adhesions. Furthermore, patterns that combine the two segregated adhesion functionalities were shown to induce more human mesenchymal stem cell osteogenic differentiation than monofunctional patterns. This work provides new insight into the functional crosstalk between cell-cell and cell-matrix adhesions and, overall, further highlights the ubiquitous impact of the biochemical anisotropy of the extracellular environment on cell function.


Assuntos
Adesão Celular/fisiologia , Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/metabolismo , Anisotropia , Antígenos CD/metabolismo , Caderinas/metabolismo , Adesão Celular/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Ouro/química , Humanos , Integrinas/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Propriedades de Superfície , Titânio/química
8.
Sci Rep ; 9(1): 6409, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015541

RESUMO

Cell morphological analysis has long been used in cell biology and physiology for abnormality identification, early cancer detection, and dynamic change analysis under specific environmental stresses. This work reports on the remote mapping of cell 3D morphology with an in-plane resolution limited by optics and an out-of-plane accuracy down to a tenth of the optical wavelength. For this, GHz coherent acoustic phonons and their resonance harmonics were tracked by means of an ultrafast opto-acoustic technique. After illustrating the measurement accuracy with cell-mimetic polymer films we map the 3D morphology of an entire osteosarcoma cell. The resulting image complies with the image obtained by standard atomic force microscopy, and both reveal very close roughness mean values. In addition, while scanning macrophages and monocytes, we demonstrate an enhanced contrast of thickness mapping by taking advantage of the detection of high-frequency resonance harmonics. Illustrations are given with the remote quantitative imaging of the nucleus thickness gradient of migrating monocyte cells.


Assuntos
Forma Celular , Imageamento Tridimensional , Fônons , Análise de Célula Única , Acústica , Linhagem Celular Tumoral , Humanos , Macrófagos/patologia , Monócitos/patologia , Óptica e Fotônica , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/patologia , Polimetil Metacrilato/química
9.
Nanoscale ; 10(30): 14651-14659, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30033475

RESUMO

NK cells recognize cancer and viral cells by binding their activating receptors to antigens presenting on the membrane of target cells. Although the activation mechanism of NK cells is a subject of extensive research today, the role of the composition and spatial distribution of activating ligands in NK cell cytotoxicity is barely understood. In this work, we engineered a nanochip whose surface was patterned with matrices of antigens for NKG2D activating receptors. These matrices mimicked the spatial order of the surface of antigen presenting cells with molecular resolution. Using this chip, we elucidated the effect of the antigen spatial distribution on the NK cell spreading and immune activation. We found that the spatial distribution of the ligand within the 100 nm length-scale provides the minimal conditions for NKG2D regulated cell spreading. Furthermore, we found that the immune activation of NK cells requires the same minimal spatial distribution of activating ligands. Above this threshold, both spreading and activation plateaued, confirming that these two cell functions work hand in hand. Our study provides an important insight on the spatial mechanism of the cytotoxic activity of NK cells. This insight opens the way to rationally designed antitumor therapies that harness NK cytotoxicity.


Assuntos
Células Matadoras Naturais/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Nanoestruturas , Microambiente Celular , Antígenos de Histocompatibilidade Classe I , Humanos , Ligantes , Procedimentos Analíticos em Microchip
10.
PLoS One ; 11(3): e0150706, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26939131

RESUMO

Intravascular devices for continuous glucose monitoring are promising tools for the follow up and treatment of diabetic patients. Limiting the inflammatory response to the implanted devices in order to achieve better biocompatibility is a critical challenge. Herein we report on the production and the characterization of gold surfaces covalently derivatized with the peptide α-alpha-melanocyte stimulating hormone (α-MSH), with a quantifiable surface density. In vitro study demonstrated that the tethered α-MSH is able to decrease the expression of an inflammatory cytokine produced by endothelial cells.


Assuntos
Materiais Biocompatíveis/química , Automonitorização da Glicemia/instrumentação , alfa-MSH/metabolismo , Automonitorização da Glicemia/métodos , Adesão Celular , Eletroquímica , Células Endoteliais/citologia , Glucose/química , Ouro/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrólise , Inflamação , Interleucina-6/química , Lipopolissacarídeos/química , Maleimidas/química , Microscopia de Fluorescência , Peptídeos/química , Próteses e Implantes , Espectrometria por Raios X , Compostos de Sulfidrila/química , Propriedades de Superfície
11.
J Biomed Mater Res A ; 104(6): 1425-36, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26845245

RESUMO

Continuous glucose monitoring is an efficient method for the management of diabetes and in limiting the complications induced by large fluctuations in glucose levels. For this, intravascular systems may assist in producing more reliable and accurate devices. However, neovascularization is a key factor to be addressed in improving their biocompatibility. In this scope, the perennial modification of the surface of an implant with the proangiogenic Vascular Endothelial Growth Factor mimic peptide (SVVYGLR peptide sequence) holds great promise. Herein, we report on the preparation of gold substrates presenting the covalently grafted SVVYGLR peptide sequence and their effect on HUVEC behavior. Effective coupling was demonstrated using XPS and PM-IRRAS. The produced surfaces were shown to be beneficial for HUVEC adhesion. Importantly, surface bound SVVYGLR is able to maintain HUVEC proliferation even in the absence of soluble VEGF. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1425-1436, 2016.


Assuntos
Células Endoteliais da Veia Umbilical Humana/citologia , Peptídeos/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Sequência de Aminoácidos , Western Blotting , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peptídeos/química , Espectroscopia Fotoeletrônica , Solubilidade , Propriedades de Superfície
12.
Biophys J ; 101(4): 764-73, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21843466

RESUMO

The physical attributes of the extracellular matrix play a key role in endothelium function by modulating the morphology and phenotype of endothelial cells. Despite the recognized importance of matrix-cell interactions, it is currently not known how the arrangement of adhesive ligands affects the morphology, signal transduction processes, and migration of endothelial cells. We aimed to study how endothelial cells respond to the average spatial arrangement of integrin ligands. We designed functionalized silicon surfaces with average spacing ranging from nanometers to micrometers of the peptide arginine-glycine-aspartic acid (RGD). We found that endothelial cells adhered to and spread on surfaces independently of RGD-to-RGD spacing. In contrast, organization within focal adhesions (FAs) was extremely sensitive to ligand spacing, requiring a nanoscaled average RGD spacing of 44 nm to form lipid raft domains at FAs. The localized membrane organization strongly correlated with the signaling efficiencies of integrin activation and regulated vascular endothelial growth factor (VEGF)-induced signaling events. Importantly, this modulation in signal transduction directly affected the migratory ability of endothelial cells. We conclude that endothelial cells sense nanoscaled variations in the spacing of integrin ligands, which in turn influences signal transduction processes. Average RGD spacing similar to that found in fibronectin leads to lipid raft accumulation at FAs, enhances sensitivity to VEGF stimulation, and controls migration in endothelial cells.


Assuntos
Células Endoteliais/metabolismo , Integrinas/metabolismo , Transdução de Sinais , Animais , Bovinos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Meios de Cultura Livres de Soro/farmacologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Ligantes , Transdução de Sinais/efeitos dos fármacos , Silício/química , Propriedades de Superfície/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia
13.
J Oncol ; 2010: 363106, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20652046

RESUMO

Cell migration contributes to cancer metastasis and involves cell adhesion to the extracellular matrix (ECM), force generation through the cell's cytoskeletal, and finally cell detachment. Both adhesive cues from the ECM and soluble cues from neighbouring cells and tissue trigger intracellular signalling pathways that are essential for cell migration. While the machinery of many signalling pathways is relatively well understood, how hierarchies of different and conflicting signals are established is a new area of cellular cancer research. We examine the recent advances in microfabrication, microfluidics, and nanotechnology that can be utilized to engineer micro- and nanoscaled cellular environments. Controlling both adhesive and soluble cues for migration may allow us to decipher how cells become motile, choose the direction for migration, and how oncogenic transformations influences these decision-making processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA