Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Regul Toxicol Pharmacol ; 142: 105428, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37277058

RESUMO

1,4-Dioxane is an environmental contaminant that has been shown to cause cancer in rodents after chronic high dose exposures. We reviewed and integrated information from recently published studies to update our understanding of the cancer mode of action of 1,4-dioxane. Tumor development in rodents from exposure to high doses of 1,4-dioxane is preceded by pre-neoplastic events including increased hepatic genomic signaling activity related to mitogenesis, elevation of Cyp2E1 activity and oxidative stress leading to genotoxicity and cytotoxicity. These events are followed by regenerative repair and proliferation and eventual development of tumors. Importantly, these events occur at doses that exceed the metabolic clearance of absorbed 1,4-dioxane in rats and mice resulting in elevated systemic levels of parent 1,4-dioxane. Consistent with previous reviews, we found no evidence of direct mutagenicity from exposure to 1,4-dioxane. We also found no evidence of CAR/PXR, AhR or PPARα activation resulting from exposure to 1,4-dioxane. This integrated assessment supports a cancer mode of action that is dependent on exceeding the metabolic clearance of absorbed 1,4-dioxane, direct mitogenesis, elevation of Cyp2E1 activity and oxidative stress leading to genotoxicity and cytotoxicity followed by sustained proliferation driven by regenerative repair and progression of heritable lesions to tumor development.


Assuntos
Neoplasias , Roedores , Ratos , Camundongos , Animais , Citocromo P-450 CYP2E1 , Medição de Risco
2.
Front Toxicol ; 3: 766196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295143

RESUMO

Nitrapyrin, a nitrification inhibitor, produces liver tumors in B6C3F1 mice. In a 2-year oncogenicity study, increased incidence of mice with hepatocellular tumors was observed following exposure to 125 (females only) or 250 mg/kg/day (males and females) nitrapyrin in the diet. Previous data was generated in male mice to support a mode-of-action (MoA) characterized by constitutive androstane receptor (CAR) nuclear receptor (NR) activation, increased hepatocellular proliferation, and subsequent hepatocellular foci and tumor formation. Uncertainty as to the relevance of this MoA for females remained given the increased sensitivity to tumor formation in female mice. A targeted MoA study was conducted to evaluate CAR activation and hepatic responses in female mice treated with the female carcinogenic dose of nitrapyrin for 4 days. Nitrapyrin induced a treatment-related increase in hepatocellular hypertrophy and hepatocellular proliferation. Nitrapyrin also induced a dose-related increase in the Cyp2b10/CAR-associated transcript and liver weights. Nitrapyrin-induced liver weights and Cyp2b10 gene expression for both males and females were compared to data generated from three other established CAR activators; methyl isobutyl ketone, phenobarbital, and sulfoxaflor. The response observed in female mice following exposure to nitrapyrin was within range of the degree of change observed in mice following exposure to tumorigenic doses of other CAR activators. Consistent with the liver MoA in male mice, these data support a CAR-mediated mode of action for nitrapyrin-induced liver tumors in female mice, with the understanding that a focused approach minimizing animal use can bridge male and female datasets when sex-specific carcinogenic differences are observed.

3.
J Appl Toxicol ; 41(3): 362-374, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32830330

RESUMO

1,2-dichloroethane (DCE or EDC) is a chlorinated hydrocarbon used as a chemical intermediate, including in the synthesis of polyvinyl chloride. Although DCE has induced tumors in both rats and mice, the overall weight-of-evidence suggests a lack of in vivo mutagenicity. The present study was conducted to explore a potential mode of action further for tumor formation in rat mammary tissue. Fischer 344 rats were exposed to target concentrations of 0 or 200 ppm of DCE vapors (6 hours/day, 7 days/week) for at least 28 days; 200 ppm represents a concentration of ~20% higher than that reported to induce mammary tumors. Endpoints examined included DNA damage (via Comet assay), glutathione (reduced, oxidized and conjugated), tissue DNA adducts, cell proliferation and serum prolactin levels. Exposure to DCE did not alter serum prolactin levels with consistent estrous stage, did not cause cell proliferation in mammary epithelial cells, nor result in histopathological alterations in the mammary gland. DNA adducts were identified, including the N7 -guanylethyl glutathione adduct, with higher adduct levels measured in liver (nontumorigenic target) compared with mammary tissue isolated from the same rats; no known mutagenic adducts were identified. DCE did not increase the Comet assay response in mammary epithelial cells, whereas DNA damage in the positive control (N-nitroso-N-methylurea) was significantly increased. Although the result of this study did not identify a specific mode of action for DCE-induced mammary tumors in rats, the lack of any exposure-related genotoxic responses further contributes to the weight-of-evidence suggesting that DCE is a nongenotoxic carcinogen.


Assuntos
Carcinógenos/toxicidade , Dano ao DNA/efeitos dos fármacos , Dicloretos de Etileno/toxicidade , Neoplasias Mamárias Animais/induzido quimicamente , Mutagênicos/toxicidade , Animais , Modelos Animais de Doenças , Feminino , Ratos , Ratos Endogâmicos F344 , Relação Estrutura-Atividade
4.
Artigo em Inglês | MEDLINE | ID: mdl-30744809

RESUMO

A database of 91 chemicals with published data from both transgenic rodent mutation (TGR) and rodent comet assays has been compiled. The objective was to compare the sensitivity of the two assays for detecting genotoxicity. Critical aspects of study design and results were tabulated for each dataset. There were fewer datasets from rats than mice, particularly for the TGR assay, and therefore, results from both species were combined for further analysis. TGR and comet responses were compared in liver and bone marrow (the most commonly studied tissues), and in stomach and colon evaluated either separately or in combination with other GI tract segments. Overall positive, negative, or equivocal test results were assessed for each chemical across the tissues examined in the TGR and comet assays using two approaches: 1) overall calls based on weight of evidence (WoE) and expert judgement, and 2) curation of the data based on a priori acceptability criteria prior to deriving final tissue specific calls. Since the database contains a high prevalence of positive results, overall agreement between the assays was determined using statistics adjusted for prevalence (using AC1 and PABAK). These coefficients showed fair or moderate to good agreement for liver and the GI tract (predominantly stomach and colon data) using WoE, reduced agreement for stomach and colon evaluated separately using data curation, and poor or no agreement for bone marrow using both the WoE and data curation approaches. Confidence in these results is higher for liver than for the other tissues, for which there were less data. Our analysis finds that comet and TGR generally identify the same compounds (mainly potent mutagens) as genotoxic in liver, stomach and colon, but not in bone marrow. However, the current database content precluded drawing assay concordance conclusions for weak mutagens and non-DNA reactive chemicals.


Assuntos
Medula Óssea/efeitos dos fármacos , Colo/efeitos dos fármacos , Ensaio Cometa/métodos , Fígado/efeitos dos fármacos , Mutagênicos/toxicidade , Mutação , Estômago/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Dano ao DNA , Feminino , Masculino , Camundongos , Testes para Micronúcleos , Ratos
5.
Environ Mol Mutagen ; 60(1): 42-46, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30338550

RESUMO

The Pig-a assay is an emerging and promising in vivo method to determine mutagenic potential of chemicals. Since its development in 2008, remarkable progress has been made in harmonizing and characterizing the test procedures, primarily using known mutagenic chemicals. The purpose of the present study was to evaluate specificity of the Pig-a assay using two nongenotoxic and well-characterized rodent liver carcinogens, phenobarbital and clofibrate, in male F344/DuCrl rats. Daily oral administration of phenobarbital or clofibrate at established hepatotoxic doses for 28 days resulted in substantial hepatic alterations, however, did not increase the frequency of Pig-a mutation markers (RETCD59- and RBCCD59- ) compared to vehicle control or pre-exposure (Day -5) mutant frequencies. These results are consistent with the existing literature on the nonmutagenic mode of action (MoA) of phenobarbital and clofibrate liver tumors. The present study contributes to the limited, but expanding evidence on the specificity of the Pig-a assay and further for the investigations of carcinogenic MoAs, i.e., mutagenic or nonmutagenic potential of chemicals. Environ. Mol. Mutagen. 60:42-46, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Carcinógenos/toxicidade , Clofibrato/toxicidade , Glicosilfosfatidilinositóis/genética , Neoplasias Hepáticas/induzido quimicamente , Testes de Mutagenicidade/métodos , Fenobarbital/toxicidade , Animais , Bioensaio , Fígado/efeitos dos fármacos , Neoplasias Hepáticas/patologia , Masculino , Mutação/efeitos dos fármacos , Projetos Piloto , Ratos , Ratos Endogâmicos F344 , Sensibilidade e Especificidade
6.
Regul Toxicol Pharmacol ; 96: 106-120, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29673940

RESUMO

Methods for investigating the Mode of Action (MoA) for rodent liver tumors via constitutive androstane receptor (CAR) activation are outlined here, based on current scientific knowledge about CAR and feedback from regulatory agencies globally. The key events (i.e., CAR activation, altered gene expression, cell proliferation, altered foci and increased adenomas/carcinomas) can be demonstrated by measuring a combination of key events and associative events that are markers for the key events. For crop protection products, a primary dataset typically should include a short-term study in the species/strain that showed the tumor response at dose levels that bracket the tumorigenic and non-tumorigenic dose levels. The dataset may vary depending on the species and the test compound. As examples, Case Studies with nitrapyrin (in mice) and metofluthrin (in rats) are described. Based on qualitative differences between the species, the key events leading to tumors in mice or rats by this MoA are not operative in humans. In the future, newer approaches such as a CAR biomarker signature approach and/or in vitro CAR3 reporter assays for mouse, rat and human CAR may eventually be used to demonstrate a CAR MoA is operative, without the need for extensive additional studies in laboratory animals.


Assuntos
Biomarcadores Tumorais/metabolismo , Conjuntos de Dados como Assunto , Neoplasias Hepáticas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Biomarcadores Tumorais/análise , Receptor Constitutivo de Androstano , Ciclopropanos , Fluorbenzenos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Camundongos , Picolinas , Ratos , Receptores Citoplasmáticos e Nucleares/análise
7.
Toxicol Rep ; 4: 586-597, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29159133

RESUMO

Nitrapyrin, a nitrification inhibitor, produces liver tumors in mice at high doses. Several experiments were performed to investigate molecular, cellular, and apical endpoints to define the key events leading to the tumor formation. These data support a mode-of-action (MoA) characterized by constitutive androstane receptor (CAR) nuclear receptor activation, increased hepatocellular proliferation leading to hepatocellular foci and tumor formation. Specifically, nitrapyrin induced a dose-related increase in the Cyp2b10/CAR-associated transcript and protein. Interestingly, the corresponding enzyme activity (7-pentoxyresorufin-O-dealkylase (PROD) was not enhanced due to nitrapyrin-mediated suicide inhibition of PROD activity. Nitrapyrin exposure elicited a clear dose-responsive increase in hepatocellular proliferation in wild-type mice, but not in CAR knock-out mice, informing that CAR activation is an obligatory key event in this test material-induced hepatocarcinogenesis. Furthermore, nitrapyrin exposure induced a clear, concentration-responsive increase in cell proliferation in mouse, but not human, hepatocytes in vitro. Evaluation of the data from repeat dose and MoA studies by the Bradford Hill criteria and a Human Relevance Framework (HRF) suggested that nitrapyrin-induced mouse liver tumors are not relevant to human health risk assessment because of qualitative differences between these two species.

9.
Food Chem Toxicol ; 109(Pt 1): 690-702, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28495587

RESUMO

Identification of sensitive and novel biomarkers or endpoints associated with toxicity and carcinogenesis is of a high priority. There is increasing interest in the incorporation of epigenetic and metabolic biomarkers to complement apical data; however, a number of questions, including the tissue specificity, dose-response patterns, early detection of those endpoints, and the added value need to be addressed. In this study, we investigated the dose-response relationship between apical, epigenetic, and metabolomics endpoints following short-term exposure to experimental hepatotoxicants, clofibrate (CF) and phenobarbital (PB). Male F344 rats were exposed to PB (0, 5, 25, and 100 mg/kg/day) or CF (0, 10, 50, and 250 mg/kg/day) for seven days. Exposure to PB or CF resulted in dose-dependent increases in relative liver weights, hepatocellular hypertrophy and proliferation, and increases in Cyp2b1 and Cyp4a1 transcripts. These changes were associated with altered histone modifications within the regulatory units of cytochrome genes, LINE-1 DNA hypomethylation, and altered microRNA profiles. Metabolomics data indicated alterations in the metabolism of bile acids. This study provides the first comprehensive analysis of the apical, epigenetic and metabolic alterations, and suggests that the latter two occur within or near the dose response curve of apical endpoint alterations following exposure to experimental hepatotoxicants.


Assuntos
Clofibrato/toxicidade , Sistema Enzimático do Citocromo P-450/genética , Fígado/efeitos dos fármacos , Fenobarbital/toxicidade , Animais , Clofibrato/análise , Sistema Enzimático do Citocromo P-450/metabolismo , Metilação de DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Epigenômica , Expressão Gênica/efeitos dos fármacos , Fígado/enzimologia , Masculino , Fenobarbital/análise , Ratos , Ratos Endogâmicos F344
10.
Environ Mol Mutagen ; 58(5): 264-283, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27650663

RESUMO

For several decades, regulatory testing schemes for genetic damage have been standardized where the tests being utilized examined mutations and structural and numerical chromosomal damage. This has served the genetic toxicity community well when most of the substances being tested were amenable to such assays. The outcome from this testing is usually a dichotomous (yes/no) evaluation of test results, and in many instances, the information is only used to determine whether a substance has carcinogenic potential or not. Over the same time period, mechanisms and modes of action (MOAs) that elucidate a wider range of genomic damage involved in many adverse health outcomes have been recognized. In addition, a paradigm shift in applied genetic toxicology is moving the field toward a more quantitative dose-response analysis and point-of-departure (PoD) determination with a focus on risks to exposed humans. This is directing emphasis on genomic damage that is likely to induce changes associated with a variety of adverse health outcomes. This paradigm shift is moving the testing emphasis for genetic damage from a hazard identification only evaluation to a more comprehensive risk assessment approach that provides more insightful information for decision makers regarding the potential risk of genetic damage to exposed humans. To enable this broader context for examining genetic damage, a next generation testing strategy needs to take into account a broader, more flexible approach to testing, and ultimately modeling, of genomic damage as it relates to human exposure. This is consistent with the larger risk assessment context being used in regulatory decision making. As presented here, this flexible approach for examining genomic damage focuses on testing for relevant genomic effects that can be, as best as possible, associated with an adverse health effect. The most desired linkage for risk to humans would be changes in loci associated with human diseases, whether in somatic or germ cells. The outline of a flexible approach and associated considerations are presented in a series of nine steps, some of which can occur in parallel, which was developed through a collaborative effort by leading genetic toxicologists from academia, government, and industry through the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) Genetic Toxicology Technical Committee (GTTC). The ultimate goal is to provide quantitative data to model the potential risk levels of substances, which induce genomic damage contributing to human adverse health outcomes. Any good risk assessment begins with asking the appropriate risk management questions in a planning and scoping effort. This step sets up the problem to be addressed (e.g., broadly, does genomic damage need to be addressed, and if so, how to proceed). The next two steps assemble what is known about the problem by building a knowledge base about the substance of concern and developing a rational biological argument for why testing for genomic damage is needed or not. By focusing on the risk management problem and potential genomic damage of concern, the next step of assay(s) selection takes place. The work-up of the problem during the earlier steps provides the insight to which assays would most likely produce the most meaningful data. This discussion does not detail the wide range of genomic damage tests available, but points to types of testing systems that can be very useful. Once the assays are performed and analyzed, the relevant data sets are selected for modeling potential risk. From this point on, the data are evaluated and modeled as they are for any other toxicology endpoint. Any observed genomic damage/effects (or genetic event(s)) can be modeled via a dose-response analysis and determination of an estimated PoD. When a quantitative risk analysis is needed for decision making, a parallel exposure assessment effort is performed (exposure assessment is not detailed here as this is not the focus of this discussion; guidelines for this assessment exist elsewhere). Then the PoD for genomic damage is used with the exposure information to develop risk estimations (e.g., using reference dose (RfD), margin of exposure (MOE) approaches) in a risk characterization and presented to risk managers for informing decision making. This approach is applicable now for incorporating genomic damage results into the decision-making process for assessing potential adverse outcomes in chemically exposed humans and is consistent with the ILSI HESI Risk Assessment in the 21st Century (RISK21) roadmap. This applies to any substance to which humans are exposed, including pharmaceuticals, agricultural products, food additives, and other chemicals. It is time for regulatory bodies to incorporate the broader knowledge and insights provided by genomic damage results into the assessments of risk to more fully understand the potential of adverse outcomes in chemically exposed humans, thus improving the assessment of risk due to genomic damage. The historical use of genomic damage data as a yes/no gateway for possible cancer risk has been too narrowly focused in risk assessment. The recent advances in assaying for and understanding genomic damage, including eventually epigenetic alterations, obviously add a greater wealth of information for determining potential risk to humans. Regulatory bodies need to embrace this paradigm shift from hazard identification to quantitative analysis and to incorporate the wider range of genomic damage in their assessments of risk to humans. The quantitative analyses and methodologies discussed here can be readily applied to genomic damage testing results now. Indeed, with the passage of the recent update to the Toxic Substances Control Act (TSCA) in the US, the new generation testing strategy for genomic damage described here provides a regulatory agency (here the US Environmental Protection Agency (EPA), but suitable for others) a golden opportunity to reexamine the way it addresses risk-based genomic damage testing (including hazard identification and exposure). Environ. Mol. Mutagen. 58:264-283, 2017. © 2016 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc.


Assuntos
Genômica/métodos , Testes de Mutagenicidade/tendências , Animais , Saúde Ambiental , Humanos , Modelos Teóricos , Testes de Mutagenicidade/normas , Mutagênicos/toxicidade , Medição de Risco
11.
Regul Toxicol Pharmacol ; 72(2): 394-404, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25846364

RESUMO

Dietary exposure to pronamide resulted in higher incidences of Leydig cell tumors (LCT) at 1000ppm in a 2-year cancer bioassay, but there were no testes effects at 40 or 200ppm, and no testes effects at 12-months at any concentration. A 90-day mode-of-action (MoA) study was conducted at concentrations of 0, 200, 1000 and 2000ppm. Standard parameters and stereological and proliferation analyses of LCs, targeted testis and liver gene expression, in vitro metabolism of testosterone by liver microsomes, and quantification of serum hormones and testosterone metabolites were evaluated. Increased testosterone metabolism due to increases in hepatic microsomal activity, alterations in serum hormone levels, and other data suggest that LCTs were mediated through a perturbation of the HPG-axis. Data suggest that this occurs after a threshold of exposure is reached, indicating a nonlinear/threshold dose-response. Pronamide-induced rat LCTs mediated by alterations to the HPG-axis have low relevance to humans due to quantitative differences in sensitivity between rats and humans to LCTs. Pronamide displayed no genotoxicity or direct endocrine effects. A margin of exposure approach for risk assessment and derivation of the chronic reference dose based on a point of departure of 200ppm is most appropriate and protective of human health.


Assuntos
Benzamidas/toxicidade , Carcinógenos/toxicidade , Herbicidas/toxicidade , Tumor de Células de Leydig/induzido quimicamente , Testosterona/metabolismo , Animais , Expressão Gênica/efeitos dos fármacos , Humanos , Tumor de Células de Leydig/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Ratos , Medição de Risco , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testosterona/sangue
12.
Biomed Chromatogr ; 29(9): 1364-74, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25641649

RESUMO

Glutathione (GSH), glutathione disulfide (GSSG) and 2-hydroxyethylated glutathione (HESG) are important biomarkers for exploring the genotoxicity mechanism of ethylene oxide (EO) or ethylene in vivo. A liquid chromatography-tandem mass spectrometry method was developed for simultaneous determination of GSH, GSSG and HESG in mouse lung tissues after inhalation exposure to EO. The lower limit of quantitation for all these biomarkers was 0.002 µg/mL. The linearity of the calibration curves for all analytes was >0.998. The intra-day assay precision relative standard deviation (RSD) values for quality control samples for all analytes were ≤12.8% with accuracy values ranging from 87.2 to 113%. The inter-day assay precision (RSD) values for all analytes were ≤13.1% with accuracy values ranging from 86.9 to 103%. This method was applied to concurrently determine the levels of GSH, GSSG and HESG in lung samples isolated from mouse after 4-week inhalation exposure to EO at 0, 10, 50, 100 and 200 ppm.


Assuntos
Cromatografia Líquida/métodos , Óxido de Etileno/toxicidade , Dissulfeto de Glutationa/análise , Glutationa/análise , Pulmão/química , Espectrometria de Massas em Tandem/métodos , Animais , Glutationa/análogos & derivados , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray/métodos
13.
Regul Toxicol Pharmacol ; 71(3): 541-51, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25707858

RESUMO

Pronamide, a selective, systemic, pre- and post-emergence herbicide, caused an increased incidence of thyroid follicular cell adenomas in a rat carcinogenicity study. Thyroid tumors, as well as liver and pituitary changes, were limited only to the high-dose group. The evidence for and against specific potential modes of action (MoAs) for rat thyroid follicular cell adenomas and their relevance to humans is discussed. Pronamide is not mutagenic and therefore, direct DNA reactivity is not relevant as a MoA. The hypothesized MoA for this effect is altered homeostasis of the hypothalamic-pituitary-thyroid (HPT) axis mediated by the induction of hepatic enzymes, including uridine diphosphate glucuronosyltransferase (UGT). Evaluation of data from a series of regulatory guideline and MoA studies aimed at identifying the causative and associated key events supported a UGT-mediated MoA in the development of thyroid follicular tumors. This MoA for pronamide-induced thyroid tumors in rats, which involves increased thyroid hormone metabolism/clearance, altered thyroid hormone homeostasis and HPT stimulation is not considered relevant to humans based on quantitative species differences, making rats markedly more sensitive than humans to thyroid perturbations.


Assuntos
Adenoma/induzido quimicamente , Benzamidas/toxicidade , Transformação Celular Neoplásica/induzido quimicamente , Herbicidas/toxicidade , Neoplasias da Glândula Tireoide/induzido quimicamente , Adenoma/metabolismo , Adenoma/patologia , Animais , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Glucuronosiltransferase/metabolismo , Humanos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Ratos , Medição de Risco , Especificidade da Espécie , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Hormônios Tireóideos/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Regulação para Cima
14.
Toxicol Mech Methods ; 25(3): 192-200, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25608721

RESUMO

Non-genotoxic carcinogens act by promoting the clonal expansion of preneoplastic cells by directly or indirectly stimulating cell division or inhibiting cell loss in the target organ. The specific mode-of-action (MoA) by which some non-genotoxic carcinogens ultimately cause cancer is not completely understood. To date, there are several proposed MoAs for non-genotoxic carcinogens, and some of these propose inhibition of apoptosis as one of the key events. In general, inhibition of apoptosis is considered a necessary step for cell survival and in theory can occur in combination or in association with other key promotional events, such as cell proliferation, oxidative stress and inhibition of intercellular communication to promote carcinogenesis. However, the evidence supporting the role of inhibition of apoptosis as a necessary step in promoting specific chemically induced tumors is often debated. To address this evidence, we reviewed studies that utilized prototypical nuclear receptor-mediated hepatocarcinogens. Based on this review, it is proposed that the ability to determine the importance of inhibition of apoptosis as a key event in the MoA for tumor promotion is hampered by the limitations of the methods utilized for its detection. This review provides an assessment of the strengths and limitations of the current methodology used for detection of apoptosis and provides suggestions for improving its detection, thereby strengthening the weight of evidence supporting inhibition of apoptosis as a key event in a MoA for tumor promotion.


Assuntos
Apoptose/efeitos dos fármacos , Carcinogênese/induzido quimicamente , Carcinógenos/toxicidade , Modelos Animais de Doenças , Neoplasias Hepáticas/induzido quimicamente , Fígado/efeitos dos fármacos , Animais , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinógenos/química , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade
15.
Artigo em Inglês | MEDLINE | ID: mdl-25529473

RESUMO

2-Hydroxyethylated and oxidative DNA nucleosides (DNA adduct biomarkers), such as O6-(2-hydroxyethyl)-2'-deoxyguanosine (O6HEdG), N6-(2-hydroxyethyl)-2'-deoxyadenosine (N6HEdA), 1-(2-hydroxyethyl)-2'-deoxyadenosine (N1HEdA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG), N2,3-etheno-2'-deoxyguanosine (N2,3-ethenodG), α-methyl-γ-hydroxy-1,N2-propano-2'-deoxyguanosine (CrotondG), are important proposed biomarkers for exploring the genotoxicity mechanism of ethylene oxide (EO) in vivo. A liquid chromatography-tandem mass spectrometric method was developed for the simultaneous determination of O6HEdG, N6HEdA, N1HEdA, 8-OHdG, CrotondG, and N2,3-ethenodG together with regular 2'-deoxyguanosine (dG), and 2'-deoxyadenosine (dA) nucleosides in the DNA extracted from mouse lung tissues for the assessment of exposure to EO after inhalation. The lower limits of quantitation for 8-OHdG, CrotondG, N2,3-EthenodG, O6HEdG, N1HEdA, N6HEdA, dG, and dA were 0.025, 0.00125, 0.025, 0.00125, 0.025, 0.01, 2342, and 2500ng/mL, respectively. The linearity of the calibration curves for all analytes were >0.989. The intra-day assay precision relative standard deviation (RSD) values for quality control (QC) samples for all analytes were ≤13.5% with accuracy values ranging from 86.5% to 111%. The inter-day assay precision (RSD) values for all analytes were ≤18.8% with accuracy values ranging from 87.9% to 119%. This method was used for simultaneous determination of the levels of 8-OHdG, CrotondG, N2,3-EthenodG, O6HEdG, dG, N1HEdA, N6HEdA, and dA in DNA enzymatic hydrolysates from DNA extracted from mouse lung after 12 weeks' inhalation exposure to EO at atmospheric concentrations of 0, 100, and 200ppm. Overall, N2,3-ethenodG was not detected in any samples. 8-OHdG, CrotondG, dG, and dA were all quantifiable in all samples. O6HEdG, N1HEdA, and N6HEdA were quantifiable in most samples and the ratio of the corresponding adduct versus their corresponding DNA base (dG or dA) [×10 (e6)] was increased as the EO exposure concentration increased.


Assuntos
DNA/análise , DNA/química , Óxido de Etileno/farmacologia , Nucleosídeos/análise , Nucleosídeos/química , Animais , Cromatografia Líquida , Masculino , Camundongos , Espectrometria de Massas em Tandem
16.
Toxicol Sci ; 142(1): 74-92, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25092647

RESUMO

The key events responsible for mouse liver tumors induced by a pesticide (viz., pronamide) were investigated in a series of studies employing molecular, biochemical, cellular, and apical endpoints. Based on these studies, it was demonstrated that the liver tumors were mediated by a mode of action (MoA) involving nuclear receptors (NRs) through the following key events: (1) CAR and PPAR-α receptor activation, (2) increased hepatocellular proliferation, eventually leading to (3) hepatocellular tumors. Specifically, gene expression analysis indicated robust, simultaneous coactivation of the CAR and PPAR-α NRs, as indicated by the induction of hepatic Cyp2b10 and Cyp4a10 transcripts, in response to dietary administration of pronamide to mice. The presence of hepatocellular hypertrophy and peroxisome proliferation was indicative of the activation of these two NRs at carcinogenic dose levels. Demonstrated induction of Cyp2b10 gene and protein, however, was not accompanied by enhancement of the corresponding enzyme activity (7-pentoxyresorufin-O-dealkylase (PROD)), suggesting that pronamide administration resulted in mechanism-based (suicide) inhibition of the enzyme in vivo. This was confirmed with an in vitro assay for suicide inhibition, where pronamide and/or its metabolites irreversibly inhibited Cyp2b10-mediated PROD activity. Analysis of hepatocellular proliferation via BrdU incorporation indicated a clear dose- and duration-related induction of S-phase DNA synthesis only in animals treated at and above the carcinogenic dose level. The available MoA data were evaluated for weight-of-evidence based upon the Bradford Hill criteria, followed by a human relevance framework. The conclusion from this evaluation is that pronamide-induced mouse liver tumors occur via an NR-mediated MoA involving CAR and PPAR-α activation and this MoA is not relevant to humans based on qualitative/quantitative differences between mice and humans.


Assuntos
Benzamidas/toxicidade , Expressão Gênica/efeitos dos fármacos , Herbicidas/toxicidade , Neoplasias Hepáticas Experimentais/induzido quimicamente , Fígado/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Proliferação de Células/efeitos dos fármacos , Receptor Constitutivo de Androstano , Sistema Enzimático do Citocromo P-450/genética , Família 2 do Citocromo P450 , Relação Dose-Resposta a Droga , Feminino , Humanos , Fígado/enzimologia , Fígado/metabolismo , Fígado/ultraestrutura , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos Endogâmicos , PPAR alfa/genética , PPAR alfa/metabolismo , Receptor de Pregnano X , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Especificidade da Espécie , Esteroide Hidroxilases/genética , Fatores de Tempo
17.
Environ Mol Mutagen ; 55(7): 530-41, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24976023

RESUMO

Integrated testing strategies involve the assessment of multiple endpoints within a single toxicity study and represent an important approach for reducing animal use and streamlining testing. The present study evaluated the ability to combine general, immune, and genetic toxicity endpoints into a single study. Specifically, this study evaluated the impact of sheep red blood cell (SRBC) immunization, as part of the T-cell dependent antibody response (TDAR) assay, on organ weights, micronuclei (MN) formation (bone marrow and peripheral blood), and the Comet assay response in the liver of female F344/DuCrl rats treated with cyclophosphamide (CP) a known immunosuppressive chemical and genotoxicant. For the TDAR assay, treatment with CP resulted in a dose-dependent decrease in the antibody response with a suppression of greater than 95% at the high dose. Injection with SRBC had no impact on evaluated organ weights, histopathology, hematology, and clinical chemistry parameters. Analysis of MN formation in bone marrow and peripheral blood revealed a dose-dependent increase in response to CP treatment. Injection with SRBC had no impact on the level of MN in control animals and did not alter the dose response of CP. There was a slight increase in liver DNA damage in response to CP as measured by the Comet assay; however, injection with SRBCs did not alter this endpoint. Overall these data provide strong support for the concurrent assessment of general, immune, and genetic toxicology endpoints within a single study as part of an integrated testing strategy approach.


Assuntos
Ensaio Cometa , Testes para Micronúcleos , Mutagênicos/química , Testes de Toxicidade/métodos , Animais , Formação de Anticorpos/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Ciclofosfamida/química , Dano ao DNA , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Feminino , Fígado/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Projetos de Pesquisa , Ovinos , Linfócitos T/efeitos dos fármacos
18.
Toxicol In Vitro ; 28(5): 1018-25, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24815817

RESUMO

The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was evaluated in five in vitro screening assays to assess the potential for interaction with the androgen, estrogen and steroidogenesis pathways in the endocrine system. The assays were conducted to meet the requirements of the in vitro component of Tier 1 of the United States Environmental Protection Agency's Endocrine Disruptor Screening Program (EDSP), and included assays for estrogen receptor (ER) binding (rat uterine cytosol ER binding assay), ER-mediated transcriptional activation (HeLa-9903-ERα transactivation assay), androgen receptor (AR) binding (rat prostate cytosol AR binding assay), aromatase enzymatic activity inhibition (recombinant human CYP19 aromatase inhibition assay), and interference with steroidogenesis (H295R steroidogenesis assay). Results from these five assays demonstrated that 2,4-D does not have the potential to interact in vitro with the estrogen, androgen, or steroidogenesis pathways. These in vitro data are consistent with a corresponding lack of endocrine effects observed in apical in vivo animal studies, and thus provide important supporting data valuable in a comprehensive weight of evidence evaluation indicating a low potential of 2,4-D to interact with the endocrine system.


Assuntos
Ácido 2,4-Diclorofenoxiacético/toxicidade , Herbicidas/toxicidade , Animais , Aromatase/metabolismo , Bioensaio , Linhagem Celular Tumoral , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Humanos , Ratos , Receptores Androgênicos/metabolismo , Testosterona/metabolismo
19.
Crit Rev Toxicol ; 44 Suppl 2: 15-24, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24832551

RESUMO

Sulfoxaflor, a novel active substance that targets sap-feeding insects, induced rodent hepatotoxicity when administered at high dietary doses. Specifically, hepatocellular adenomas and carcinomas increased after 18 months in male and female CD-1 mice at 750 and 1250 ppm, respectively, and hepatocellular adenomas increased after 2 years in male F344 rats at 500 ppm. Studies to determine the mode of action (MoA) for these liver tumors were performed in an integrated and prospective manner as part of the standard battery of toxicology studies such that the MoA data were available prior to, or by the time of, the completion of the carcinogenicity studies. Sulfoxaflor is not genotoxic and the MoA data support the following key events in the etiology of the rodent liver tumors: (1) CAR nuclear receptor activation and (2) hepatocellular proliferation. The MoA data were evaluated in a weight of evidence approach using the Bradford Hill criteria for causation and were found to align with dose and temporal concordance, biological plausibility, coherence, strength, consistency, and specificity for a CAR-mediated MoA while excluding other alternate MoAs. The available data include: activation of CAR, Cyp2b induction, hepatocellular hypertrophy and hyperplasia, absence of liver effects in KO mice, absence of proliferation in humanized mice, and exclusion of other possible mechanisms (e.g., genotoxicity, cytotoxicity, AhR, or PPAR activation), and indicate that the identified rodent liver tumor MoA for sulfoxaflor would not occur in humans. In this case, sulfoxaflor is considered not to be a potential human liver carcinogen.


Assuntos
Inseticidas/toxicidade , Neoplasias Hepáticas/patologia , Piridinas/toxicidade , Compostos de Enxofre/toxicidade , Animais , Carcinógenos/toxicidade , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Neoplasias Hepáticas/induzido quimicamente , Masculino , Camundongos , Ratos , Ratos Endogâmicos F344 , Medição de Risco
20.
Crit Rev Toxicol ; 44 Suppl 2: 25-44, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24832552

RESUMO

Sulfoxaflor, a molecule that targets sap-feeding insects, was assessed for carcinogenic potential in groups of 50 Fischer rats fed with diets containing 0, 25, 100, 500 (males), or 750 (females) ppm sulfoxaflor for 2 years according to OECD 453. Sulfoxaflor did not alter the number of rats with Leydig cell tumors (LCTs: 88% of controls and 90-92% in treated groups). The size of LCT was increased at 100 and 500 ppm. The spontaneous incidence of LCT in Fischer rat is 75-100% compared with less than 0.01% in humans. These fundamental interspecies differences in spontaneous incidence of LCT are the result of quantitative and qualitative differences in Leydig cell response to hormonal stimuli. There are nine known modes of actions (MoA) for LCT induction. Analysis sulfoxaflor data suggested a hormone-based dopamine enhancement MoA causing the LCT effect through: 1) increased neuronal dopamine release via specific dopaminergic neuron-based nicotinic acetylcholine receptor (nAChR) agonism, leading to 2) decreased serum prolactin (Prl) levels, 3) downregulation of luteinizing hormone receptor (LHR) gene expression in Leydig cells, 4) transient decreases in serum testosterone, 5) increased serum LH levels, and 6) promotion of LCTs. The analysis suggested that sulfoxaflor promoted LCTs through a subtle stimulation of dopamine release. The MoA for LCT promotion in the carcinogenicity study is considered to have no relevance to humans due to qualitative and quantitative differences between rat and human Leydig cells. Therefore, the Fischer 344 rat LCT promotion associated with lifetime administration of high-dose levels of sulfoxaflor would not pose a cancer hazard to humans.


Assuntos
Tumor de Células de Leydig/patologia , Piridinas/toxicidade , Compostos de Enxofre/toxicidade , Animais , Carcinógenos/toxicidade , Modelos Animais de Doenças , Humanos , Tumor de Células de Leydig/induzido quimicamente , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/patologia , Masculino , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA