Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Curr Oncol ; 30(9): 8586-8601, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37754538

RESUMO

Pediatric Brain Tumor Survivors (PBTS) often experience social, academic and employment difficulties during aftercare. Despite their needs, they often do not use the services available to them. Following a previous qualitative study, we formulated solutions to help support PBTS return to daily activities after treatment completion. The present study aims to confirm and prioritize these solutions with a larger sample. We used a mixed-methods survey with 68 participants (43 survivors, 25 parents, PBTS' age: 15-39 years). Firstly, we collected information about health condition, and school/work experience in aftercare. Then, we asked participants to prioritize the previously identified solutions using Likert scales and open-ended questions. We used descriptive and inferential statistics to analyze data, and qualitative information to support participants' responses. Participants prioritized the need for evaluation, counseling, and follow-up by health professionals to better understand their post-treatment needs, obtain help to access adapted services, and receive information about resources at school/work. Responses to open-ended questions highlighted major challenges regarding the implementation of professionals' recommendations at school/work and the need for timely interventions. These results will help refine solutions for PBTS and provide key elements for future implementation. Translating these priorities into action will need further work involving professionals and decision makers.


Assuntos
Neoplasias Encefálicas , Criança , Humanos , Adolescente , Adulto Jovem , Adulto , Neoplasias Encefálicas/terapia , Emprego , Pessoal de Saúde , Pais , Sobreviventes
2.
Nat Genet ; 55(7): 1138-1148, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37308787

RESUMO

Human genetic studies of smoking behavior have been thus far largely limited to common variants. Studying rare coding variants has the potential to identify drug targets. We performed an exome-wide association study of smoking phenotypes in up to 749,459 individuals and discovered a protective association in CHRNB2, encoding the ß2 subunit of the α4ß2 nicotine acetylcholine receptor. Rare predicted loss-of-function and likely deleterious missense variants in CHRNB2 in aggregate were associated with a 35% decreased odds for smoking heavily (odds ratio (OR) = 0.65, confidence interval (CI) = 0.56-0.76, P = 1.9 × 10-8). An independent common variant association in the protective direction ( rs2072659 ; OR = 0.96; CI = 0.94-0.98; P = 5.3 × 10-6) was also evident, suggesting an allelic series. Our findings in humans align with decades-old experimental observations in mice that ß2 loss abolishes nicotine-mediated neuronal responses and attenuates nicotine self-administration. Our genetic discovery will inspire future drug designs targeting CHRNB2 in the brain for the treatment of nicotine addiction.


Assuntos
Nicotina , Tabagismo , Humanos , Animais , Camundongos , Fumar/genética , Tabagismo/genética , Fenótipo , Razão de Chances
3.
Nature ; 612(7939): 301-309, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450978

RESUMO

Clonal haematopoiesis involves the expansion of certain blood cell lineages and has been associated with ageing and adverse health outcomes1-5. Here we use exome sequence data on 628,388 individuals to identify 40,208 carriers of clonal haematopoiesis of indeterminate potential (CHIP). Using genome-wide and exome-wide association analyses, we identify 24 loci (21 of which are novel) where germline genetic variation influences predisposition to CHIP, including missense variants in the lymphocytic antigen coding gene LY75, which are associated with reduced incidence of CHIP. We also identify novel rare variant associations with clonal haematopoiesis and telomere length. Analysis of 5,041 health traits from the UK Biobank (UKB) found relationships between CHIP and severe COVID-19 outcomes, cardiovascular disease, haematologic traits, malignancy, smoking, obesity, infection and all-cause mortality. Longitudinal and Mendelian randomization analyses revealed that CHIP is associated with solid cancers, including non-melanoma skin cancer and lung cancer, and that CHIP linked to DNMT3A is associated with the subsequent development of myeloid but not lymphoid leukaemias. Additionally, contrary to previous findings from the initial 50,000 UKB exomes6, our results in the full sample do not support a role for IL-6 inhibition in reducing the risk of cardiovascular disease among CHIP carriers. Our findings demonstrate that CHIP represents a complex set of heterogeneous phenotypes with shared and unique germline genetic causes and varied clinical implications.


Assuntos
COVID-19 , Doenças Cardiovasculares , Humanos , Hematopoiese Clonal/genética , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética
4.
Nat Commun ; 13(1): 4844, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999217

RESUMO

Body fat distribution is a major, heritable risk factor for cardiometabolic disease, independent of overall adiposity. Using exome-sequencing in 618,375 individuals (including 160,058 non-Europeans) from the UK, Sweden and Mexico, we identify 16 genes associated with fat distribution at exome-wide significance. We show 6-fold larger effect for fat-distribution associated rare coding variants compared with fine-mapped common alleles, enrichment for genes expressed in adipose tissue and causal genes for partial lipodystrophies, and evidence of sex-dimorphism. We describe an association with favorable fat distribution (p = 1.8 × 10-09), favorable metabolic profile and protection from type 2 diabetes (~28% lower odds; p = 0.004) for heterozygous protein-truncating mutations in INHBE, which encodes a circulating growth factor of the activin family, highly and specifically expressed in hepatocytes. Our results suggest that inhibin ßE is a liver-expressed negative regulator of adipose storage whose blockade may be beneficial in fat distribution-associated metabolic disease.


Assuntos
Diabetes Mellitus Tipo 2 , Subunidades beta de Inibinas/genética , Tecido Adiposo , Adiposidade/genética , Diabetes Mellitus Tipo 2/genética , Exoma/genética , Humanos , Mutação
5.
N Engl J Med ; 387(4): 332-344, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35939579

RESUMO

BACKGROUND: Exome sequencing in hundreds of thousands of persons may enable the identification of rare protein-coding genetic variants associated with protection from human diseases like liver cirrhosis, providing a strategy for the discovery of new therapeutic targets. METHODS: We performed a multistage exome sequencing and genetic association analysis to identify genes in which rare protein-coding variants were associated with liver phenotypes. We conducted in vitro experiments to further characterize associations. RESULTS: The multistage analysis involved 542,904 persons with available data on liver aminotransferase levels, 24,944 patients with various types of liver disease, and 490,636 controls without liver disease. We found that rare coding variants in APOB, ABCB4, SLC30A10, and TM6SF2 were associated with increased aminotransferase levels and an increased risk of liver disease. We also found that variants in CIDEB, which encodes a structural protein found in hepatic lipid droplets, had a protective effect. The burden of rare predicted loss-of-function variants plus missense variants in CIDEB (combined carrier frequency, 0.7%) was associated with decreased alanine aminotransferase levels (beta per allele, -1.24 U per liter; 95% confidence interval [CI], -1.66 to -0.83; P = 4.8×10-9) and with 33% lower odds of liver disease of any cause (odds ratio per allele, 0.67; 95% CI, 0.57 to 0.79; P = 9.9×10-7). Rare coding variants in CIDEB were associated with a decreased risk of liver disease across different underlying causes and different degrees of severity, including cirrhosis of any cause (odds ratio per allele, 0.50; 95% CI, 0.36 to 0.70). Among 3599 patients who had undergone bariatric surgery, rare coding variants in CIDEB were associated with a decreased nonalcoholic fatty liver disease activity score (beta per allele in score units, -0.98; 95% CI, -1.54 to -0.41 [scores range from 0 to 8, with higher scores indicating more severe disease]). In human hepatoma cell lines challenged with oleate, CIDEB small interfering RNA knockdown prevented the buildup of large lipid droplets. CONCLUSIONS: Rare germline mutations in CIDEB conferred substantial protection from liver disease. (Funded by Regeneron Pharmaceuticals.).


Assuntos
Proteínas Reguladoras de Apoptose , Mutação em Linhagem Germinativa , Hepatopatias , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Predisposição Genética para Doença/genética , Predisposição Genética para Doença/prevenção & controle , Humanos , Fígado/metabolismo , Hepatopatias/genética , Hepatopatias/metabolismo , Hepatopatias/prevenção & controle , Transaminases/genética , Sequenciamento do Exoma
6.
NPJ Genom Med ; 6(1): 73, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34497273

RESUMO

The club cell, a small airway epithelial (SAE) cell, plays a central role in human lung host defense. We hypothesized that subpopulations of club cells with distinct functions may exist. The SAE of healthy nonsmokers and healthy cigarette smokers were evaluated by single-cell RNA sequencing, and unsupervised clustering revealed subpopulations of SCGCB1A1+KRT5loMUC5AC- club cells. Club cell heterogeneity was supported by evaluations of SAE tissue sections, brushed SAE cells, and in vitro air-liquid interface cultures. Three subpopulations included: (1) progenitor; (2) proliferating; and (3) effector club cells. The progenitor club cell population expressed high levels of mitochondrial, ribosomal proteins, and KRT5 relative to other club cell populations and included a differentiation branch point leading to mucous cell production. The small proliferating population expressed high levels of cyclins and proliferation markers. The effector club cell cluster expressed genes related to host defense, xenobiotic metabolism, and barrier functions associated with club cell function. Comparison of smokers vs. nonsmokers demonstrated that smoking limited the extent of differentiation of all three subclusters and altered SAM pointed domain-containing Ets transcription factor (SPDEF)-regulated transcription in the effector cell population leading to a change in the location of the branch point for mucous cell production, a potential explanation for the concomitant reduction in effector club cells and increase in mucous cells in smokers. These observations provide insights into both the makeup of human SAE club cell subpopulations and the smoking-induced changes in club cell biology.

7.
PLoS One ; 15(9): e0237529, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32941426

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic fibrotic lung disease with an irreversible decline of lung function. "Bronchiolization", characterized by ectopic appearance of airway epithelial cells in the alveolar regions, is one of the characteristic features in the IPF lung. Based on the knowledge that club cells are the major epithelial secretory cells in human small airways, and their major secretory product uteroglobin (SCGB1A1) is significantly increased in both serum and epithelial lining fluid of IPF lung, we hypothesize that human airway club cells contribute to the pathogenesis of IPF. By assessing the transcriptomes of the single cells from human lung of control donors and IPF patients, we identified two SCGB1A1+ club cell subpopulations, highly expressing MUC5B, a significant genetic risk factor strongly associated with IPF, and SCGB3A2, a marker heterogeneously expressed in the club cells, respectively. Interestingly, the cellular proportion of SCGB1A1+MUC5B+ club cells was significantly increased in IPF patients, and this club cell subpopulation highly expressed genes related to mucous production and immune cell chemotaxis. In contrast, though the cellular proportion did not change, the molecular phenotype of the SCGB1A1+SCGB3A2high club cell subpopulation was significantly altered in IPF lung, with increased expression of mucins, cytokine and extracellular matrix genes. The single cell transcriptomic analysis reveals the cellular and molecular heterogeneity of club cells, and provide novel insights into the biological functions of club cells in the pathogenesis of IPF.


Assuntos
Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Transcriptoma , Bronquíolos/citologia , Bronquíolos/patologia , Humanos , Fibrose Pulmonar Idiopática/genética , Pulmão/citologia , Mucosa Respiratória/citologia , Mucosa Respiratória/patologia , Secretoglobinas/genética , Análise de Célula Única , Uteroglobina/genética
8.
Respir Res ; 21(1): 200, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727470

RESUMO

BACKGROUND: The human small airway epithelium (SAE) plays a central role in the early events in the pathogenesis of most inherited and acquired lung disorders. Little is known about the molecular phenotypes of the specific cell populations comprising the SAE in humans, and the contribution of SAE specific cell populations to the risk for lung diseases. METHODS: Drop-seq single-cell RNA-sequencing was used to characterize the transcriptome of single cells from human SAE of nonsmokers and smokers by bronchoscopic brushing. RESULTS: Eleven distinct cell populations were identified, including major and rare epithelial cells, and immune/inflammatory cells. There was cell type-specific expression of genes relevant to the risk of the inherited pulmonary disorders, genes associated with risk of chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis and (non-mutated) driver genes for lung cancers. Cigarette smoking significantly altered the cell type-specific transcriptomes and disease risk-related genes. CONCLUSIONS: This data provides new insights into the possible contribution of specific lung cells to the pathogenesis of lung disorders.


Assuntos
Fumar Cigarros/genética , Testes Genéticos/métodos , Pneumopatias/genética , Mucosa Respiratória/fisiologia , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Remodelação das Vias Aéreas/genética , Broncoscopia/métodos , Fumar Cigarros/efeitos adversos , Expressão Gênica , Humanos , Pneumopatias/diagnóstico , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Mucosa Respiratória/patologia
9.
Cells ; 9(6)2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517158

RESUMO

Endomucin (EMCN) is the type I transmembrane glycoprotein, mucin-like component of the endothelial cell glycocalyx. We have previously shown that EMCN is necessary for vascular endothelial growth factor (VEGF)-induced VEGF receptor 2 (VEGFR2) internalization and downstream signaling. To explore the structural components of EMCN that are necessary for its function and the molecular mechanism of EMCN in VEGF-induced endothelial functions, we generated a series of mouse EMCN truncation mutants and examined their ability to rescue VEGF-induced endothelial functions in human primary endothelial cells (EC) in which endogenous EMCN had been knocked down using siRNA. Expression of the mouse full-length EMCN (FL EMCN) and the extracellular domain truncation mutants ∆21-81 EMCN and ∆21-121 EMCN, but not the shortest mutant ∆21-161 EMCN, successfully rescued the VEGF-induced EC migration, tube formation, and proliferation. ∆21-161 EMCN failed to interact with VEGFR2 and did not facilitate VEGFR2 internalization. Deletion of COSMC (C1GalT1C1) revealed that the abundant mucin-type O-glycans were not required for its VEGFR2-related functions. Mutation of the two N-glycosylation sites on ∆21-121 EMCN abolished its interaction with VEGFR2 and its function in VEGFR2 internalization. These results reveal ∆21-121 EMCN as the minimal extracellular domain sufficient for VEGFR2-mediated endothelial function and demonstrate an important role for N-glycosylation in VEGFR2 interaction, internalization, and angiogenic activity.


Assuntos
Sialomucinas/química , Sialomucinas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Sequência de Aminoácidos , Endocitose , Glicosilação , Humanos , Mutação/genética , Domínios Proteicos , Sialomucinas/genética , Transdução de Sinais
10.
Sci Rep ; 10(1): 6257, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32277131

RESUMO

Cigarette smoke (CS) is the leading risk factor to develop COPD. Therefore, the pathologic effects of whole CS on the differentiation of primary small airway epithelial cells (SAEC) were investigated, using cells from three healthy donors and three COPD patients, cultured under ALI (air-liquid interface) conditions. The analysis of the epithelial physiology demonstrated that CS impaired barrier formation and reduced cilia beat activity. Although, COPD-derived ALI cultures preserved some features known from COPD patients, CS-induced effects were similarly pronounced in ALI cultures from patients compared to healthy controls. RNA sequencing analyses revealed the deregulation of marker genes for basal and secretory cells upon CS exposure. The comparison between gene signatures obtained from the in vitro model (CS vs. air) with a published data set from human epithelial brushes (smoker vs. non-smoker) revealed a high degree of similarity between deregulated genes and pathways induced by CS. Taken together, whole cigarette smoke alters the differentiation of small airway basal cells in vitro. The established model showed a good translatability to the situation in vivo. Thus, the model can help to identify and test novel therapeutic approaches to restore the impaired epithelial repair mechanisms in COPD, which is still a high medical need.


Assuntos
Bronquíolos/patologia , Diferenciação Celular/efeitos dos fármacos , Células Epiteliais/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Fumaça/efeitos adversos , Produtos do Tabaco/toxicidade , Adulto , Idoso , Bronquíolos/citologia , Bronquíolos/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Doença Pulmonar Obstrutiva Crônica/etiologia , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/patologia , Fumar/efeitos adversos
11.
J Biol Chem ; 295(19): 6641-6651, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32193206

RESUMO

Contact between inflammatory cells and endothelial cells (ECs) is a crucial step in vascular inflammation. Recently, we demonstrated that the cell-surface level of endomucin (EMCN), a heavily O-glycosylated single-transmembrane sialomucin, interferes with the interactions between inflammatory cells and ECs. We have also shown that, in response to an inflammatory stimulus, EMCN is cleared from the cell surface by an unknown mechanism. In this study, using adenovirus-mediated overexpression of a tagged EMCN in human umbilical vein ECs, we found that treatment with tumor necrosis factor α (TNF-α) or the strong oxidant pervanadate leads to loss of cell-surface EMCN and increases the levels of the C-terminal fragment of EMCN 3- to 4-fold. Furthermore, treatment with the broad-spectrum matrix metalloproteinase inhibitor batimastat (BB94) or inhibition of ADAM metallopeptidase domain 10 (ADAM10) and ADAM17 with two small-molecule inhibitors, GW280264X and GI254023X, or with siRNA significantly reduced basal and TNFα-induced cell-surface EMCN cleavage. Release of the C-terminal fragment of EMCN by TNF-α treatment was blocked by chemical inhibition of ADAM10 alone or in combination with ADAM17. These results indicate that cell-surface EMCN undergoes constitutive cleavage and that TNF-α treatment dramatically increases this cleavage, which is mediated predominantly by ADAM10 and ADAM17. As endothelial cell-surface EMCN attenuates leukocyte-EC interactions during inflammation, we propose that EMCN is a potential therapeutic target to manage vascular inflammation.


Assuntos
Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas de Membrana/metabolismo , Sialoglicoproteínas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia
12.
FASEB J ; 33(8): 9362-9373, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31141406

RESUMO

We have previously shown that knockdown of endomucin (EMCN), an integral membrane glycocalyx glycoprotein, prevents VEGF-induced proliferation, migration, and tube formation in vitro and angiogenesis in vivo. In the endothelium, VEGF mediates most of its angiogenic effects through VEGF receptor 2 (VEGFR2). To understand the role of EMCN, we examined the effect of EMCN depletion on VEGFR2 endocytosis and activation. Results showed that although VEGF stimulation promoted VEGFR2 internalization in control endothelial cells (ECs), loss of EMCN prevented VEGFR2 endocytosis. Cell surface analysis revealed a decrease in VEGFR2 following VEGF stimulation in control but not siRNA directed against EMCN-transfected ECs. EMCN depletion resulted in heightened phosphorylation following VEGF stimulation with an increase in total VEGFR2 protein. These results indicate that EMCN modulates VEGFR2 endocytosis and activity and point to EMCN as a potential therapeutic target.-LeBlanc, M. E., Saez-Torres, K. L., Cano, I., Hu, Z., Saint-Geniez, M., Ng, Y.-S., D'Amore, P. A. Glycocalyx regulation of vascular endothelial growth factor receptor 2 activity.


Assuntos
Glicocálix/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Adenoviridae/genética , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Endocitose/efeitos dos fármacos , Endocitose/genética , Endocitose/fisiologia , Humanos , Fosforilação/efeitos dos fármacos , Sialomucinas/genética , Sialomucinas/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
13.
Exp Eye Res ; 181: 120-126, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30633921

RESUMO

Wet age-related macular degeneration (AMD) with choroidal neovascularization (CNV) is a leading cause of vision loss in the elderly. The advent of anti-vascular endothelial growth factor (VEGF) drugs represents a major breakthrough in wet AMD therapy but with limited efficacy to improve visual acuity. Secretogranin III (Scg3, SgIII) was recently discovered as a novel angiogenic factor with VEGF-independent mechanisms. Scg3-neutralizing monoclonal antibody (mAb) was reported to alleviate pathological retinal neovascularization in oxygen-induced retinopathy mice and retinal vascular leakage in diabetic mice with high efficacy and disease selectivity. Herein we investigated whether Scg3 is a novel angiogenic target for CNV therapy in mouse models. We found that anti-Scg3 ML49.3 mAb inhibited Scg3-induced proliferation and Src phosphorylation in human retinal microvascular endothelial cells. Intravitreal injection of Scg3-neutralizing polyclonal antibodies (pAb) or mAb significantly attenuated laser-induced CNV leakage, CNV 3D volume, lesion area and vessel density. Furthermore, subcutaneous administration of Scg3-neutralizing pAb or mAb significantly prevented Matrigel-induced CNV. The efficacy of anti-Scg3 pAb or mAb was comparable to VEGF inhibitor aflibercept. These findings suggest that Scg3 plays an important role in CNV pathogenesis and that anti-Scg3 mAb efficiently ameliorates laser- or Matrigel-induced CNV.


Assuntos
Inibidores da Angiogênese/farmacologia , Anticorpos Neutralizantes/farmacologia , Neovascularização de Coroide/tratamento farmacológico , Cromograninas/farmacologia , Células Endoteliais/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Análise de Variância , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Injeções Intravítreas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Retina/citologia
14.
Cell Mol Life Sci ; 75(4): 635-647, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28856381

RESUMO

Secretogranin III (Scg3) is a member of the granin protein family that regulates the biogenesis of secretory granules. Scg3 was recently discovered as an angiogenic factor, expanding its functional role to extrinsic regulation. Unlike many other known angiogenic factors, the pro-angiogenic actions of Scg3 are restricted to pathological conditions. Among thousands of quantified endothelial ligands, Scg3 has the highest binding activity ratio to diabetic vs. healthy mouse retinas and lowest background binding to normal vessels. In contrast, vascular endothelial growth factor binds to and stimulates angiogenesis of both diabetic and control vasculature. Consistent with its role in pathological angiogenesis, Scg3-neutralizing antibodies alleviate retinal vascular leakage in mouse models of diabetic retinopathy and retinal neovascularization in oxygen-induced retinopathy mice. This review summarizes our current knowledge of Scg3 as a regulatory protein of secretory granules, highlights its new role as a highly disease-selective angiogenic factor, and envisions Scg3 inhibitors as "selective angiogenesis blockers" for targeted therapy.


Assuntos
Indutores da Angiogênese/metabolismo , Cromograninas/fisiologia , Retinopatia Diabética , Neovascularização Patológica/genética , Animais , Cromograninas/genética , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Humanos , Camundongos , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Vesículas Secretórias/genética , Vesículas Secretórias/metabolismo , Vesículas Secretórias/patologia
15.
Angiogenesis ; 20(4): 479-492, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28447229

RESUMO

Angiogenic factors play an important role in the pathogenesis of diabetic retinopathy (DR), neovascular age-related macular degeneration (nAMD) and retinopathy of prematurity (ROP). Pleiotrophin, a well-known angiogenic factor, was recently reported to be upregulated in the vitreous fluid of patients with proliferative DR (PDR). However, its pathogenic role and therapeutic potential in ocular vascular diseases have not been defined in vivo. Here using corneal pocket assays, we demonstrated that pleiotrophin induced angiogenesis in vivo. To investigate the pathological role of pleiotrophin we used neutralizing antibody to block its function in multiple in vivo models of ocular vascular diseases. In a mouse model of DR, intravitreal injection of pleiotrophin-neutralizing antibody alleviated diabetic retinal vascular leakage. In a mouse model of oxygen-induced retinopathy (OIR), which is a surrogate model of ROP and PDR, we demonstrated that intravitreal injection of anti-pleiotrophin antibody prevented OIR-induced pathological retinal neovascularization and aberrant vessel tufts. Finally, pleiotrophin-neutralizing antibody ameliorated laser-induced choroidal neovascularization, a mouse model of nAMD, suggesting that pleiotrophin is involved in choroidal vascular disease. These findings suggest that pleiotrophin plays an important role in the pathogenesis of DR with retinal vascular leakage, ROP with retinal neovascularization and nAMD with choroidal neovascularization. The results also support pleiotrophin as a promising target for anti-angiogenic therapy.


Assuntos
Proteínas de Transporte/uso terapêutico , Citocinas/uso terapêutico , Neovascularização Retiniana/tratamento farmacológico , Animais , Proteínas de Transporte/farmacologia , Proliferação de Células/efeitos dos fármacos , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/patologia , Citocinas/farmacologia , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Retina/efeitos dos fármacos , Retina/patologia , Neovascularização Retiniana/patologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia
16.
J Exp Med ; 214(4): 1029-1047, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28330905

RESUMO

Diabetic retinopathy (DR) is a leading cause of vision loss with retinal vascular leakage and/or neovascularization. Current antiangiogenic therapy against vascular endothelial growth factor (VEGF) has limited efficacy. In this study, we applied a new technology of comparative ligandomics to diabetic and control mice for the differential mapping of disease-related endothelial ligands. Secretogranin III (Scg3) was discovered as a novel disease-associated ligand with selective binding and angiogenic activity in diabetic but not healthy vessels. In contrast, VEGF bound to and induced angiogenesis in both diabetic and normal vasculature. Scg3 and VEGF signal through distinct receptor pathways. Importantly, Scg3-neutralizing antibodies alleviated retinal vascular leakage in diabetic mice with high efficacy. Furthermore, anti-Scg3 prevented retinal neovascularization in oxygen-induced retinopathy mice, a surrogate model for retinopathy of prematurity (ROP). ROP is the most common cause of vision impairment in children, with no approved drug therapy. These results suggest that Scg3 is a promising target for novel antiangiogenic therapy of DR and ROP.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Cromograninas/fisiologia , Retinopatia Diabética/tratamento farmacológico , Animais , Permeabilidade Capilar , Cromograninas/antagonistas & inibidores , Sequenciamento de Nucleotídeos em Larga Escala , Ligantes , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/fisiologia
17.
Curr Opin Cell Biol ; 42: 128-137, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27484857

RESUMO

Embryonic germ cell migration is a vital component of the germline lifecycle. The translocation of germ cells from the place of origin to the developing somatic gonad involves several processes including passive movements with underlying tissues, transepithelial migration, cell adhesion dynamics, the establishment of environmental guidance cues and the ability to sustain directed migration. How germ cells accomplish these feats in established model organisms will be discussed in this review, with a focus on recent discoveries and themes conserved across species.


Assuntos
Movimento Celular , Células Germinativas/citologia , Animais , Adesão Celular , Células Epiteliais/citologia , Gônadas/citologia , Humanos , Modelos Biológicos
18.
Cell Biol Toxicol ; 32(4): 347-58, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27184668

RESUMO

Phagocytosis is a critical process to maintain tissue homeostasis. In the retina, photoreceptor cells renew their photoexcitability by shedding photoreceptor outer segments (POSs) in a diurnal rhythm. Shed POSs are phagocytosed by retinal pigment epithelial (RPE) cells to prevent debris accumulation, retinal degeneration, and blindness. Phagocytosis ligands are the key to understanding how RPE recognizes shed POSs. Here, we characterized mesoderm development candidate 2 (Mesd or Mesdc2), an endoplasmic reticulum (ER) chaperon for low-density lipoprotein receptor-related proteins (LRPs), to extrinsically promote RPE phagocytosis. The results showed that Mesd stimulated phagocytosis of fluorescence-labeled POS vesicles by D407 RPE cells. Ingested POSs were partially degraded within 3 h in some RPE cells to dispense undegradable fluorophore throughout the cytoplasm. Internalized POSs were colocalized with phagosome biomarker Rab7, suggesting that Mesd-mediated engulfment is involved in a phagocytosis pathway. Mesd also facilitated phagocytosis of POSs by primary RPE cells. Mesd bound to unknown phagocytic receptor(s) on RPE cells. Mesd was detected in the cytoplasm, but not nuclei, of different retinal layers and is predominantly expressed in the ER-free cellular compartment of POSs. Mesd was not secreted into medium from healthy cells but passively released from apoptotic cells with increased membrane permeability. Released Mesd selectively bound to the surface of POS vesicles and apoptotic cells, but not healthy cells. These results suggest that Mesd may be released from and bind to shed POSs to facilitate their phagocytic clearance.


Assuntos
Chaperonas Moleculares/metabolismo , Pigmentos da Retina/metabolismo , Núcleo Celular , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células HEK293 , Humanos , Neurônios/citologia , Neurônios/metabolismo , Fagócitos/metabolismo , Fagócitos/fisiologia , Fagocitose , Fagossomos/metabolismo , Fagossomos/fisiologia , Células Fotorreceptoras/metabolismo
19.
Mol Vis ; 22: 374-86, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27122967

RESUMO

PURPOSE: Hepatoma-derived growth factor (HDGF) is a mitogen that promotes endothelial proliferation and neuronal survival. Using a unique technology of ligandomics, we recently identified HDGF as a retinal endothelial binding protein. The purpose of this study is to examine the role of HDGF in regulating ocular vasculature and the expression of HDGF in the retina. METHODS: HDGF expression in the retinal was analyzed with western blot and immunohistochemistry. Angiogenic activity was investigated in human retinal microvascular endothelial cells (HRMVECs) with in vitro endothelial proliferation, migration, and permeability assays. In vivo angiogenic activity was quantified with a corneal pocket assay. The Evans blue assay and western blot using anti-mouse albumin were performed to detect the capacity of HDGF to induce retinal vascular leakage. RESULTS: Immunohistochemistry revealed that HDGF is expressed in the retina with a distinct pattern. HDGF was detected in retinal ganglion cells and the inner nuclear layer but not in the inner plexiform layer, suggesting that HDGF is expressed in the nucleus, but not in the cytoplasm, of retinal neurons. In contrast to family member HDGF-related protein 3 (HRP-3) that has no expression in photoreceptors, HDGF is also present in the outer nuclear layer and the inner and outer segments of photoreceptors. This suggests that HDGF is expressed in the nucleus as well as the cytoplasm of photoreceptors. In vitro functional assays showed that HDGF induced the proliferation, migration, and permeability of HRMVECs. Corneal pocket assay indicated that HDGF directly stimulated angiogenesis in vivo. Intravitreal injection of HDGF significantly induced retinal vascular leakage. CONCLUSIONS: These results suggest that HDGF is an angiogenic factor that regulates retinal vasculature in physiologic and pathological conditions. Identification of HDGF by ligandomics and its independent characterization in this study also support the validity of this new technology for systematic identification of cellular ligands, including angiogenic factors.


Assuntos
Indutores da Angiogênese/metabolismo , Neovascularização de Coroide/metabolismo , Células Endoteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Retina/metabolismo , Retinopatia da Prematuridade/metabolismo , Animais , Western Blotting , Permeabilidade Capilar , Movimento Celular , Proliferação de Células , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/toxicidade , Reação em Cadeia da Polimerase em Tempo Real , Vasos Retinianos/citologia , Retinopatia da Prematuridade/induzido quimicamente , Corpo Vítreo/metabolismo
20.
PLoS One ; 10(5): e0127904, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25996149

RESUMO

Hepatoma-derived growth factor-related protein-3 (Hdgfrp3 or HRP-3) was recently reported as a neurotrophic factor and is upregulated in hepatocellular carcinoma to promote cancer cell survival. Here we identified HRP-3 as a new endothelial ligand and characterized its in vitro and in vivo functional roles and molecular signaling. We combined open reading frame phage display with multi-round in vivo binding selection to enrich retinal endothelial ligands, which were systematically identified by next generation DNA sequencing. One of the identified endothelial ligands was HRP-3. HRP-3 expression in the retina and brain was characterized by Western blot and immunohistochemistry. Cell proliferation assay showed that HRP-3 stimulated the growth of human umbilical vein endothelial cells (HUVECs). HRP-3 induced tube formation of HUVECs in culture. Wound healing assay indicated that HRP-3 promoted endothelial cell migration. HRP-3 was further confirmed for its in vitro angiogenic activity by spheroid sprouting assay. HRP-3 extrinsically activated the extracellular-signal-regulated kinase ½ (ERK1/2) pathway in endothelial cells. The angiogenic activity of HRP-3 was independently verified by mouse cornea pocket assay. Furthermore, in vivo Matrigel plug assay corroborated HRP-3 activity to promote new blood vessel formation. These results demonstrated that HRP-3 is a novel angiogenic factor.


Assuntos
Indutores da Angiogênese/farmacologia , Proteínas Nucleares/farmacologia , Animais , Encéfalo/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA