Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(13): eadm9859, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536921

RESUMO

Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with poor prognosis and resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We previously showed that KEAP1 mutant tumors consume glutamine to support the metabolic rewiring associated with NRF2-dependent antioxidant production. Here, using preclinical patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the glutamine antagonist prodrug DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumors by inhibiting glutamine-dependent nucleotide synthesis and promoting antitumor T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we demonstrate that DRP-104 reverses T cell exhaustion, decreases Tregs, and enhances the function of CD4 and CD8 T cells, culminating in an improved response to anti-PD1 therapy. Our preclinical findings provide compelling evidence that DRP-104, currently in clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Glutamina/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Inibidores Enzimáticos/uso terapêutico , Mutação
2.
bioRxiv ; 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37502974

RESUMO

Tumor mutations can influence the surrounding microenvironment leading to suppression of anti-tumor immune responses and thereby contributing to tumor progression and failure of cancer therapies. Here we use genetically engineered lung cancer mouse models and patient samples to dissect how LKB1 mutations accelerate tumor growth by reshaping the immune microenvironment. Comprehensive immune profiling of LKB1 -mutant vs wildtype tumors revealed dramatic changes in myeloid cells, specifically enrichment of Arg1 + interstitial macrophages and SiglecF Hi neutrophils. We discovered a novel mechanism whereby autocrine LIF signaling in Lkb1 -mutant tumors drives tumorigenesis by reprogramming myeloid cells in the immune microenvironment. Inhibiting LIF signaling in Lkb1 -mutant tumors, via gene targeting or with a neutralizing antibody, resulted in a striking reduction in Arg1 + interstitial macrophages and SiglecF Hi neutrophils, expansion of antigen specific T cells, and inhibition of tumor progression. Thus, targeting LIF signaling provides a new therapeutic approach to reverse the immunosuppressive microenvironment of LKB1 -mutant tumors.

3.
bioRxiv ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37425844

RESUMO

Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We have previously shown that KEAP1 mutant tumors have increased glutamine consumption to support the metabolic rewiring associated with NRF2 activation. Here, using patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the novel glutamine antagonist DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumor growth by inhibiting glutamine-dependent nucleotide synthesis and promoting anti-tumor CD4 and CD8 T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we discover that DRP-104 reverses T cell exhaustion and enhances the function of CD4 and CD8 T cells culminating in an improved response to anti-PD1 therapy. Our pre-clinical findings provide compelling evidence that DRP-104, currently in phase 1 clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer. Furthermore, we demonstrate that by combining DRP-104 with checkpoint inhibition, we can achieve suppression of tumor intrinsic metabolism and augmentation of anti-tumor T cell responses.

4.
Nature ; 601(7893): 428-433, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937946

RESUMO

Although deregulation of transfer RNA (tRNA) biogenesis promotes the translation of pro-tumorigenic mRNAs in cancers1,2, the mechanisms and consequences of tRNA deregulation in tumorigenesis are poorly understood. Here we use a CRISPR-Cas9 screen to focus on genes that have been implicated in tRNA biogenesis, and identify a mechanism by which altered valine tRNA biogenesis enhances mitochondrial bioenergetics in T cell acute lymphoblastic leukaemia (T-ALL). Expression of valine aminoacyl tRNA synthetase is transcriptionally upregulated by NOTCH1, a key oncogene in T-ALL, underlining a role for oncogenic transcriptional programs in coordinating tRNA supply and demand. Limiting valine bioavailability through restriction of dietary valine intake disrupted this balance in mice, resulting in decreased leukaemic burden and increased survival in vivo. Mechanistically, valine restriction reduced translation rates of mRNAs that encode subunits of mitochondrial complex I, leading to defective assembly of complex I and impaired oxidative phosphorylation. Finally, a genome-wide CRISPR-Cas9 loss-of-function screen in differential valine conditions identified several genes, including SLC7A5 and BCL2, whose genetic ablation or pharmacological inhibition synergized with valine restriction to reduce T-ALL growth. Our findings identify tRNA deregulation as a critical adaptation in the pathogenesis of T-ALL and provide a molecular basis for the use of dietary approaches to target tRNA biogenesis in blood malignancies.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Valina-tRNA Ligase , Valina , Animais , Disponibilidade Biológica , Sistemas CRISPR-Cas , Dieta , Complexo I de Transporte de Elétrons/genética , Transportador 1 de Aminoácidos Neutros Grandes , Camundongos , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , RNA de Transferência/genética , Valina/metabolismo , Valina-tRNA Ligase/metabolismo
5.
Sci Adv ; 7(47): eabk1023, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34788087

RESUMO

The KEAP1/NRF2 pathway promotes metabolic rewiring to support redox homeostasis. Activation of NRF2 occurs in many cancers, often due to KEAP1 mutations, and is associated with more aggressive disease and treatment resistance. To identify metabolic dependencies in cancers with NRF2 activation, we performed a metabolism-focused CRISPR screen. Glucose-6-phosphate dehydrogenase (G6PD), which was recently shown to be dispensable in Ras-driven tumors, was a top dependency. G6PD catalyzes the committed step of the oxidative pentose phosphate pathway that produces NADPH and nucleotide precursors, but neither antioxidants nor nucleosides rescued. Instead, G6PD loss triggered tricarboxylic acid (TCA) intermediate depletion because of up-regulation of the alternative NADPH-producing enzymes malic enzyme and isocitrate dehydrogenase. In vivo, G6PD impairment markedly suppressed KEAP1 mutant tumor growth, and this suppression was further augmented by TCA depletion by glutaminase inhibition. Thus, G6PD inhibition­induced TCA depletion is a therapeutic vulnerability of NRF2-activated cancer.

6.
Cell Metab ; 31(2): 339-350.e4, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31813821

RESUMO

Rewiring of metabolic pathways is a hallmark of tumorigenesis as cancer cells acquire novel nutrient dependencies to support oncogenic growth. A major genetic subtype of lung adenocarcinoma with KEAP1/NRF2 mutations, which activates the endogenous oxidative stress response, undergoes significant metabolic rewiring to support enhanced antioxidant production. We demonstrate that cancers with high antioxidant capacity exhibit a general dependency on exogenous non-essential amino acids (NEAAs) that is driven by the Nrf2-dependent secretion of glutamate through system xc- (XCT), which limits intracellular glutamate pools that are required for NEAA synthesis. This dependency can be therapeutically targeted by dietary restriction or enzymatic depletion of individual NEAAs. Importantly, limiting endogenous glutamate levels by glutaminase inhibition can sensitize tumors without alterations in the Keap1/Nrf2 pathway to dietary restriction of NEAAs. Our findings identify a metabolic strategy to therapeutically target cancers with genetic or pharmacologic activation of the Nrf2 antioxidant response pathway by restricting exogenous sources of NEAAs.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Ácido Glutâmico/metabolismo , Glutaminase/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
8.
Cell ; 178(2): 316-329.e18, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31257023

RESUMO

Approximately 30% of human lung cancers acquire mutations in either Keap1 or Nfe2l2, resulting in the stabilization of Nrf2, the Nfe2l2 gene product, which controls oxidative homeostasis. Here, we show that heme triggers the degradation of Bach1, a pro-metastatic transcription factor, by promoting its interaction with the ubiquitin ligase Fbxo22. Nrf2 accumulation in lung cancers causes the stabilization of Bach1 by inducing Ho1, the enzyme catabolizing heme. In mouse models of lung cancers, loss of Keap1 or Fbxo22 induces metastasis in a Bach1-dependent manner. Pharmacological inhibition of Ho1 suppresses metastasis in a Fbxo22-dependent manner. Human metastatic lung cancer display high levels of Ho1 and Bach1. Bach1 transcriptional signature is associated with poor survival and metastasis in lung cancer patients. We propose that Nrf2 activates a metastatic program by inhibiting the heme- and Fbxo22-mediated degradation of Bach1, and that Ho1 inhibitors represent an effective therapeutic strategy to prevent lung cancer metastasis.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Neoplasias Pulmonares/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/antagonistas & inibidores , Fatores de Transcrição de Zíper de Leucina Básica/genética , Linhagem Celular Tumoral , Movimento Celular , Proteínas F-Box/antagonistas & inibidores , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Feminino , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Estimativa de Kaplan-Meier , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Metástase Neoplásica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Ativação Transcricional
9.
Nat Commun ; 9(1): 2868, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-30030436

RESUMO

Pineoblastoma is a rare and highly aggressive brain cancer of childhood, histologically belonging to the spectrum of primitive neuroectodermal tumors. Patients with germline mutations in DICER1, a ribonuclease involved in microRNA processing, have increased risk of pineoblastoma, but genetic drivers of sporadic pineoblastoma remain unknown. Here, we analyzed pediatric and adult pineoblastoma samples (n = 23) using a combination of genome-wide DNA methylation profiling and whole-exome sequencing or whole-genome sequencing. Pediatric and adult pineoblastomas showed distinct methylation profiles, the latter clustering with lower-grade pineal tumors and normal pineal gland. Recurrent variants were found in genes involved in PKA- and NF-κB signaling, as well as in chromatin remodeling genes. We identified recurrent homozygous deletions of DROSHA, acting upstream of DICER1 in microRNA processing, and a novel microduplication involving chromosomal region 1q21 containing PDE4DIP (myomegalin), comprising the ancient DUF1220 protein domain. Expresion of PDE4DIP and DUF1220 proteins was present exclusively in pineoblastoma with PDE4DIP gain.


Assuntos
Neoplasias Encefálicas/genética , Deleção de Genes , Duplicação Gênica , Proteínas Musculares/genética , Proteínas Nucleares/genética , Pinealoma/genética , Ribonuclease III/genética , Proteínas Adaptadoras de Transdução de Sinal , Adulto , Idoso , Criança , Proteínas do Citoesqueleto , RNA Helicases DEAD-box/genética , Metilação de DNA , Exoma , Genoma Humano , Homozigoto , Humanos , Pessoa de Meia-Idade , Glândula Pineal/patologia , Domínios Proteicos , Transcriptoma
10.
Cancer Metab ; 5: 9, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093815

RESUMO

BACKGROUND: Cancer cells that enter the metastatic cascade require traits that allow them to survive within the circulation and colonize distant organ sites. As disseminating cancer cells adapt to their changing microenvironments, they also modify their metabolism and metabolite production. METHODS: A mouse xenograft model of spontaneous tumor metastasis was used to determine the metabolic rewiring that occurs between primary cancers and their metastases. An "autonomous" mass spectrometry-based untargeted metabolomic workflow with integrative metabolic pathway analysis revealed a number of differentially regulated metabolites in primary mammary fat pad (MFP) tumors compared to microdissected paired lung metastases. The study was further extended to analyze metabolites in paired normal tissues which determined the potential influence of metabolites from the microenvironment. RESULTS: Metabolomic analysis revealed that multiple metabolites were increased in metastases, including cholesterol sulfate and phospholipids (phosphatidylglycerols and phosphatidylethanolamine). Metabolite analysis of normal lung tissue in the mouse model also revealed increased levels of these metabolites compared to tissues from normal MFP and primary MFP tumors, indicating potential extracellular uptake by cancer cells in lung metastases. These results indicate a potential functional importance of cholesterol sulfate and phospholipids in propagating metastasis. In addition, metabolites involved in DNA/RNA synthesis and the TCA cycle were decreased in lung metastases compared to primary MFP tumors. CONCLUSIONS: Using an integrated metabolomic workflow, this study identified a link between cholesterol sulfate and phospholipids, metabolic characteristics of the metastatic niche, and the capacity of tumor cells to colonize distant sites.

11.
Elife ; 62017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28967864

RESUMO

During tumorigenesis, the high metabolic demand of cancer cells results in increased production of reactive oxygen species. To maintain oxidative homeostasis, tumor cells increase their antioxidant production through hyperactivation of the NRF2 pathway, which promotes tumor cell growth. Despite the extensive characterization of NRF2-driven metabolic rewiring, little is known about the metabolic liabilities generated by this reprogramming. Here, we show that activation of NRF2, in either mouse or human cancer cells, leads to increased dependency on exogenous glutamine through increased consumption of glutamate for glutathione synthesis and glutamate secretion by xc- antiporter system. Together, this limits glutamate availability for the tricarboxylic acid cycle and other biosynthetic reactions creating a metabolic bottleneck. Cancers with genetic or pharmacological activation of the NRF2 antioxidant pathway have a metabolic imbalance between supporting increased antioxidant capacity over central carbon metabolism, which can be therapeutically exploited.


Assuntos
Antioxidantes/metabolismo , Carbono/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Ácido Glutâmico/metabolismo , Glutationa/metabolismo , Homeostase , Humanos , Camundongos
12.
Nat Med ; 23(11): 1362-1368, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28967920

RESUMO

Treating KRAS-mutant lung adenocarcinoma (LUAD) remains a major challenge in cancer treatment given the difficulties associated with directly inhibiting the KRAS oncoprotein. One approach to addressing this challenge is to define mutations that frequently co-occur with those in KRAS, which themselves may lead to therapeutic vulnerabilities in tumors. Approximately 20% of KRAS-mutant LUAD tumors carry loss-of-function mutations in the KEAP1 gene encoding Kelch-like ECH-associated protein 1 (refs. 2, 3, 4), a negative regulator of nuclear factor erythroid 2-like 2 (NFE2L2; hereafter NRF2), which is the master transcriptional regulator of the endogenous antioxidant response. The high frequency of mutations in KEAP1 suggests an important role for the oxidative stress response in lung tumorigenesis. Using a CRISPR-Cas9-based approach in a mouse model of KRAS-driven LUAD, we examined the effects of Keap1 loss in lung cancer progression. We show that loss of Keap1 hyperactivates NRF2 and promotes KRAS-driven LUAD in mice. Through a combination of CRISPR-Cas9-based genetic screening and metabolomic analyses, we show that Keap1- or Nrf2-mutant cancers are dependent on increased glutaminolysis, and this property can be therapeutically exploited through the pharmacological inhibition of glutaminase. Finally, we provide a rationale for stratification of human patients with lung cancer harboring KRAS/KEAP1- or KRAS/NRF2-mutant lung tumors as likely to respond to glutaminase inhibition.


Assuntos
Adenocarcinoma/genética , Genes ras , Glutamina/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Neoplasias Pulmonares/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Glutaminase/antagonistas & inibidores , Humanos , Hidrólise , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos
13.
DNA Repair (Amst) ; 23: 79-87, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25263164

RESUMO

NAD(+) metabolism is an essential regulator of cellular redox reactions, energy pathways, and a substrate provider for NAD(+) consuming enzymes. We recently demonstrated that enhancement of NAD(+)/NADH levels in breast cancer cells with impaired mitochondrial NADH dehydrogenase activity, through augmentation of complex I or by supplementing tumor cell nutrients with NAD(+) precursors, inhibits tumorigenicity and metastasis. To more fully understand how aberrantly low NAD(+) levels promote tumor cell dissemination, we here asked whether inhibition of NAD(+) salvage pathway activity by reduction in nicotinamide phosphoribosyltransferase (NAMPT) expression can impact metastasis and tumor cell adhesive functions. We show that knockdown of NAMPT, the enzyme catalyzing the rate-limiting step of the NAD(+) salvage pathway, enhances metastatic aggressiveness in human breast cancer cells and involves modulation of integrin expression and function. Reduction in NAMPT expression is associated with upregulation of select adhesion receptors, particularly αvß3 and ß1 integrins, and results in increased breast cancer cell attachment to extracellular matrix proteins, a key function in tumor cell dissemination. Interestingly, NAMPT downregulation prompts expression of integrin αvß3 in a high affinity conformation, known to promote tumor cell adhesive interactions during hematogenous metastasis. NAMPT has been selected as a therapeutic target for cancer therapy based on the essential functions of this enzyme in NAD(+) metabolism, cellular redox, DNA repair and energy pathways. Notably, our results indicate that incomplete inhibition of NAMPT, which impedes NAD(+) metabolism but does not kill a tumor cell can alter its phenotype to be more aggressive and metastatic. This phenomenon could promote cancer recurrence, even if NAMPT inhibition initially reduces tumor growth.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Citocinas/metabolismo , Integrina alfaVbeta3/metabolismo , Integrina beta1/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Animais , Neoplasias da Mama/genética , Adesão Celular , Linhagem Celular Tumoral , Citocinas/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos SCID , Nicotinamida Fosforribosiltransferase/genética , Vitronectina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Clin Invest ; 123(3): 1068-81, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23426180

RESUMO

Despite advances in clinical therapy, metastasis remains the leading cause of death in breast cancer patients. Mutations in mitochondrial DNA, including those affecting complex I and oxidative phosphorylation, are found in breast tumors and could facilitate metastasis. This study identifies mitochondrial complex I as critical for defining an aggressive phenotype in breast cancer cells. Specific enhancement of mitochondrial complex I activity inhibited tumor growth and metastasis through regulation of the tumor cell NAD+/NADH redox balance, mTORC1 activity, and autophagy. Conversely, nonlethal reduction of NAD+ levels by interfering with nicotinamide phosphoribosyltransferase expression rendered tumor cells more aggressive and increased metastasis. The results translate into a new therapeutic strategy: enhancement of the NAD+/NADH balance through treatment with NAD+ precursors inhibited metastasis in xenograft models, increased animal survival, and strongly interfered with oncogene-driven breast cancer progression in the MMTV-PyMT mouse model. Thus, aberration in mitochondrial complex I NADH dehydrogenase activity can profoundly enhance the aggressiveness of human breast cancer cells, while therapeutic normalization of the NAD+/NADH balance can inhibit metastasis and prevent disease progression.


Assuntos
Neoplasias Encefálicas/metabolismo , Complexo I de Transporte de Elétrons/fisiologia , Neoplasias Pulmonares/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , NAD/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Acrilamidas/farmacologia , Animais , Autofagia , Proteína 5 Relacionada à Autofagia , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Proliferação de Células , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Progressão da Doença , Complexo I de Transporte de Elétrons/biossíntese , Feminino , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Complexos Multiproteicos , NAD/fisiologia , Transplante de Neoplasias , Niacina/farmacologia , Niacinamida/farmacologia , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/metabolismo , Piperidinas/farmacologia , Transporte Proteico , Proteínas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese , Serina-Treonina Quinases TOR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA