Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Neurosci ; 35(8): 3470-7, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25716846

RESUMO

Freezing is a species-typical defensive reaction to conditioned threats. While the neural circuitry of aversive Pavlovian behavior has been extensively studied, less is known about the circuitry underlying more active responses to danger. Here we show that the flow of information between the basal amygdala (BA) and the nucleus accumbens (NAcc) is necessary for signaled active avoidance behavior. Rats trained to avoid shock by shuttling during an auditory conditioned stimulus showed increased expression of the activity-dependent protein c-Fos in the NAcc, specifically the shell subregion (NAccSh). Silencing neural activity in the NAccSh, but not in the adjacent NAcc core, disrupted avoidance behavior. Disconnection of the BA and the NAccSh was just as effective at disrupting avoidance behavior as bilateral NAccSh inactivations, suggesting learned avoidance behavior requires an intact BA-NAccSh circuit. Together, these data highlight an essential role for the amygdalar projection to the ventral striatum in aversively motivated actions.


Assuntos
Tonsila do Cerebelo/fisiologia , Aprendizagem da Esquiva , Núcleo Accumbens/fisiologia , Tonsila do Cerebelo/metabolismo , Animais , Condicionamento Clássico , Medo , Masculino , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley
2.
Learn Mem ; 20(8): 446-52, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23869027

RESUMO

Active avoidance (AA) is an important paradigm for studying mechanisms of aversive instrumental learning, pathological anxiety, and active coping. Unfortunately, AA neurocircuits are poorly understood, partly because behavior is highly variable and reflects a competition between Pavlovian reactions and instrumental actions. Here we exploited the behavioral differences between good and poor avoiders to elucidate the AA neurocircuit. Rats received Sidman AA training and expression of the activity-dependent immediate-early gene c-fos was measured after a shock-free AA test. Six brain regions with known or putative roles in AA were evaluated: amygdala, periaqueductal gray, nucleus accumbens, dorsal striatum, prefrontal cortex (PFC), and hippocampus. Good avoiders showed little Pavlovian freezing and high AA rates at test, the opposite of poor avoiders. Although c-Fos activation was observed throughout the brain, differential activation was found only in subregions of amygdala and PFC. Interestingly, c-Fos correlated with avoidance and freezing in only five of 20 distinct areas evaluated: lateral amygdala, central amygdala, medial amygdala, basal amygdala, and infralimbic PFC. Thus, activity in specific amygdala-PFC circuits likely mediates the competition between instrumental actions and Pavlovian reactions after AA training. Individual differences in AA behavior, long considered a nuisance by researchers, may be the key to elucidating the AA neurocircuit and understanding pathological response profiles.


Assuntos
Tonsila do Cerebelo/fisiologia , Aprendizagem da Esquiva/fisiologia , Córtex Pré-Frontal/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Masculino , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley
3.
J Neurosci ; 33(9): 3815-23, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23447593

RESUMO

Signaled active avoidance (AA) paradigms train subjects to prevent an aversive outcome by performing a learned behavior during the presentation of a conditioned cue. This complex form of conditioning involves pavlovian and instrumental components, which produce competing behavioral responses that must be reconciled for the subject to successfully avoid an aversive stimulus. In signaled AA paradigm for rat, we tested the hypothesis that the instrumental component of AA training recruits infralimbic prefrontal cortex (ilPFC) to inhibit central amygdala (CeA)-mediated Pavlovian reactions. Pretraining lesions of ilPFC increased conditioned freezing while causing a corresponding decrease in avoidance; lesions of CeA produced opposite effects, reducing freezing and facilitating avoidance behavior. Pharmacological inactivation experiments demonstrated that ilPFC is relevant to both acquisition and expression phases of AA learning. Inactivation experiments also revealed that AA produces an ilPFC-mediated diminution of pavlovian reactions that extends beyond the training context, even when the conditioned stimulus is presented in an environment that does not allow the avoidance response. Finally, injection of a protein synthesis inhibitor into either ilPFC or CeA impaired or facilitated AA, respectively, showing that avoidance training produces two opposing memory traces in these regions. These data support a model in which AA learning recruits ilPFC to inhibit CeA-mediated defense behaviors, leading to a robust suppression of freezing that generalizes across environments. Thus, ilPFC functions as an inhibitory interface, allowing instrumental control over an aversive outcome to attenuate the expression of freezing and other reactions to conditioned threat.


Assuntos
Tonsila do Cerebelo/fisiologia , Aprendizagem da Esquiva/fisiologia , Córtex Pré-Frontal/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/lesões , Análise de Variância , Animais , Anisomicina/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Sinais (Psicologia) , Eletrólise/efeitos adversos , Agonistas GABAérgicos/farmacologia , Masculino , Muscimol/farmacologia , Vias Neurais/efeitos dos fármacos , Córtex Pré-Frontal/lesões , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley
4.
Biol Psychiatry ; 53(10): 863-70, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12742673

RESUMO

BACKGROUND: Panic attacks, the hallmark of panic disorder, are often characterized by hyperventilation. Existing animal models of anxiety have not addressed the effects of the hyperventilation on anxiety-related behaviors. Doxapram is a respiratory stimulant that reliably evokes panic attacks in patients with panic disorder. We examined doxapram in four rodent models of anxiety and sought to identify brain regions involved in its behavioral effects. METHODS: The effects of doxapram were determined for cue and contextual fear conditioning, the open field test, and the social interaction test. The effect of doxapram on c-Fos-like immunoreactivity was examined in three brain regions. RESULTS: Doxapram at 4 mg/kg increased anxiety-related behaviors in all four anxiety models. An inverted U-shaped dose-response curve was identified for fear conditioning to cue. Doxapram induced c-Fos-like immunoreactivity in the central nucleus of the amygdala but not the lateral nucleus or the nucleus tractus solitarius. CONCLUSIONS: Doxapram enhanced anxiety-related behaviors in four animal models of anxiety that involve conditioning or spontaneous avoidance. The effect of doxapram may result from activation of neurons in the amygdala. Doxapram, by inducing hyperventilation, may be a useful adjunct to existing animal anxiety models for improving validity for panic anxiety.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Ansiedade , Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Doxapram/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Medicamentos para o Sistema Respiratório/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Condicionamento Psicológico/efeitos dos fármacos , Sinais (Psicologia) , Modelos Animais de Doenças , Medo/efeitos dos fármacos , Imuno-Histoquímica , Masculino , Pânico , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/metabolismo
5.
Nat Neurosci ; 5(9): 837-8, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12172550

RESUMO

A-kinase anchoring proteins (AKAPs) constitute a family of scaffolding proteins that bind the regulatory subunits of protein kinase A (PKA). AKAP binding to PKA regulates the phosphorylation of various proteins, some of which have been implicated in synaptic plasticity and memory consolidation. Here we show that the regulatory subunits of PKA are colocalized with AKAP150 (an AKAP isoform that is expressed in the brain) in the lateral amygdala (LA) and that infusion to the LA of the peptide St-Ht31, which blocks PKA anchoring onto AKAPs, impairs memory consolidation of auditory fear conditioning.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Tonsila do Cerebelo/enzimologia , Vias Auditivas/enzimologia , Proteínas de Transporte/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Medo/fisiologia , Memória/fisiologia , Neurônios/enzimologia , Proteínas de Ancoragem à Quinase A , Tonsila do Cerebelo/citologia , Animais , Vias Auditivas/citologia , Percepção Auditiva/fisiologia , Ligação Competitiva/efeitos dos fármacos , Ligação Competitiva/fisiologia , Compartimento Celular/efeitos dos fármacos , Compartimento Celular/fisiologia , Condicionamento Psicológico/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Substâncias Macromoleculares , Antígenos de Histocompatibilidade Menor , Neurônios/citologia , Fosforilação , Ligação Proteica/fisiologia , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas/farmacologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA