Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Genet Med ; 26(7): 101125, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38522068

RESUMO

PURPOSE: YKT6 plays important roles in multiple intracellular vesicle trafficking events but has not been associated with Mendelian diseases. METHODS: We report 3 unrelated individuals with rare homozygous missense variants in YKT6 who exhibited neurological disease with or without a progressive infantile liver disease. We modeled the variants in Drosophila. We generated wild-type and variant genomic rescue constructs of the fly ortholog dYkt6 and compared their ability in rescuing the loss-of-function phenotypes in mutant flies. We also generated a dYkt6KozakGAL4 allele to assess the expression pattern of dYkt6. RESULTS: Two individuals are homozygous for YKT6 [NM_006555.3:c.554A>G p.(Tyr185Cys)] and exhibited normal prenatal course followed by failure to thrive, developmental delay, and progressive liver disease. Haplotype analysis identified a shared homozygous region flanking the variant, suggesting a common ancestry. The third individual is homozygous for YKT6 [NM_006555.3:c.191A>G p.(Tyr64Cys)] and exhibited neurodevelopmental disorders and optic atrophy. Fly dYkt6 is essential and is expressed in the fat body (analogous to liver) and central nervous system. Wild-type genomic rescue constructs can rescue the lethality and autophagic flux defects, whereas the variants are less efficient in rescuing the phenotypes. CONCLUSION: The YKT6 variants are partial loss-of-function alleles, and the p.(Tyr185Cys) is more severe than p.(Tyr64Cys).

2.
JCI Insight ; 6(16)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34283813

RESUMO

Energy balance is controlled by interconnected brain regions in the hypothalamus, brainstem, cortex, and limbic system. Gene expression signatures of these regions can help elucidate the pathophysiology underlying obesity. RNA sequencing was conducted on P56 C57BL/6NTac male mice and E14.5 C57BL/6NTac embryo punch biopsies in 16 obesity-relevant brain regions. The expression of 190 known obesity-associated genes (monogenic, rare, and low-frequency coding variants; GWAS; syndromic) was analyzed in each anatomical region. Genes associated with these genetic categories of obesity had localized expression patterns across brain regions. Known monogenic obesity causal genes were highly enriched in the arcuate nucleus of the hypothalamus and developing hypothalamus. The obesity-associated genes clustered into distinct "modules" of similar expression profile, and these were distinct from expression modules formed by similar analysis with genes known to be associated with other disease phenotypes (type 1 and type 2 diabetes, autism, breast cancer) in the same energy balance-relevant brain regions.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético/genética , Obesidade/metabolismo , Animais , Embrião de Mamíferos , Regulação da Expressão Gênica , Predisposição Genética para Doença , Masculino , Camundongos , Obesidade/genética , RNA-Seq
3.
J Clin Invest ; 131(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33630762

RESUMO

Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder caused by mutations in genes encoding components of the primary cilium and is characterized by hyperphagic obesity. To investigate the molecular basis of obesity in human BBS, we developed a cellular model of BBS using induced pluripotent stem cell-derived (iPSC-derived) hypothalamic arcuate-like neurons. BBS mutations BBS1M390R and BBS10C91fsX95 did not affect neuronal differentiation efficiency but caused morphological defects, including impaired neurite outgrowth and longer primary cilia. Single-cell RNA sequencing of BBS1M390R hypothalamic neurons identified several downregulated pathways, including insulin and cAMP signaling and axon guidance. Additional studies demonstrated that BBS1M390R and BBS10C91fsX95 mutations impaired insulin signaling in both human fibroblasts and iPSC-derived neurons. Overexpression of intact BBS10 fully restored insulin signaling by restoring insulin receptor tyrosine phosphorylation in BBS10C91fsX95 neurons. Moreover, mutations in BBS1 and BBS10 impaired leptin-mediated p-STAT3 activation in iPSC-derived hypothalamic neurons. Correction of the BBS mutation by CRISPR rescued leptin signaling. POMC expression and neuropeptide production were decreased in BBS1M390R and BBS10C91fsX95 iPSC-derived hypothalamic neurons. In the aggregate, these data provide insights into the anatomic and functional mechanisms by which components of the BBSome in CNS primary cilia mediate effects on energy homeostasis.


Assuntos
Síndrome de Bardet-Biedl/metabolismo , Chaperoninas/metabolismo , Hipotálamo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação de Sentido Incorreto , Neurônios/metabolismo , Sistemas do Segundo Mensageiro , Substituição de Aminoácidos , Animais , Síndrome de Bardet-Biedl/genética , Chaperoninas/genética , AMP Cíclico/genética , AMP Cíclico/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética
4.
Diabetes Obes Metab ; 23(3): 850-853, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33236485

RESUMO

Naltrexone/bupropion (NB) is a US Food and Drug Administration-approved antiobesity medication. Clinical trials have shown variable weight loss, with responders and non-responders. NB is believed to act on central dopaminergic pathways to suppress appetite. The Taq1A polymorphism near DRD2 (rs1800497) is associated with the density of striatal dopamine D2 receptors, with individuals carrying the A allele (AA or AG; termed A1+) having 30%-40% fewer dopamine binding sites than those who do not carry the A allele (GG; termed A1-). We performed a pilot study to assess the association of the rs1800497 ANKK1 c.2137G > A (p.Glu713Lys) variant with weight loss with NB treatment in 33 subjects. Mean (SD) weight loss was 5.9% (3.2%) for the A1+ genotype group (n = 15) and 4.2% (4.2%) for the A1- genotype group (n = 18). The mean weight loss for the A1+ genotype group was significantly greater than the predefined clinically significant 4% weight-loss target (one-sample t-test, P = .035), whereas the mean weight loss for the A1- genotype group was not (P = .85). Individuals with the A1+ genotype appear to respond better to NB than A1- individuals.


Assuntos
Bupropiona , Naltrexona , Bupropiona/uso terapêutico , Genótipo , Humanos , Naltrexona/uso terapêutico , Projetos Piloto , Polimorfismo de Nucleotídeo Único , Proteínas Serina-Treonina Quinases , Receptores de Dopamina D2/genética , Redução de Peso/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-31010896

RESUMO

Two siblings, one male and one female, ages 6 and 13 yr old, have similar clinical features of global developmental delay, multiple congenital anomalies affecting the cardiac, genitourinary, and skeletal systems, and abnormal eye movements. Whole-genome sequencing revealed a homozygous splice variant (NM_014462.3:c.231+4A>C) in LSM1 that segregated with the phenotype in the family. LSM1 has a role in pre-mRNA splicing and degradation. Expression studies revealed absence of expression of the canonical isoform in the affected individuals. The Lsm1 knockout mice have a partially overlapping phenotype that affects the brain, heart, and eye. To our knowledge, LSM1 has not been associated with any human disorder; however, the tissue expression pattern, gene constraint, and the similarity of the phenotype in our patients and the knockout mice models suggest it has a role in the development of multiple organ systems in humans.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Congênitas/genética , Deficiências do Desenvolvimento/genética , Proteínas Proto-Oncogênicas/genética , Splicing de RNA/genética , Proteínas de Ligação a RNA/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/patologia , Adolescente , Animais , Criança , Anormalidades Congênitas/diagnóstico , Anormalidades Congênitas/patologia , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/patologia , Éxons/genética , Feminino , Homozigoto , Humanos , Masculino , Mutação , Fenótipo , Estabilidade de RNA , Irmãos
6.
Sci Rep ; 9(1): 4965, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30899071

RESUMO

Type I diabetes (T1D) is caused by immune-mediated destruction of pancreatic beta cells. This process is triggered, in part, by specific (aa 9-23) epitopes of the insulin Β chain. Previously, fish insulins were used clinically in patients allergic to bovine or porcine insulin. Fish and human insulin differ by two amino acids in the critical immunogenic region (aa 9-23) of the B chain. We hypothesized that ß cells synthesizing fish insulin would be less immunogenic in a mouse model of T1D. Transgenic NOD mice in which Greater Amberjack fish (Seriola dumerili) insulin was substituted for the insulin 2 gene were generated (mouse Ins1-/- mouse Ins2-/- fish Ins2+/+). In these mice, pancreatic islets remained free of autoimmune attack. To determine whether such reduction in immunogenicity is sufficient to protect ß cells from autoimmunity upon transplantation, we transplanted fish Ins2 transgenic (expressing solely Seriola dumerili Ins2), NOD, or B16:A-dKO islets under the kidney capsules of 5 weeks old female NOD wildtype mice. The B:Y16A Β chain substitution has been previously shown to be protective of T1D in NOD mice. NOD mice receiving Seriola dumerili transgenic islet transplants showed a significant (p = 0.004) prolongation of their euglycemic period (by 6 weeks; up to 18 weeks of age) compared to un-manipulated female NOD (diabetes onset at 12 weeks of age) and those receiving B16:A-dKO islet transplants (diabetes onset at 12 weeks of age). These data support the concept that specific amino acid sequence modifications can reduce insulin immunogenicity. Additionally, our study shows that alteration of a single epitope is not sufficient to halt an ongoing autoimmune response. Which, and how many, T cell epitopes are required and suffice to perpetuate autoimmunity is currently unknown. Such studies may be useful to achieve host tolerance to ß cells by inactivating key immunogenic epitopes of stem cell-derived ß cells intended for transplantation.


Assuntos
Células Secretoras de Insulina/imunologia , Insulina/genética , Sequência de Aminoácidos , Animais , Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/terapia , Epitopos/imunologia , Humanos , Insulina/química , Células Secretoras de Insulina/ultraestrutura , Transplante das Ilhotas Pancreáticas , Rim/imunologia , Ativação Linfocitária/imunologia , Camundongos Endogâmicos NOD , Camundongos Transgênicos
7.
Cell Metab ; 28(2): 289-299.e5, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29937378

RESUMO

Weight is defended so that increases or decreases in body mass elicit responses that favor restoration of one's previous weight. While much is known about the signals that respond to weight loss and the central role that leptin plays, the lack of experimental systems studying the overfed state has meant little is known about pathways defending against weight gain. We developed a system to study this physiology and found that overfed mice defend against increased weight gain with graded anorexia but, unlike weight loss, this response is independent of circulating leptin concentration. In overfed mice that are unresponsive to orexigenic stimuli, adipose tissue is transcriptionally and immunologically distinct from fat of ad libitum-fed obese animals. These findings provide evidence that overfeeding-induced obesity alters adipose tissue and central responses in ways that are distinct from ad libitum obesity and activates a non-leptin system to defend against weight gain.


Assuntos
Tecido Adiposo/metabolismo , Leptina/fisiologia , Obesidade/metabolismo , Aumento de Peso , Redução de Peso , Tecido Adiposo/imunologia , Animais , Anorexia , Hiperfagia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos
8.
J Lipid Res ; 59(8): 1446-1460, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29934339

RESUMO

SNPs in the first intron of α-ketoglutarate-dependent dioxygenase (FTO) convey effects on adiposity by mechanisms that remain unclear, but appear to include modulation of expression of FTO itself, as well as other genes in cisFTO expression is lower in fibroblasts and iPSC-derived neurons of individuals segregating for FTO obesity risk alleles. We employed in vitro adipogenesis models to investigate the molecular mechanisms by which Fto affects adipocyte development and function. Fto expression was upregulated during adipogenesis, and was required for the maintenance of CEBPB and Cebpd/CEBPD expression in murine and human adipocytes in vitro. Fto knockdown decreased the number of 3T3-L1 cells that differentiated into adipocytes as well as the amount of lipid per mature adipocyte. This effect on adipocyte programming was conveyed, in part, by modulation of CCAAT enhancer binding protein (C/ebp)ß-regulated transcription. We found that Fto also affected Cebpd transcription by demethylating DNA N6-methyldeoxyadenosine in the Cebpd promoter. Fto is permissive for adipogenesis and promotes maintenance of lipid content in mature adipocytes by enabling C/ebpß-driven transcription and expression of Cebpd These findings are consistent with the loss of fat mass in mice segregating for a dominant-negative Fto allele.


Assuntos
Adenosina/análogos & derivados , Adipócitos/citologia , Adipogenia/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , DNA/metabolismo , Metabolismo dos Lipídeos/genética , Células 3T3-L1 , Adenosina/metabolismo , Adipócitos/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/deficiência , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Animais , DNA/genética , Metilação de DNA , Proteínas da Matriz Extracelular/metabolismo , Técnicas de Silenciamento de Genes , Camundongos , Proteínas de Neoplasias/metabolismo , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Transdução de Sinais/genética
9.
PLoS One ; 13(5): e0197548, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29847571

RESUMO

We have previously reported that Ildr2 knockdown via adenovirally-delivered shRNA causes hepatic steatosis in mice. In the present study we investigated hepatic biochemical and anatomic phenotypes of Cre-mediated Ildr2 knock-out mice. Liver-specific Ildr2 knock-out mice were generated in C57BL/6J mice segregating for a floxed (exon 1) allele of Ildr2, using congenital and acute (10-13-week-old male mice) Cre expression. In addition, Ildr2 shRNA was administered to Ildr2 knock-out mice to test the effects of Ildr2 shRNA, per se, in the absence of Ildr2 expression. RNA sequencing was performed on livers of these knockdown and knockout mice. Congenital and acute liver-specific and hepatocyte-specific knockout mice did not develop hepatic steatosis. However, administration of Ildr2 shRNA to Ildr2 knock-out mice did cause hepatic steatosis, indicating that the Ildr2 shRNA had apparent "off-target" effects on gene(s) other than Ildr2. RNA sequencing and BLAST sequence alignment revealed Dgka as a candidate gene mediating these "off-target" effects. Ildr2 shRNA is 63% homologous to the Dgka gene, and Dgka expression decreased only in mice displaying hepatic steatosis. Dgka encodes diacylglycerol kinase (DGK) alpha, one of a family of DGKs which convert diacylglycerides to phosphatidic acid for second messenger signaling. Dgka knockdown mice would be expected to accumulate diacylglyceride, contributing to the observed hepatic steatosis. We conclude that ILDR2 plays a negligible role in hepatic steatosis. Rather, hepatic steatosis observed previously in Ildr2 knockdown mice was likely due to shRNA targeting of Dgka and/or other "off-target" genes. We propose that the gene candidates identified in this follow-up study may lead to identification of novel regulators of hepatic lipid metabolism.


Assuntos
Proteínas de Membrana/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/patologia , RNA Interferente Pequeno/genética , Análise de Sequência de RNA , Triglicerídeos/metabolismo
10.
J Clin Invest ; 127(1): 293-305, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27941249

RESUMO

Prader-Willi syndrome (PWS) is caused by a loss of paternally expressed genes in an imprinted region of chromosome 15q. Among the canonical PWS phenotypes are hyperphagic obesity, central hypogonadism, and low growth hormone (GH). Rare microdeletions in PWS patients define a 91-kb minimum critical deletion region encompassing 3 genes, including the noncoding RNA gene SNORD116. Here, we found that protein and transcript levels of nescient helix loop helix 2 (NHLH2) and the prohormone convertase PC1 (encoded by PCSK1) were reduced in PWS patient induced pluripotent stem cell-derived (iPSC-derived) neurons. Moreover, Nhlh2 and Pcsk1 expression were reduced in hypothalami of fasted Snord116 paternal knockout (Snord116p-/m+) mice. Hypothalamic Agrp and Npy remained elevated following refeeding in association with relative hyperphagia in Snord116p-/m+ mice. Nhlh2-deficient mice display growth deficiencies as adolescents and hypogonadism, hyperphagia, and obesity as adults. Nhlh2 has also been shown to promote Pcsk1 expression. Humans and mice deficient in PC1 display hyperphagic obesity, hypogonadism, decreased GH, and hypoinsulinemic diabetes due to impaired prohormone processing. Here, we found that Snord116p-/m+ mice displayed in vivo functional defects in prohormone processing of proinsulin, pro-GH-releasing hormone, and proghrelin in association with reductions in islet, hypothalamic, and stomach PC1 content. Our findings suggest that the major neuroendocrine features of PWS are due to PC1 deficiency.


Assuntos
Hormônio Liberador de Hormônio do Crescimento/metabolismo , Neurônios/metabolismo , Síndrome de Prader-Willi/metabolismo , Proinsulina/metabolismo , Pró-Proteína Convertase 1/deficiência , Precursores de Proteínas/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Feminino , Hormônio Liberador de Hormônio do Crescimento/genética , Humanos , Hiperfagia/genética , Hiperfagia/metabolismo , Hiperfagia/patologia , Hipogonadismo/genética , Hipogonadismo/metabolismo , Hipogonadismo/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Camundongos Knockout , Neurônios/patologia , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/patologia , Proinsulina/genética , Precursores de Proteínas/genética , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo
11.
Stem Cell Res ; 17(3): 526-530, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27789403

RESUMO

Prader-Willi syndrome (PWS) is a syndromic obesity caused by loss of paternal gene expression in an imprinted interval on 15q11.2-q13. Induced pluripotent stem cells were generated from skin cells of three large deletion PWS patients and one unique microdeletion PWS patient. We found that genes within the PWS region, including SNRPN and NDN, showed persistence of DNA methylation after iPSC reprogramming and differentiation to neurons. Genes within the PWS minimum critical deletion region remain silenced in both PWS large deletion and microdeletion iPSC following reprogramming. PWS iPSC and their relevant differentiated cell types could provide in vitro models of PWS.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Síndrome de Prader-Willi/patologia , Animais , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Hibridização Genômica Comparativa , Metilação de DNA , Fibroblastos/citologia , Dosagem de Genes , Genótipo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Camundongos Endogâmicos NOD , Neurônios/citologia , Neurônios/metabolismo , Síndrome de Prader-Willi/genética , Pele/citologia , Teratoma/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Centrais de snRNP/genética
12.
Biochem Biophys Res Commun ; 477(4): 712-716, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27353377

RESUMO

A diabetes susceptibility gene, immunoglobulin-like domain containing receptor 2 (Ildr2), encodes a transmembrane protein localized to the endoplasmic reticulum membrane that is closely related to hepatic lipid metabolism. The livers of ob/ob mice in which Ildr2 is transiently overexpressed are relieved of hepatic steatosis. However, the molecular mechanisms through which ILDR2 affects these changes in hepatic lipid metabolism remain unknown. This study aimed to identify ILDR2-interacting proteins to further elucidate the molecular mechanisms underlying the role of ILDR2 in lipid homeostasis. We purified ILDR2-containing protein complexes using tandem affinity purification tagging and identified ZNF70, a member of the Kruppel C2H2-type zinc finger protein family, as a novel ILDR2-interacting protein. We demonstrated that ZNF70 interacts with ZFP64 and activates HES1 transcription by binding to the HES1 promoter. In addition, HES1 gene expression is increased in ILDR2-knockdown HepG2 cells, in which ZNF70 is translocated from the cytoplasm to the nucleus, suggesting that ZNF70 migration to the nucleus after dissociating from the ILDR2-ZNF70 complex activates HES1 transcription. These results support a novel link between ILDR2 and HES1 gene expression and suggest that ILDR2 is involved in a novel pathway in hepatic steatosis.


Assuntos
Núcleo Celular/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia , Fatores de Transcrição HES-1/metabolismo , Dedos de Zinco/fisiologia , Sítios de Ligação , Células HEK293 , Células Hep G2 , Humanos , Ligação Proteica , Transdução de Sinais/fisiologia , Fatores de Transcrição HES-1/química
13.
J Clin Invest ; 126(5): 1897-910, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27064284

RESUMO

Noncoding polymorphisms in the fat mass and obesity-associated (FTO) gene represent common alleles that are strongly associated with effects on food intake and adiposity in humans. Previous studies have suggested that the obesity-risk allele rs8050136 in the first intron of FTO alters a regulatory element recognized by the transcription factor CUX1, thereby leading to decreased expression of FTO and retinitis pigmentosa GTPase regulator-interacting protein-1 like (RPGRIP1L). Here, we evaluated the effects of rs8050136 and another potential CUX1 element in rs1421085 on expression of nearby genes in human induced pluripotent stem cell-derived (iPSC-derived) neurons. There were allele-dosage effects on FTO, RPGRIP1L, and AKT-interacting protein (AKTIP) expression, but expression of other vicinal genes, including IRX3, IRX5, and RBL2, which have been implicated in mediating functional effects, was not altered. In vivo manipulation of CUX1, Fto, and/or Rpgrip1l expression in mice affected adiposity in a manner that was consistent with CUX1 influence on adiposity via remote effects on Fto and Rpgrip1l expression. In support of a mechanism, mice hypomorphic for Rpgrip1l exhibited hyperphagic obesity, as the result of diminished leptin sensitivity in Leprb-expressing neurons. Together, the results of this study indicate that the effects of FTO-associated SNPs on energy homeostasis are due in part to the effects of these genetic variations on hypothalamic FTO, RPGRIP1L, and possibly other genes.


Assuntos
Alelos , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Regulação da Expressão Gênica , Íntrons , Obesidade , Polimorfismo de Nucleotídeo Único , Proteínas , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Proteínas do Citoesqueleto , Metabolismo Energético/genética , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Camundongos , Camundongos Transgênicos , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Proteínas/genética , Proteínas/metabolismo , Proteína p130 Retinoblastoma-Like/biossíntese , Proteína p130 Retinoblastoma-Like/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
14.
J Clin Invest ; 125(2): 796-808, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25555215

RESUMO

The hypothalamus is the central regulator of systemic energy homeostasis, and its dysfunction can result in extreme body weight alterations. Insights into the complex cellular physiology of this region are critical to the understanding of obesity pathogenesis; however, human hypothalamic cells are largely inaccessible for direct study. Here, we developed a protocol for efficient generation of hypothalamic neurons from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) obtained from patients with monogenetic forms of obesity. Combined early activation of sonic hedgehog signaling followed by timed NOTCH inhibition in human ESCs/iPSCs resulted in efficient conversion into hypothalamic NKX2.1+ precursors. Application of a NOTCH inhibitor and brain-derived neurotrophic factor (BDNF) further directed the cells into arcuate nucleus hypothalamic-like neurons that express hypothalamic neuron markers proopiomelanocortin (POMC), neuropeptide Y (NPY), agouti-related peptide (AGRP), somatostatin, and dopamine. These hypothalamic-like neurons accounted for over 90% of differentiated cells and exhibited transcriptional profiles defined by a hypothalamic-specific gene expression signature that lacked pituitary markers. Importantly, these cells displayed hypothalamic neuron characteristics, including production and secretion of neuropeptides and increased p-AKT and p-STAT3 in response to insulin and leptin. Our results suggest that these hypothalamic-like neurons have potential for further investigation of the neurophysiology of body weight regulation and evaluation of therapeutic targets for obesity.


Assuntos
Diferenciação Celular , Hipotálamo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios , Obesidade/metabolismo , Antígenos de Diferenciação/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Proteínas Hedgehog/metabolismo , Humanos , Hipotálamo/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Proteínas Nucleares/metabolismo , Obesidade/patologia , Pró-Opiomelanocortina/metabolismo , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/metabolismo
15.
JIMD Rep ; 12: 121-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24097415

RESUMO

We evaluated a family with a 16-month-old boy with cirrhosis and hepatocellular carcinoma and his 30-month-old brother with cirrhosis. After failing to identify a diagnosis after routine metabolic evaluation, we utilized a combination of RNA-Seq and whole exome sequencing to identify a novel homozygous p.Ser171Phe Transaldolase (TALDO1) variant in the proband, his brother with cirrhosis, as well as a clinically asymptomatic older 8-year-old brother. Metabolite analysis and enzymatic testing of TALDO1 demonstrated elevated ribitol, sedoheptitol, and sedoheptulose-7P, and lack of activity of TALDO1 in the three children homozygous for the p.Ser171Phe mutation. Our findings expand the phenotype of transaldolase deficiency to include early onset hepatocellular carcinoma in humans and demonstrate that, even within the same family, individuals with the same homozygous mutation demonstrate a wide range of phenotypes.

16.
Blood ; 122(14): 2425-32, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23908464

RESUMO

The SH2B adaptor protein 3 (SH2B3) gene encodes a negative regulator of cytokine signaling with a critical role in the homeostasis of hematopoietic stem cells and lymphoid progenitors. Here, we report the identification of germline homozygous SH2B3 mutations in 2 siblings affected with developmental delay and autoimmunity, one in whom B-precursor acute lymphoblastic leukemia (ALL) developed. Mechanistically, loss of SH2B3 increases Janus kinase-signal transducer and activator of transcription signaling, promotes lymphoid cell proliferation, and accelerates leukemia development in a mouse model of NOTCH1-induced ALL. Moreover, extended mutation analysis showed homozygous somatic mutations in SH2B3 in 2 of 167 ALLs analyzed. Overall, these results demonstrate a Knudson tumor suppressor role for SH2B3 in the pathogenesis of ALL and highlight a possible link between genetic predisposition factors in the pathogenesis of autoimmunity and leukemogenesis.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Doenças Autoimunes/genética , Sequência de Bases , Western Blotting , Criança , Pré-Escolar , Análise Mutacional de DNA , Deficiências do Desenvolvimento/genética , Feminino , Genótipo , Mutação em Linhagem Germinativa , Humanos , Lactente , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Irmãos
17.
PLoS One ; 8(6): e67234, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23826244

RESUMO

Ildr2, a modifier of diabetes susceptibility in obese mice, is expressed in most organs, including islets and hypothalamus, with reduced levels in livers of diabetes-susceptible B6.DBA mice congenic for a 1.8 Mb interval of Chromosome 1. In hepatoma and neuronal cells, ILDR2 is primarily located in the endoplasmic reticulum membrane. We used adenovirus vectors that express shRNA or are driven by the CMV promoter, respectively, to knockdown or overexpress Ildr2 in livers of wild type and ob/ob mice. Livers in knockdown mice were steatotic, with increased hepatic and circulating triglycerides and total cholesterol. Increased circulating VLDL, without reduction in triglyceride clearance suggests an effect of reduced hepatic ILDR2 on hepatic cholesterol clearance. In animals that overexpress Ildr2, hepatic triglyceride and total cholesterol levels were reduced, and strikingly so in ob/ob mice. There were no significant changes in body weight, energy expenditure or glucose/insulin homeostasis in knockdown or overexpressing mice. Knockdown mice showed reduced expression of genes mediating synthesis and oxidation of hepatic lipids, suggesting secondary suppression in response to increased hepatic lipid content. In Ildr2-overexpressing ob/ob mice, in association with reduced liver fat content, levels of transcripts related to neutral lipid synthesis and cholesterol were increased, suggesting "relief" of the secondary suppression imposed by lipid accumulation. Considering the fixed location of ILDR2 in the endoplasmic reticulum, we investigated the possible participation of ILDR2 in ER stress responses. In general, Ildr2 overexpression was associated with increases, and knockdown with decreases in levels of expression of molecular components of canonical ER stress pathways. We conclude that manipulation of Ildr2 expression in liver affects both lipid homeostasis and ER stress pathways. Given these reciprocal interactions, and the relatively extended time-course over which these studies were conducted, we cannot assign causal primacy to either the effects on hepatic lipid homeostasis or ER stress responses.


Assuntos
Retículo Endoplasmático/metabolismo , Homeostase , Metabolismo dos Lipídeos , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Calorimetria , Colesterol/metabolismo , Cromatografia Líquida de Alta Pressão , Estresse do Retículo Endoplasmático/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Teste de Tolerância a Glucose , Hepatócitos/metabolismo , Hepatócitos/patologia , Homeostase/genética , Metabolismo dos Lipídeos/genética , Lipoproteínas/biossíntese , Fígado/patologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Obesos , Microscopia de Fluorescência , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Transdução Genética , Triglicerídeos/metabolismo
18.
Am J Hum Genet ; 92(6): 996-1000, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23731537

RESUMO

Infantile myofibromatosis (IM) is the most common benign fibrous tumor of soft tissues affecting young children. By using whole-exome sequencing, RNA sequencing, and targeted sequencing, we investigated germline and tumor DNA in individuals from four distinct families with the familial form of IM and in five simplex IM cases with no previous family history of this disease. We identified a germline mutation c.1681C>T (p.Arg561Cys) in platelet-derived growth factor receptor ß (PDGFRB) in all 11 affected individuals with familial IM, although none of the five individuals with nonfamilial IM had mutations in this gene. We further identified a second heterozygous mutation in PDGFRB in two myofibromas from one of the affected familial cases, indicative of a potential second hit in this gene in the tumor. PDGFR-ß promotes growth of mesenchymal cells, including blood vessels and smooth muscles, which are affected in IM. Our findings indicate p.Arg561Cys substitution in PDGFR-ß as a cause of the dominant form of this disease. They provide a rationale for further investigations of this specific mutation and gene to assess the benefits of targeted therapies against PDGFR-ß in aggressive life-threatening familial forms of the disease.


Assuntos
Mutação de Sentido Incorreto , Miofibromatose/congênito , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Sequência de Aminoácidos , Feminino , Genes Dominantes , Estudos de Associação Genética , Mutação em Linhagem Germinativa , Heterozigoto , Humanos , Masculino , Modelos Moleculares , Miofibromatose/genética , Linhagem , Estrutura Terciária de Proteína , Receptor Notch3 , Receptor beta de Fator de Crescimento Derivado de Plaquetas/química , Receptores Notch/genética , Análise de Sequência de DNA
19.
J Biol Chem ; 286(3): 2155-70, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21037323

RESUMO

The first intron of FTO contains common single nucleotide polymorphisms associated with body weight and adiposity in humans. In an effort to identify the molecular basis for this association, we discovered that FTO and RPGRIP1L (a ciliary gene located in close proximity to the transcriptional start site of FTO) are regulated by isoforms P200 and P110 of the transcription factor, CUX1. This regulation occurs via a single AATAAATA regulatory site (conserved in the mouse) within the FTO intronic region associated with adiposity in humans. Single nucleotide polymorphism rs8050136 (located in this regulatory site) affects binding affinities of P200 and P110. Promoter-probe analysis revealed that binding of P200 to this site represses FTO, whereas binding of P110 increases transcriptional activity from the FTO as well as RPGRIP1L minimal promoters. Reduced expression of Fto or Rpgrip1l affects leptin receptor isoform b trafficking and leptin signaling in N41 mouse hypothalamic or N2a neuroblastoma cells in vitro. Leptin receptor clusters in the vicinity of the cilium of arcuate hypothalamic neurons in C57BL/6J mice treated with leptin, but not in fasted mice, suggesting a potentially important role of the cilium in leptin signaling that is, in part, regulated by FTO and RPGRIP1L. Decreased Fto/Rpgrip1l expression in the arcuate hypothalamus coincides with decreased nuclear enzymatic activity of a protease (cathepsin L) that has been shown to cleave full-length CUX1 (P200) to P110. P200 disrupts (whereas P110 promotes) leptin receptor isoform b clustering in the vicinity of the cilium in vitro. Clustering of the receptor coincides with increased leptin signaling as reflected in protein levels of phosphorylated Stat3 (p-Stat3). Association of the FTO locus with adiposity in humans may reflect functional consequences of A/C alleles at rs8050136. The obesity-risk (A) allele shows reduced affinity for the FTO and RPGRIP1L transcriptional activator P110, leading to the following: 1) decreased FTO and RPGRIP1L mRNA levels; 2) reduced LEPR trafficking to the cilium; and, as a consequence, 3) a diminished cellular response to leptin.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Hipotálamo/metabolismo , Proteínas Nucleares/metabolismo , Receptores para Leptina/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Tecido Adiposo/metabolismo , Adiposidade/genética , Alelos , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Animais , Catepsina L/genética , Catepsina L/metabolismo , Linhagem Celular Tumoral , Proteínas de Homeodomínio/genética , Humanos , Íntrons/genética , Camundongos , Camundongos Mutantes , Oxigenases de Função Mista , Proteínas Nucleares/genética , Obesidade/genética , Obesidade/metabolismo , Oxo-Ácido-Liases/genética , Oxo-Ácido-Liases/metabolismo , Fosforilação/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores para Leptina/genética , Proteínas Repressoras/genética , Elementos de Resposta , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Fator de Transcrição STAT3/metabolismo
20.
Leuk Res ; 33(5): 662-4, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18937974

RESUMO

Comparative genomic hybridization (CGH), using oligo arrays with either 44,000 or 105,000 oligonucleotides, was performed on granulocyte-derived DNA from 71 patients with BCR-ABL-negative classic myeloproliferative neoplasms (MPNs): 32 primary myelofibrosis (PMF), 26 polycythemia vera (PV) and 13 essential thrombocythemia (ET). Copy number changes (CNCs) were detected in 44%, 35%, and 15% of the cases with PMF, PV and ET, respectively. In ET and PMF, CNCs were more frequently detected in the presence of JAK2V617F (50% vs. 19%; p=0.05). Conventional chromosome analysis was obtained in 57 patients either at diagnosis or within 1 year of the array CGH study; all 21 patients with PV and 11 with ET displayed normal cytogenetic findings despite the presence of CNCs in 29% and 18%, respectively. In PMF, the respective rates of CNCs and abnormal karyotype were 48% and 36%; karyotypic abnormalities, including unbalanced translocations, were often detected by array CGH as chromosomal gains or losses. This preliminary report suggests a potential value for array CGH in terms of both clinical diagnostics and genomic research in MPNs.


Assuntos
Aberrações Cromossômicas , Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/genética , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Cariotipagem , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA