Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Proteomics ; 249: 104360, 2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34481086

RESUMO

We present an efficient protein extraction and in-solution enzymatic digestion protocol optimized for mass spectrometry-based proteomics studies of human skin samples. Human skin cells are a proteinaceous matrix that can enable forensic identification of individuals. We performed a systematic optimization of proteomic sample preparation for a protein-based human forensic identification application. Digestion parameters, including incubation duration, temperature, and the type and concentration of surfactant, were systematically varied to maximize digestion completeness. Through replicate digestions, parameter optimization was performed to maximize repeatability and increase the number of identified peptides and proteins. Final digestion conditions were selected based on the parameters that yielded the greatest percent of peptides with zero missed tryptic cleavages, which benefit the analysis of genetically variable peptides (GVPs). We evaluated the final digestion conditions for identification of GVPs by applying MS-based proteomics on a mixed-donor sample. The results were searched against a human proteome database appended with a database of GVPs constructed from known non-synonymous single nucleotide polymorphisms (SNPs) that occur at known population frequencies. The aim of this study was to demonstrate the potential of our proteomics sample preparation for future implementation of GVP analysis by forensic laboratories to facilitate human identification. SIGNIFICANCE: Genetically variable peptides (GVPs) can provide forensic evidence that is complementary to traditional DNA profiling and be potentially used for human identification. An efficient protein extraction and reproducible digestion method of skin proteins is a key contributor for downstream analysis of GVPs and further development of this technology in forensic application. In this study, we optimized the enzymatic digestion conditions, such as incubation time and temperature, for skin samples. Our study is among the first attempts towards optimization of proteomics sample preparation for protein-based skin identification in forensic applications such as touch samples. Our digestion method employs RapiGest (an acid-labile surfactant), trypsin enzymatic digestion, and an incubation time of 16 h at 37 °C.


Assuntos
Peptídeos , Proteômica , Medicina Legal , Humanos , Espectrometria de Massas , Proteoma , Tripsina
2.
mBio ; 11(4)2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665276

RESUMO

Inteins, as posttranslational regulatory elements, can tune protein function to environmental changes by conditional protein splicing (CPS). Translated as subdomains interrupting host proteins, inteins splice to scarlessly join flanking sequences (exteins). We used DnaB-intein1 (DnaBi1) from a replicative helicase of Mycobacterium smegmatis to build a kanamycin intein splicing reporter (KISR) that links splicing of DnaBi1 to kanamycin resistance. Using expression in heterologous Escherichia coli, we observed phenotypic classes of various levels of splicing-dependent resistance (SDR) and related these to the insertion position of DnaBi1 within the kanamycin resistance protein (KanR). The KanR-DnaBi1 construct demonstrating the most stringent SDR was used to probe for CPS of DnaB in the native host environment, M. smegmatis We show here that zinc, important during mycobacterial pathogenesis, inhibits DnaB splicing in M. smegmatis Using an in vitro reporter system, we demonstrated that zinc potently and reversibly inhibited DnaBi1 splicing, as well as splicing of a comparable intein from Mycobacterium leprae Finally, in a 1.95 Å crystal structure, we show that zinc inhibits splicing through binding to the very cysteine that initiates the splicing reaction. Together, our results provide compelling support for a model whereby mycobacterial DnaB protein splicing, and thus DNA replication, is responsive to environmental zinc.IMPORTANCE Inteins are present in a large fraction of prokaryotes and localize within conserved proteins, including the mycobacterial replicative helicase DnaB. In addition to their extensive protein engineering applications, inteins have emerged as environmentally responsive posttranslational regulators of the genes that encode them. While several studies have shown compelling evidence of conditional protein splicing (CPS), examination of splicing in the native host of the intein has proven to be challenging. Here, we demonstrated through a number of measures, including the use of a splicing-dependent sensor capable of monitoring intein activity in the native host, that zinc is a potent and reversible inhibitor of mycobacterial DnaB splicing. This work also expands our knowledge of site selection for intein insertion within nonnative proteins, demonstrating that splicing-dependent host protein activation correlates with proximity to the active site. Additionally, we surmise that splicing regulation by zinc has mycobacteriocidal and CPS application potential.


Assuntos
DnaB Helicases/antagonistas & inibidores , Mycobacterium/efeitos dos fármacos , Processamento de Proteína/efeitos dos fármacos , Zinco/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , DnaB Helicases/química , DnaB Helicases/genética , Escherichia coli/genética , Inteínas/genética , Mycobacterium/enzimologia , Mycobacterium/genética , Processamento de Proteína Pós-Traducional
3.
Forensic Sci Int Genet ; 47: 102295, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32289731

RESUMO

For the past three decades, forensic genetic investigations have focused on elucidating DNA signatures. While DNA has a number of desirable properties (e.g., presence in most biological materials, an amenable chemistry for analysis and well-developed statistics), DNA also has limitations. DNA may be in low quantity in some tissues, such as hair, and in some tissues it may degrade more readily than its protein counterparts. Recent research efforts have shown the feasibility of performing protein-based human identification in cases in which recovery of DNA is challenged; however, the methods involved in assessing the rarity of a given protein profile have not been addressed adequately. In this paper an algorithm is proposed that describes the computation of a random match probability (RMP) resulting from a genetically variable peptide signature. The approach described herein explicitly models proteomic error and genetic linkage, makes no assumptions as to allelic drop-out, and maps the observed proteomic alleles to their expected protein products from DNA which, in turn, permits standard corrections for population structure and finite database sizes. To assess the feasibility of this approach, RMPs were estimated from peptide profiles of skin samples from 25 individuals of European ancestry. 126 common peptide alleles were used in this approach, yielding a mean RMP of approximately 10-2.


Assuntos
Algoritmos , Peptídeos , Análise de Sequência de Proteína/métodos , Alelos , Cromatografia Líquida , Frequência do Gene , Humanos , Espectrometria de Massas , Método de Monte Carlo , Probabilidade , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA