Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076931

RESUMO

Two common γ-chain family cytokines IL-2 and IL-15 stimulate the same mammalian target of rapamycin complex-1 (mTORC1) signaling yet induce effector T (TE) and memory T (TM) cell differentiation via a poorly understood mechanism(s). Here, we prepared in vitro IL-2-stimulated TE (IL-2/TE) and IL-15-stimulated TM (IL-15/TM) cells for characterization by flow cytometry, Western blotting, confocal microscopy and Seahorse-assay analyses. We demonstrate that IL-2 and IL-15 stimulate strong and weak mTORC1 signals, respectively, which lead to the formation of CD62 ligand (CD62L)- killer cell lectin-like receptor subfamily G member-1 (KLRG)+ IL-2/TE and CD62L+KLRG- IL-15/TM cells with short- and long-term survival following their adoptive transfer into mice. The IL-15/mTORC1Weak signal activates the forkhead box-O-1 (FOXO1), T cell factor-1 (TCF1) and Eomes transcriptional network and the metabolic adenosine monophosphate-activated protein kinase-α-1 (AMPKα1), Unc-51-like autophagy-activating kinase-1 (ULK1) and autophagy-related gene-7 (ATG7) axis, increasing the expression of mitochondrial regulators aquaporin-9 (AQP9), mitochondrial transcription factor-A (TFAM), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), carnitine palmitoyl transferase-1 (CPT1α), microtubule-associated protein light chain-3 II (LC3II), Complex I and ortic atrophy-1 (OPA1), leading to promoting mitochondrial biogenesis and fatty-acid oxidation (FAO). Interestingly, AMPKα1 deficiency abrogates these downstream responses to IL-15/mTORC1Weak signaling, leading to the upregulation of mTORC1 and hypoxia-inducible factor-1α (HIF-1α), a metabolic switch from FAO to glycolysis and reduced cell survival. Taken together, our data demonstrate that IL-15/mTORC1Weak signaling controls T-cell memory via activation of the transcriptional FOXO1-TCF1-Eomes and metabolic AMPKα1-ULK1-ATG7 pathways, a finding that may greatly impact the development of efficient vaccines and immunotherapies for the treatment of cancer and infectious diseases.


Assuntos
Proteínas Quinases Ativadas por AMP , Autofagia , Diferenciação Celular , Interleucina-15 , Interleucina-2 , Respiração , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagia/fisiologia , Interleucina-15/farmacologia , Mamíferos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Linfócitos T
2.
J Immunol ; 208(1): 155-168, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34872976

RESUMO

CD8+ memory T (TM) cells play a critical role in immune defense against infection. Two common γ-chain family cytokines, IL-2 and IL-7, although triggering the same mTORC1-S6K pathway, distinctly induce effector T (TE) cells and TM cells, respectively, but the underlying mechanism(s) remains elusive. In this study, we generated IL-7R-/and AMPKα1-knockout (KO)/OTI mice. By using genetic and pharmaceutical tools, we demonstrate that IL-7 deficiency represses expression of FOXO1, TCF1, p-AMPKα1 (T172), and p-ULK1 (S555) and abolishes T cell memory differentiation in IL-7R KO T cells after Listeria monocytogenesis rLmOVA infection. IL-2- and IL-7-stimulated strong and weak S6K (IL-2/S6Kstrong and IL-7/S6Kweak) signals control short-lived IL-7R-CD62L-KLRG1+ TE and long-term IL-7R+CD62L+KLRG1- TM cell formations, respectively. To assess underlying molecular pathway(s), we performed flow cytometry, Western blotting, confocal microscopy, and Seahorse assay analyses by using the IL-7/S6Kweak-stimulated TM (IL-7/TM) and the control IL-2/S6Kstrong-stimulated TE (IL-2/TE) cells. We determine that the IL-7/S6Kweak signal activates transcriptional FOXO1, TCF1, and Id3 and metabolic p-AMPKα1, p-ULK1, and ATG7 molecules in IL-7/TM cells. IL-7/TM cells upregulate IL-7R and CD62L, promote mitochondria biogenesis and fatty acid oxidation metabolism, and show long-term cell survival and functional recall responses. Interestingly, AMPKα1 deficiency abolishes the AMPKα1 but maintains the FOXO1 pathway and induces a metabolic switch from fatty acid oxidation to glycolysis in AMPKα1 KO IL-7/TM cells, leading to loss of cell survival and recall responses. Taken together, our data demonstrate that IL-7-stimulated weak strength of mTORC1-S6K signaling controls T cell memory via activation of transcriptional FOXO1-TCF1-Id3 and metabolic AMPKα1-ULK1-ATG7 pathways. This (to our knowledge) novel finding provides a new mechanism for a distinct IL-2/IL-7 stimulation model in T cell memory and greatly impacts vaccine development.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Linfócitos T CD8-Positivos/imunologia , Proteína Forkhead Box O1/metabolismo , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Proteínas Inibidoras de Diferenciação/metabolismo , Interleucina-7/metabolismo , Listeria monocytogenes/fisiologia , Listeriose/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Células T de Memória/imunologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Citotoxicidade Imunológica , Ácidos Graxos/metabolismo , Proteína Forkhead Box O1/genética , Regulação da Expressão Gênica , Glicólise , Fator 1-alfa Nuclear de Hepatócito/genética , Memória Imunológica , Proteínas Inibidoras de Diferenciação/genética , Interleucina-7/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-7/genética , Transdução de Sinais , Desenvolvimento de Vacinas
3.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008461

RESUMO

Energy sensors mTORC1 and AMPKα1 regulate T-cell metabolism and differentiation, while rapamycin (Rapa)-inhibition of mTORC1 (RIM) promotes T-cell memory. However, the underlying pathway and the role of AMPKα1 in Rapa-induced T-cell memory remain elusive. Using genetic and pharmaceutical tools, we demonstrate that Rapa promotes T-cell memory in mice in vivo post Listeria monocytogenesis rLmOVA infection and in vitro transition of effector T (TE) to memory T (TM) cells. IL-2- and IL-2+Rapa-stimulated T [IL-2/T and IL-2(Rapa+)/T] cells, when transferred into mice, differentiate into short-term IL-7R-CD62L-KLRG1+ TE and long-lived IL-7R+CD62L+KLRG1- TM cells, respectively. To assess the underlying pathways, we performed Western blotting, confocal microscopy and Seahorse-assay analyses using IL-2/T and IL-2(Rapa+)/T-cells. We determined that IL-2(Rapa+)/T-cells activate transcription FOXO1, TCF1 and Eomes and metabolic pAMPKα1(T172), pULK1(S555) and ATG7 molecules and promote mitochondrial biogenesis and fatty-acid oxidation (FAO). We found that rapamycin-treated AMPKα-deficient AMPKα1-KO IL-2(Rapa+)/TM cells up-regulate transcription factor HIF-1α and induce a metabolic switch from FAO to glycolysis. Interestingly, despite the rapamycin treatment, AMPKα-deficient TM cells lost their cell survival capacity. Taken together, our data indicate that rapamycin promotes T-cell memory via transcriptional FOXO1-TCF1-Eomes programs and AMPKα1-ULK1-ATG7 metabolic axis, and that AMPKα1 plays a critical role in RIM-induced T-cell memory.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Memória Imunológica/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Sirolimo/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Proteína Forkhead Box O1/metabolismo , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Interleucina-2/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteínas com Domínio T/metabolismo
4.
J Pharm Biomed Anal ; 164: 164-172, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30390558

RESUMO

A simple, reliable flow injection analysis (FIA)-tandem mass spectrometric (MS/MS) method was developed for the determination of gemini surfactants, designated as 16-3-16, 16(Py)-S-2-S-(Py)16 and 16-7N(GK)-16, as gene delivery agents in cellular matrix. 16-3-16 is a conventional gemini surfactant bearing two quaternary amines, linked by a 3-carbon spacer region, 16(Py)-S-2-S-(Py)16 contains two pyridinium head groups, while 16-7N(GK)-16 bears a glycine-lysine di-peptide in the space region. The method was fully validated according to USFDA guidelines. It is the first time that FIA-MS/MS method was developed for the quantification of gemini surfactants, belonging to different structural families. The method was superior to existing liquid chromatographic (LC)-MS/MS methods in terms of sensitivity and time of analysis. Positive electrospray ionization (ESI) in the multiple reaction monitoring (MRM) mode were used on a triple quadrupole-linear ion trap (4000 QTRAP®) instrument. Deuterated internal standards were used to correct for matrix effects and variations in ionization within the ESI source. Isotope dilution standard curves were established in cellular matrix, with a linear range of 10 nM-1000 nM for 16-3-16 and 16(Py)-S-2-S-(Py)16, and 20 nM-2000 nM for 16-7N(GK)-16. The precision, accuracy, recovery and stability were all within the acceptable ranges as per the USFDA guidelines. The method was successfully applied for the quantification of target gemini surfactants in the nuclear fraction of PAM 212 keratinocyte cells treated with nanoparticles, which varied significantly and may explain differences in the observed efficiency and/or toxicity of these gemini surfactants in gene delivery.


Assuntos
Análise de Injeção de Fluxo/métodos , Técnicas de Transferência de Genes , Tensoativos/análise , Espectrometria de Massas em Tandem/métodos , Animais , Linhagem Celular Tumoral , Núcleo Celular/química , Análise de Injeção de Fluxo/instrumentação , Queratinócitos , Camundongos , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/instrumentação
5.
Proc Natl Acad Sci U S A ; 115(32): 8161-8166, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30038027

RESUMO

Copper is an essential cofactor of cytochrome c oxidase (CcO), the terminal enzyme of the mitochondrial respiratory chain. Inherited loss-of-function mutations in several genes encoding proteins required for copper delivery to CcO result in diminished CcO activity and severe pathologic conditions in affected infants. Copper supplementation restores CcO function in patient cells with mutations in two of these genes, COA6 and SCO2, suggesting a potential therapeutic approach. However, direct copper supplementation has not been therapeutically effective in human patients, underscoring the need to identify highly efficient copper transporting pharmacological agents. By using a candidate-based approach, we identified an investigational anticancer drug, elesclomol (ES), that rescues respiratory defects of COA6-deficient yeast cells by increasing mitochondrial copper content and restoring CcO activity. ES also rescues respiratory defects in other yeast mutants of copper metabolism, suggesting a broader applicability. Low nanomolar concentrations of ES reinstate copper-containing subunits of CcO in a zebrafish model of copper deficiency and in a series of copper-deficient mammalian cells, including those derived from a patient with SCO2 mutations. These findings reveal that ES can restore intracellular copper homeostasis by mimicking the function of missing transporters and chaperones of copper, and may have potential in treating human disorders of copper metabolism.


Assuntos
Antineoplásicos/farmacologia , Cobre/deficiência , Drogas em Investigação/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hidrazinas/farmacologia , Mitocôndrias/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Transporte Biológico/genética , Proteínas de Transporte/genética , Linhagem Celular , Coenzimas/deficiência , Cobre/uso terapêutico , Transportador de Cobre 1 , Suplementos Nutricionais , Modelos Animais de Doenças , Reposicionamento de Medicamentos , Drogas em Investigação/uso terapêutico , Fibroblastos , Humanos , Hidrazinas/uso terapêutico , Proteínas de Membrana Transportadoras/genética , Erros Inatos do Metabolismo/tratamento farmacológico , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Chaperonas Moleculares , Mutagênese Sítio-Dirigida , Mutação , Ratos , Saccharomyces cerevisiae , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
6.
Metallomics ; 9(11): 1501-1512, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28952650

RESUMO

All known eukaryotes require copper for their development and survival. The essentiality of copper reflects its widespread use as a co-factor in conserved enzymes that catalyze biochemical reactions critical to energy production, free radical detoxification, collagen deposition, neurotransmitter biosynthesis and iron homeostasis. However, the prioritized use of copper poses an organism with a considerable challenge because, in its unbound form, copper can potentiate free radical production and displace iron-sulphur clusters to disrupt protein function. Protective mechanisms therefore evolved to mitigate this challenge and tightly regulate the acquisition, trafficking and storage of copper such that the metal ion is rarely found in its free form in the cell. Findings by a number of groups over the last ten years emphasize that this regulatory framework forms the foundation of a system that is capable of monitoring copper status and reprioritizing copper usage at both the cellular and systemic levels of organization. While the identification of relevant molecular mechanisms and signaling pathways has proven to be difficult and remains a barrier to our full understanding of the regulation of copper homeostasis, mounting evidence points to the mitochondrion as a pivotal hub in this regard in both healthy and diseased states. Here, we review our current understanding of copper handling pathways contained within the organelle and consider plausible mechanisms that may serve to functionally couple their activity to that of other cellular copper handling machinery to maintain copper homeostasis.


Assuntos
Cobre/metabolismo , Homeostase , Mitocôndrias/metabolismo , Modelos Biológicos , Animais , Transporte Biológico , Proteínas de Transporte de Cátions/metabolismo , Transportador de Cobre 1 , Glutationa/metabolismo , Humanos
7.
Oncotarget ; 7(47): 77865-77877, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27788485

RESUMO

Death Receptor 5 (DR5) is a promising target for cancer therapy due to its ability to selectively induce apoptosis in cancer cells. However, the therapeutic usefulness of DR5 agonists is currently limited by the frequent resistance of malignant tumours to its activation. The identification of molecular mechanisms that determine outcomes of DR5 action is therefore crucial for improving the efficiency of DR5-activating reagents in cancer treatment. Here, we provide evidence that an intrinsically kinase-inactive member of the Eph group of receptor tyrosine kinases, EPHB6, induces marked fragmentation of the mitochondrial network in breast cancer cells of triple-negative origin, lacking expression of the estrogen, progesterone and HER2 receptors. Remarkably, this response renders cancer cells more susceptible to DR5-mediated apoptosis. EPHB6 action in mitochondrial fragmentation proved to depend on its ability to activate the ERK-DRP1 pathway, which increases the frequency of organelle fission. Moreover, DRP1 activity is also essential to the EPHB6-mediated pro-apoptotic response that we observe in the context of DR5 activation. These findings provide the first description of a member of the receptor tyrosine kinase family capable of producing a pro-apoptotic effect through the activation of ERK-DRP1 signaling and subsequent mitochondrial fragmentation. Our observations are of potential practical importance, as they imply that DR5-activating therapeutic approaches should be applied in a more personalized manner to primarily treat EPHB6-expressing tumours. Finally, our findings also suggest that the EPHB6 receptor itself may represent a promising target for cancer therapy, since EPHB6 and DR5 co-activation should support more efficient elimination of cancer cells.


Assuntos
Mitocôndrias/metabolismo , Receptores da Família Eph/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Apoptose/fisiologia , Linhagem Celular Tumoral , Dinaminas , GTP Fosfo-Hidrolases/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais/metabolismo , Neoplasias de Mama Triplo Negativas/enzimologia , Neoplasias de Mama Triplo Negativas/patologia
8.
Cell Biosci ; 6: 30, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27158441

RESUMO

BACKGROUND: Lymphopenia promotes naïve T-cell homeostatic proliferation and adoptive effector T-cell survival and memory formation. IL-7 plays a critical role in homeostatic proliferation, survival and memory formation of naïve T-cells in lymphopenia, and its underlying molecular mechanism has also been well studied. However, the mechanism for adoptively transferred effector T-cell survival and memory formation is not fully understood. Here, we transferred in vitro-activated transgenic OT-I CD8(+) effector T-cells into irradiation (600 rads)-induced lymphopenic C57BL/6, IL-7 knockout (KO) and IL-15 KO mice, and investigated the survival and memory formation of transferred T-cells in lymphopenia. RESULTS: We demonstrate that transferred T-cells prolong their survival and enhance their memory in lymphopenic mice, in a manner that depends on IL-15 signaling, but not IL-7. We determine that in vitro stimulation of naïve or effector T-cells with IL-7 and IL-15 reduces IL-7Rα, and increases and/or maintains IL-15Rß expression, respectively. Consistent with these findings, the expression of IL-7Rα and IL-15Rß is down- and up-regulated, respectively, in vivo on transferred T-cells in an early phase post T-cell transfer in lymphopenia. We further show that in vitro IL-15 restimulation-induced memory T-cells (compared to IL-2 restimulation-induced effector T-cells) and in vivo transferred T-cells in irradiated IL-15-sufficient C57BL/6 mice (compared to IL-15-deficient IL-15 KO mice) have increased mitochondrial content, but less NADH and lower mitochondrial potential (ΔΨm), and demonstrate greater phosphorylation of signal transducers and activators of transcription-5 (STAT5) and Unc-51-like kinase-1 (ULK1), and higher expression of B-cell leukemia/lymphoma-2 (Bcl2) and memory-, autophagy- and mitochondrial biogenesis-related molecules. CONCLUSION: Irradiation-induced lymphopenia promotes effector T-cell survival via IL-15 signaling the STAT5/Bcl2 pathway, enhances T-cell memory formation via IL-15 activation of the forkhead-box family of transcription factor (FOXO)/eomesodermin (Eomes) memory and ULK1/autophagy-related gene-7 (ATG7) autophagy pathways, and via IL-15 activation of the mitochondrial remodeling. Our data thus identify some important targets to consider when designing potent adoptive T-cell immunotherapies of cancer.

9.
Mol Biol Cell ; 24(6): 683-91, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23345593

RESUMO

SCO1 and SCO2 are metallochaperones whose principal function is to add two copper ions to the catalytic core of cytochrome c oxidase (COX). However, affected tissues of SCO1 and SCO2 patients exhibit a combined deficiency in COX activity and total copper content, suggesting additional roles for these proteins in the regulation of cellular copper homeostasis. Here we show that both the redox state of the copper-binding cysteines of SCO1 and the abundance of SCO2 correlate with cellular copper content and that these relationships are perturbed by mutations in SCO1 or SCO2, producing a state of apparent copper overload. The copper deficiency in SCO patient fibroblasts is rescued by knockdown of ATP7A, a trans-Golgi, copper-transporting ATPase that traffics to the plasma membrane during copper overload to promote efflux. To investigate how a signal from SCO1 could be relayed to ATP7A, we examined the abundance and subcellular distribution of several soluble COX assembly factors. We found that COX19 partitions between mitochondria and the cytosol in a copper-dependent manner and that its knockdown partially rescues the copper deficiency in patient cells. These results demonstrate that COX19 is necessary for the transduction of a SCO1-dependent mitochondrial redox signal that regulates ATP7A-mediated cellular copper efflux.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions/genética , Linhagem Celular , Membrana Celular/metabolismo , ATPases Transportadoras de Cobre , Fibroblastos , Humanos , Transporte de Íons , Proteínas de Membrana/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Chaperonas Moleculares , Oxirredução , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais
10.
Antioxid Redox Signal ; 13(9): 1403-16, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20136502

RESUMO

Reversible changes in the redox state of cysteine residues represent an important mechanism with which to regulate protein function. In mitochondria, such redox reactions modulate the localization or activity of a group of proteins, most of which function in poorly defined pathways with essential roles in copper delivery to cytochrome c oxidase (COX) during holoenzyme biogenesis. To date, a total of 8 soluble (COX17, COX19, COX23, PET191, CMC1-4) and 3 integral membrane (COX11, SCO1, SCO2) accessory proteins with cysteine-containing domains that reside within the mitochondrial intermembrane space (IMS) have been identified in yeast, all of which have human orthologues. Compelling evidence from studies of COX17, SCO1, and SCO2 argues that regulation of the redox state of their cysteines is integral to their metallochaperone function. Redox also appears to be crucial to the regulation of a SCO-dependent, mitochondrial signaling pathway that modulates the rate of copper efflux from the cell. Here, I review our understanding of redox-dependent modulation of copper delivery to COX and IMS-localized copper-zinc superoxide dismutase (SOD1) during the maturation of each enzyme, and discuss how this in turn may serve to functionally couple mitochondrial copper handling pathways with those localized elsewhere in the cell to regulate cellular copper homeostasis.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Membranas Intracelulares/metabolismo , Membranas Mitocondriais/metabolismo , Oxirredução , Animais , Proteínas de Transporte/metabolismo , Cobre/metabolismo , Cisteína/metabolismo , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/metabolismo , Leveduras/metabolismo
11.
Circ Res ; 105(7): 705-12, 11 p following 712, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19696408

RESUMO

RATIONALE: Exercise capacity is a physiological characteristic associated with protection from both cardiovascular and all-cause mortality. p53 regulates mitochondrial function and its deletion markedly diminishes exercise capacity, but the underlying genetic mechanism orchestrating this is unclear. Understanding the biology of how p53 improves exercise capacity may provide useful insights for improving both cardiovascular as well as general health. OBJECTIVE: The purpose of this study was to understand the genetic mechanism by which p53 regulates aerobic exercise capacity. METHODS AND RESULTS: Using a variety of physiological, metabolic, and molecular techniques, we further characterized maximum exercise capacity and the effects of training, measured various nonmitochondrial and mitochondrial determinants of exercise capacity, and examined putative regulators of mitochondrial biogenesis. As p53 did not affect baseline cardiac function or inotropic reserve, we focused on the involvement of skeletal muscle and now report a wider role for p53 in modulating skeletal muscle mitochondrial function. p53 interacts with Mitochondrial Transcription Factor A (TFAM), a nuclear-encoded gene important for mitochondrial DNA (mtDNA) transcription and maintenance, and regulates mtDNA content. The increased mtDNA in p53(+/+) compared to p53(-/-) mice was more marked in aerobic versus glycolytic skeletal muscle groups with no significant changes in cardiac tissue. These in vivo observations were further supported by in vitro studies showing overexpression of p53 in mouse myoblasts increases both TFAM and mtDNA levels whereas depletion of TFAM by shRNA decreases mtDNA content. CONCLUSIONS: Our current findings indicate that p53 promotes aerobic metabolism and exercise capacity by using different mitochondrial genes and mechanisms in a tissue-specific manner.


Assuntos
DNA Mitocondrial/metabolismo , Tolerância ao Exercício , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Mioblastos Esqueléticos/metabolismo , Esforço Físico , Proteína Supressora de Tumor p53/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Tolerância ao Exercício/genética , Glicólise/genética , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular , Força Muscular , Mutação , Miocárdio/metabolismo , Consumo de Oxigênio , Interferência de RNA , Elementos de Resposta , Natação , Fatores de Tempo , Transdução Genética , Transfecção , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Regulação para Cima , Função Ventricular Esquerda
12.
Methods Mol Biol ; 554: 143-62, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19513673

RESUMO

The bulk of ATP consumed by various cellular processes in higher eukaryotes is normally produced by five multimeric protein complexes (I-V) embedded within the inner mitochondrial membrane, in a process known as oxidative phosphorylation (OXPHOS). Maintenance of energy homeostasis under most physiological conditions is therefore contingent upon the ability of OXPHOS to meet cellular changes in bioenergetic demand, with a chronic failure to do so being a frequent cause of human disease. With the exception of Complex II, the structural subunits of OXPHOS complexes are encoded by both the nuclear and the mitochondrial genomes. The physical separation of the two genomes necessitates that the expression of the 13 mitochondrially encoded polypeptides be co-ordinated with that of relevant nuclear-encoded partners in order to assemble functional holoenzyme complexes. Complex biogenesis is a highly ordered process, and several nuclear-encoded factors that function at distinct stages in the assembly of individual OXPHOS complexes have been identified.


Assuntos
Holoenzimas/metabolismo , Proteínas Mitocondriais/metabolismo , Complexos Multienzimáticos/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação Oxidativa , Animais , Western Blotting , Células Cultivadas , Fibroblastos/enzimologia , Humanos , Camundongos , Mitocôndrias/enzimologia , Proteínas Mitocondriais/isolamento & purificação , Complexos Multienzimáticos/isolamento & purificação , Proteínas Nucleares/isolamento & purificação , Biossíntese de Proteínas , Subunidades Proteicas , Medula Espinal/citologia , Medula Espinal/enzimologia
13.
Hum Mol Genet ; 18(12): 2230-40, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19336478

RESUMO

Human SCO1 and SCO2 code for essential metallochaperones with ill-defined functions in the biogenesis of the CuA site of cytochrome c oxidase subunit II (CO II). Here, we have used patient cell lines to investigate the specific roles of each SCO protein in this pathway. By pulse-labeling mitochondrial translation products, we demonstrate that the synthesis of CO II is reduced in SCO2, but not in SCO1, cells. Despite this biosynthetic defect, newly synthesized CO II is more stable in SCO2 cells than in control cells. RNAi-mediated knockdown of mutant SCO2 abolishes CO II labeling in the translation assay, whereas knockdown of mutant SCO1 does not affect CO II synthesis. These results indicate that SCO2 acts upstream of SCO1, and that it is indispensable for CO II synthesis. The subsequent maturation of CO II is contingent upon the formation of a complex that includes both SCO proteins, each with a functional CxxxC copper-coordinating motif. In control cells, the cysteines in this motif in SCO1 exist as a mixed population comprised of oxidized disulphides and reduced thiols; however, the relative ratio of oxidized to reduced cysteines in SCO1 is perturbed in cells from both SCO backgrounds. Overexpression of wild-type SCO2, or knockdown of mutant SCO2, in SCO2 cells alters the ratio of oxidized to reduced cysteines in SCO1, suggesting that SCO2 acts as a thiol-disulphide oxidoreductase to oxidize the copper-coordinating cysteines in SCO1 during CO II maturation. Based on these data we present a model in which each SCO protein fulfills distinct, stage-specific functions during CO II synthesis and CuA site maturation.


Assuntos
Proteínas de Transporte/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Proteínas de Transporte/genética , Células Cultivadas , Complexo IV da Cadeia de Transporte de Elétrons/genética , Regulação Enzimológica da Expressão Gênica , Humanos , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Chaperonas Moleculares , Mutação , Oxirredução , Proteína Dissulfeto Redutase (Glutationa)/genética
14.
J Biol Chem ; 280(40): 34113-22, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16091356

RESUMO

The function of human Sco1 and Sco2 is shown to be dependent on copper ion binding. Expression of soluble domains of human Sco1 and Sco2 either in bacteria or the yeast cytoplasm resulted in the recovery of copper-containing proteins. The metallation of human Sco1, but not Sco2, when expressed in the yeast cytoplasm is dependent on the co-expression of human Cox17. Two conserved cysteines and a histidyl residue, known to be important for both copper binding and in vivo function in yeast Sco1, are also critical for in vivo function of human Sco1 and Sco2. Human and yeast Sco proteins can bind either a single Cu(I) or Cu(II) ion. The Cu(II) site yields S-Cu(II) charge transfer transitions that are not bleached by weak reductants or chelators. The Cu(I) site exhibits trigonal geometry, whereas the Cu(II) site resembles a type II Cu(II) site with a higher coordination number. To identify additional potential ligands for the Cu(II) site, a series of mutant proteins with substitutions in conserved residues in the vicinity of the Cu(I) site were examined. Mutation of several conserved carboxylates did not alter either in vivo function or the presence of the Cu(II) chromophore. In contrast, replacement of Asp238 in human or yeast Sco1 abrogated the Cu(II) visible transitions and in yeast Sco1 attenuated Cu(II), but not Cu(I), binding. Both the mutant yeast and human proteins were nonfunctional, suggesting the importance of this aspartate for normal function. Taken together, these data suggest that both Cu(I) and Cu(II) binding are critical for normal Sco function.


Assuntos
Cobre/metabolismo , Proteínas de Membrana/fisiologia , Proteínas/fisiologia , Ácido Aspártico/fisiologia , Sítios de Ligação , Proteínas de Transporte , Linhagem Celular , Humanos , Íons , Proteínas Mitocondriais , Chaperonas Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Leveduras/genética
15.
Hum Mol Genet ; 12(20): 2693-702, 2003 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12928484

RESUMO

Deficiencies in the activity of cytochrome c oxidase (COX) are an important cause of autosomal recessive respiratory chain disorders. Patients with isolated COX deficiency are clinically and genetically heterogeneous, and mutations in several different assembly factors have been found to cause specific clinical phenotypes. Two of the most common clinical presentations, Leigh Syndrome and hypertrophic cardiomyopathy, have so far only been associated with mutations in SURF1 or SCO2 and COX15, respectively. Here we show that expression of COX10 from a retroviral vector complements the COX deficiency in a patient with anemia and Leigh Syndrome, and in a patient with anemia, sensorineural deafness and fatal infantile hypertrophic cardiomyopathy. A partial rescue was also obtained following microcell-mediated transfer of mouse chromosomes into patient fibroblasts. COX10 functions in the first step of the mitochondrial heme A biosynthetic pathway, catalyzing the conversion of protoheme (heme B) to heme O via the farnesylation of a vinyl group at position C2. Heme A content was reduced in mitochondria from patient muscle and fibroblasts in proportion to the reduction in COX enzyme activity and the amount of fully assembled enzyme. Mutation analysis of COX10 identified four different missense alleles, predicting amino acid substitutions at evolutionarily conserved residues. A topological model places these residues in regions of the protein shown to have important catalytic functions by mutation analysis of a prokaryotic ortholog. Mutations in COX10 have previously been reported in a single family with tubulopathy and leukodystrophy. This study shows that mutations in this gene can cause nearly the full range of clinical phenotypes associated with early onset isolated COX deficiency.


Assuntos
Alquil e Aril Transferases/genética , Heme/análogos & derivados , Heme/genética , Proteínas de Membrana/genética , Mitocôndrias/genética , Mutação , Sequência de Aminoácidos , Animais , Cardiomiopatias/genética , Catálise , Cromatografia Líquida de Alta Pressão , Cromossomos/ultraestrutura , Clonagem Molecular , Análise Mutacional de DNA , Complexo IV da Cadeia de Transporte de Elétrons , Eletroforese em Gel de Poliacrilamida , Éxons , Fibroblastos/metabolismo , Teste de Complementação Genética , Genoma , Heme/química , Humanos , Camundongos , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Fenótipo , Retroviridae/genética
16.
Bioessays ; 25(6): 538-41, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12766943

RESUMO

A recent paper by Nisoli et al. [1] provides the first evidence that elevated levels of nitric oxide (NO) stimulate mitochondrial biogenesis in a number of cell lines via a soluble guanylate-cyclase-dependent signaling pathway that activates PGC1alpha (peroxisome proliferator-activated receptor gamma coactivator-1alpha), a master regulator of mitochondrial content. These results raise intriguing possibilities for a role of NO in modulating mitochondrial content in response to physiological stimuli such as exercise or cold exposure. However, whether this signaling cascade represents a widespread mechanism by which mammalian tissues regulate mitochondrial content, and how it might integrate with other pathways that control PGC1alpha expression, remain unclear.


Assuntos
Mitocôndrias/fisiologia , Óxido Nítrico/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Humanos , Mitocôndrias/metabolismo , Modelos Biológicos , Isoformas de Proteínas , Transdução de Sinais , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA