Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Med Genet A ; 170A(4): 958-66, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26822784

RESUMO

Diagnostic exome sequencing has recently emerged as an invaluable tool in determining the molecular etiology of cases involving dysmorphism and developmental delay that are otherwise unexplained by more traditional methods of genetic testing. Our patient was large for gestational age at 35 weeks, delivered to a 27-year-old primigravid Caucasian whose pregnancy was complicated by preeclampsia. Neonatal period was notable for hypoglycemia, apnea, bradycardia, hyperbilirubinemia, grade I intraventricular hemorrhage, subdural hematoma, laryngomalacia, hypotonia, and feeding difficulties. The patient had numerous minor dysmorphic features. At three and a half years of age, she has global developmental delays and nystagmus, and is being followed for a mediastinal neuroblastoma that is currently in remission. Karyotype and oligo-microarray were normal. Whole-exome, next generation sequencing (NGS) coupled to bioinformatic filtering and expert medical review at Ambry Genetics revealed 14 mutations in 9 genes, and these genes underwent medical review. A heterozygous de novo frameshift mutation, c.2737_2738dupGA p.D913Efs*59, in which two nucleotides are duplicated in exon 17 of the CLTC gene, results in substitution of glutamic acid for aspartic acid at position 913 of the protein, as well as a frame shift that results in a premature termination codon situated 58 amino acids downstream. Clathrin Heavy Chain 1 (CHC1) has been shown to play an important role in the brain for vesicle recycling and neurotransmitter release at pre-synaptic nerve terminals. There is also evidence implicating it in the proper development of the placenta during the early stages of pregnancy. The CLTC alteration identified herein is likely to provide an explanation for the patient's adverse phenotype. Ongoing functional studies will further define the impact of this alteration on CHC1 function and consequently, human disease.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Cadeias Pesadas de Clatrina/genética , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Estudos de Associação Genética , Pré-Escolar , Segregação de Cromossomos , Biologia Computacional , Fácies , Feminino , Duplicação Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Padrões de Herança , Masculino
2.
Hum Mol Genet ; 23(23): 6345-55, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25008111

RESUMO

The p.N478D missense mutation in human mitochondrial poly(A) polymerase (mtPAP) has previously been implicated in a form of spastic ataxia with optic atrophy. In this study, we have investigated fibroblast cell lines established from family members. The homozygous mutation resulted in the loss of polyadenylation of all mitochondrial transcripts assessed; however, oligoadenylation was retained. Interestingly, this had differential effects on transcript stability that were dependent on the particular species of transcript. These changes were accompanied by a severe loss of oxidative phosphorylation complexes I and IV, and perturbation of de novo mitochondrial protein synthesis. Decreases in transcript polyadenylation and in respiratory chain complexes were effectively rescued by overexpression of wild-type mtPAP. Both mutated and wild-type mtPAP localized to the mitochondrial RNA-processing granules thereby eliminating mislocalization as a cause of defective polyadenylation. In vitro polyadenylation assays revealed severely compromised activity by the mutated protein, which generated only short oligo(A) extensions on RNA substrates, irrespective of RNA secondary structure. The addition of LRPPRC/SLIRP, a mitochondrial RNA-binding complex, enhanced activity of the wild-type mtPAP resulting in increased overall tail length. The LRPPRC/SLIRP effect although present was less marked with mutated mtPAP, independent of RNA secondary structure. We conclude that (i) the polymerase activity of mtPAP can be modulated by the presence of LRPPRC/SLIRP, (ii) N478D mtPAP mutation decreases polymerase activity and (iii) the alteration in poly(A) length is sufficient to cause dysregulation of post-transcriptional expression and the pathogenic lack of respiratory chain complexes.


Assuntos
Proteínas Mitocondriais/metabolismo , Polinucleotídeo Adenililtransferase/metabolismo , RNA Mensageiro/metabolismo , Fibroblastos/metabolismo , Expressão Gênica , Humanos , Proteínas Mitocondriais/genética , Mutação , Proteínas de Neoplasias/metabolismo , Fosforilação Oxidativa , Polinucleotídeo Adenililtransferase/genética , Cultura Primária de Células , Processamento Pós-Transcricional do RNA , RNA Mitocondrial , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA