Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 15(11): e17570, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37819151

RESUMO

The crosstalk between cancer and stromal cells plays a critical role in tumor progression. Syntenin is a small scaffold protein involved in the regulation of intercellular communication that is emerging as a target for cancer therapy. Here, we show that certain aggressive forms of acute myeloid leukemia (AML) reduce the expression of syntenin in bone marrow stromal cells (BMSC). Stromal syntenin deficiency, in turn, generates a pro-tumoral microenvironment. From serial transplantations in mice and co-culture experiments, we conclude that syntenin-deficient BMSC stimulate AML aggressiveness by promoting AML cell survival and protein synthesis. This pro-tumoral activity is supported by increased expression of endoglin, a classical marker of BMSC, which in trans stimulates AML translational activity. In short, our study reveals a vicious signaling loop potentially at the heart of AML-stroma crosstalk and unsuspected tumor-suppressive effects of syntenin that need to be considered during systemic targeting of syntenin in cancer therapy.


Assuntos
Leucemia Mieloide Aguda , Sinteninas , Animais , Camundongos , Sinteninas/genética , Sinteninas/metabolismo , Regulação para Baixo , Leucemia Mieloide Aguda/metabolismo , Transdução de Sinais , Células Estromais/metabolismo , Microambiente Tumoral
2.
J Med Chem ; 66(7): 4633-4658, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36939673

RESUMO

The rapid identification of early hits by fragment-based approaches and subsequent hit-to-lead optimization represents a challenge for drug discovery. To address this challenge, we created a strategy called "DOTS" that combines molecular dynamic simulations, computer-based library design (chemoDOTS) with encoded medicinal chemistry reactions, constrained docking, and automated compound evaluation. To validate its utility, we applied our DOTS strategy to the challenging target syntenin, a PDZ domain containing protein and oncology target. Herein, we describe the creation of a "best-in-class" sub-micromolar small molecule inhibitor for the second PDZ domain of syntenin validated in cancer cell assays. Key to the success of our DOTS approach was the integration of protein conformational sampling during hit identification stage and the synthetic feasibility ranking of the designed compounds throughout the optimization process. This approach can be broadly applied to other protein targets with known 3D structures to rapidly identify and optimize compounds as chemical probes and therapeutic candidates.


Assuntos
Domínios PDZ , Sinteninas , Descoberta de Drogas , Sindecanas/metabolismo
3.
Eur J Med Chem ; 223: 113601, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34153575

RESUMO

Syntenin stimulates exosome production and its expression is upregulated in many cancers and implicated in the spread of metastatic tumor. These effects are supported by syntenin PDZ domains interacting with syndecans. We therefore aimed to develop, through a fragment-based drug design approach, novel inhibitors targeting syntenin-syndecan interactions. We describe here the optimization of a fragment, 'hit' C58, identified by in vitro screening of a PDZ-focused fragment library, which binds specifically to the syntenin-PDZ2 domain at the same binding site as the syndecan-2 peptide. X-ray crystallographic structures and computational docking were used to guide our optimization process and lead to compounds 45 and 57 (IC50 = 33 µM and 47 µM; respectively), two representatives of syntenin-syndecan interactions inhibitors, that selectively affect the syntenin-exosome release. These findings demonstrate that it is possible to identify small molecules inhibiting syntenin-syndecan interaction and exosome release that may be useful for cancer therapy.


Assuntos
Aminoácidos/farmacologia , Antineoplásicos/farmacologia , Derivados de Benzeno/farmacologia , Exossomos/metabolismo , Sinteninas/metabolismo , Aminoácidos/síntese química , Aminoácidos/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Derivados de Benzeno/síntese química , Derivados de Benzeno/metabolismo , Desenho de Fármacos , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Domínios PDZ , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Sindecanas/metabolismo , Sinteninas/química
4.
J Med Chem ; 64(3): 1423-1434, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33502198

RESUMO

Despite the recent advances in cancer therapeutics, highly aggressive cancer forms, such as glioblastoma (GBM), still have very low survival rates. The intracellular scaffold protein syntenin, comprising two postsynaptic density protein-95/discs-large/zona occludens-1 (PDZ) domains, has emerged as a novel therapeutic target in highly malignant phenotypes including GBM. Here, we report the development of a novel, highly potent, and metabolically stable peptide inhibitor of syntenin, KSL-128114, which binds the PDZ1 domain of syntenin with nanomolar affinity. KSL-128114 is resistant toward degradation in human plasma and mouse hepatic microsomes and displays a global PDZ domain selectivity for syntenin. An X-ray crystal structure reveals that KSL-128114 interacts with syntenin PDZ1 in an extended noncanonical binding mode. Treatment with KSL-128114 shows an inhibitory effect on primary GBM cell viability and significantly extends survival time in a patient-derived xenograft mouse model. Thus, KSL-128114 is a novel promising candidate with therapeutic potential for highly aggressive tumors, such as GBM.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Peptídeos/química , Peptídeos/farmacologia , Sinteninas/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Camundongos , Microssomos/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Difração de Raios X , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Front Immunol ; 12: 730970, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975835

RESUMO

Natural Killer (NK) cells are potent anti-leukemic immune effectors. However, they display multiple defects in acute myeloid leukemia (AML) patients leading to reduced anti-tumor potential. Our limited understanding of the mechanisms underlying these defects hampers the development of strategies to restore NK cell potential. Here, we have used a mouse model of AML to gain insight into these mechanisms. We found that leukemia progression resulted in NK cell maturation defects and functional alterations. Next, we assessed NK cell cytokine signaling governing their behavior. We showed that NK cells from leukemic mice exhibit constitutive IL-15/mTOR signaling and type I IFN signaling. However, these cells failed to respond to IL-15 stimulation in vitro as illustrated by reduced activation of the mTOR pathway. Moreover, our data suggest that mTOR-mediated metabolic responses were reduced in NK cells from AML-bearing mice. Noteworthy, the reduction of mTOR-mediated activation of NK cells during AML development partially rescued NK cell metabolic and functional defects. Altogether, our data strongly suggest that NK cells from leukemic mice are metabolically and functionally exhausted as a result of a chronic cytokine activation, at least partially IL-15/mTOR signaling. NK cells from AML patients also displayed reduced IL-2/15Rß expression and showed cues of reduced metabolic response to IL-15 stimulation in vitro, suggesting that a similar mechanism might occur in AML patients. Our study pinpoints the dysregulation of cytokine stimulation pathways as a new mechanism leading to NK cell defects in AML.


Assuntos
Interleucina-15/farmacologia , Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/sangue , Leucemia Mieloide Aguda/imunologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Interleucina-15/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/genética
6.
Proc Natl Acad Sci U S A ; 117(11): 5913-5922, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32108028

RESUMO

Exosomes, extracellular vesicles (EVs) of endosomal origin, emerge as master regulators of cell-to-cell signaling in physiology and disease. Exosomes are highly enriched in tetraspanins (TSPNs) and syndecans (SDCs), the latter occurring mainly in proteolytically cleaved form, as membrane-spanning C-terminal fragments of the proteins. While both protein families are membrane scaffolds appreciated for their role in exosome formation, composition, and activity, we currently ignore whether these work together to control exosome biology. Here we show that TSPN6, a poorly characterized tetraspanin, acts as a negative regulator of exosome release, supporting the lysosomal degradation of SDC4 and syntenin. We demonstrate that TSPN6 tightly associates with SDC4, the SDC4-TSPN6 association dictating the association of TSPN6 with syntenin and the TSPN6-dependent lysosomal degradation of SDC4-syntenin. TSPN6 also inhibits the shedding of the SDC4 ectodomain, mimicking the effects of matrix metalloproteinase inhibitors. Taken together, our data identify TSPN6 as a regulator of the trafficking and processing of SDC4 and highlight an important physical and functional interconnection between these membrane scaffolds for the production of exosomes. These findings clarify our understanding of the molecular determinants governing EV formation and have potentially broad impact for EV-related biomedicine.


Assuntos
Exossomos/metabolismo , Sinteninas/metabolismo , Tetraspaninas/metabolismo , Comunicação Celular , Exossomos/genética , Vesículas Extracelulares/metabolismo , Humanos , Lisossomos/metabolismo , Células MCF-7 , Metaloproteinases da Matriz/metabolismo , Transporte Proteico , Sindecana-4/metabolismo , Sindecanas/metabolismo
7.
Cancers (Basel) ; 12(1)2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906151

RESUMO

Autotaxin (ATX) is an exoenzyme which, due to its unique lysophospholipase D activity, is responsible for the synthesis of lysophosphatidic acid (LPA). ATX activity is responsible for the concentration of LPA in the blood. ATX expression is increased in various types of cancers, including breast cancer, where it promotes metastasis. The expression of ATX is also remarkably increased under inflammatory conditions, particularly in the osteoarticular compartment, where it controls bone erosion. Biological actions of ATX are mediated by LPA. However, the phosphate head group of LPA is highly sensitive to degradation by the action of lipid phosphate phosphatases, resulting in LPA inactivation. This suggests that for efficient action, LPA requires protection, which is potentially achieved through docking to a carrier protein. Interestingly, recent reports suggest that ATX might act as a docking molecule for LPA and also support the concept that binding of ATX to the cell surface through its interaction with adhesive molecules (integrins, heparan sulfate proteoglycans) could facilitate a rapid route of delivering active LPA to its cell surface receptors. This new mechanism offers a new vision of how ATX/LPA works in cancer metastasis and inflammatory bone diseases, paving the way for new therapeutic developments.

8.
Oncotarget ; 9(69): 33170-33185, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30237860

RESUMO

Autotaxin (ATX) promotes cancer cell metastasis through the production of lysophosphatidic acid (LPA). ATX binds to αvß3 integrins controlling metastasis of breast cancer cells. We screened a series of cancer cell lines derived from diverse human and mouse solid tumors for the capacity of binding to ATX and found only a modest correlation with their level of αvß3 integrin expression. These results strongly suggested the existence of another cell surface ATX-interacting factor. Indeed, ATXα has been shown to bind heparan-sulfate chains because of its unique polybasic insertion sequence, although the biological significance is unknown. We demonstrated here, that among all cell surface heparan-sulfate proteoglycans, syndecan-4 (SDC4) was essential for cancer cell interaction with ATXß but was restrained by heparan-sulfate chains. In addition, exogenous ATXß-induced MG63 osteosarcoma cell proliferation required physical interaction of ATXß with the cell surface via an SDC4-dependent mechanism. In a preclininal mouse model, targeting SDC4 on 4T1 mouse breast cancer cells inhibited early bone metastasis formation. Furthermore, SDC4-prometastatic activity was totally abolished in absence of ATX expression. In conclusion our results determined that ATX and SDC4 are engaged in a reciprocal collaboration for cancer cell metastasis providing the rational for the development of novel anti-metastasis therapies.

9.
Br J Pharmacol ; 175(15): 3100-3110, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29777586

RESUMO

Platelets play a crucial role in the survival of metastatic cells in the blood circulation. The interaction of tumour cells with platelets leads to the production of plethoric factors among which our review will focus on lysophosphatidic acid (LPA), because platelets are the highest producers of this bioactive lysophospholipid in the organism. LPA promotes platelet aggregation, and blocking platelet function decreases LPA signalling and leads to inhibition of breast cancer cell metastasis. Autotaxin (ATX), a lysophospholipase D responsible for the basal concentration of LPA in blood, was detected in platelet α-granules. Functionally, active ATX is eventually released following tumour cell-induced platelet aggregation, thereby promoting metastasis. Megakaryocytes do not express ATX but respond to LPA stimulation. Whether LPA-primed megakaryocytes contribute to the recently reported negative action of megakaryocytes on cancer metastasis is not yet known. However, an understanding of the ATX/LPA signalling pathways in platelets, cancer cells and megakaryocytes opens up new approaches for fighting cancer metastasis.


Assuntos
Plaquetas/fisiologia , Lisofosfolipídeos/metabolismo , Metástase Neoplásica , Diester Fosfórico Hidrolases/metabolismo , Animais , Humanos , Megacariócitos/fisiologia , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais
10.
J Bone Oncol ; 5(3): 109-111, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27761368

RESUMO

Blood platelets have been known for more than a century as important partners for successful metastatic dissemination of solid tumors. Cancer cell-induced platelet activation is a key event responsible for prometastatic activity of platelets. Blocking platelet aggregation inhibits the progression of skeletal metastases through mechanisms that are not fully understood. The establishment and progression of bone metastases are strongly influenced by the bone remodeling process. Growth factors and cytokines released upon platelet activation may contribute to both skeletal tumor growth and osteolytic lesions. Megakaryocytes are platelet precursors located in the bone marrow that control bone mass through direct stimulation of osteoblast functions and indirect inhibition of osteoclast activities. Considering growing evidence for their role in the metastatic cascade, platelets and/or megakaryocytes may provide new therapeutic opportunities to help limit bone metastases.

11.
Blood ; 128(1): 24-31, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27154188

RESUMO

Platelets are essential components of hemostasis. Due to a plethora of factors released on activation, platelet functions are also connected to tumor growth, notably by acting on angiogenesis. It is now well recognized that major roles of platelets in the poor outcome of cancer patients occurs during hematogenous dissemination of cancer cells. In this review, we describe recent insights into the molecular mechanisms supporting the prometastatic activity of platelets. Platelets have been shown to promote survival of circulating tumor cells (CTCs) in the bloodstream by conferring resistance to the shear stress and attack from natural killer cells. Recently, platelets were found to promote and/or maintain the state of epithelial to mesenchymal transition on CTCs through platelet secretion of transforming growth factor ß in response to CTC activation. At a later stage in the metastatic process, platelets promote extravasation and establishment of metastatic cells in distant organs as observed in bone. This particular environment is also the site of hematopoiesis, megakaryocytopoiesis, and platelet production. Increasing the number of megakaryocytes (MKs) in the bone marrow results in a high bone mass phenotype and inhibits skeletal metastasis formation of prostate cancer cells. As a result of their specific location in vascular niches in the bone marrow, MK activity might contribute to the "seed and soil" suitability between CTCs and bone. In conclusion, recent findings have made a great advance in our knowledge on how platelets contribute to the metastatic dissemination of cancer cells and that may support the development of new antimetastasis therapies.


Assuntos
Plaquetas/metabolismo , Neoplasias Ósseas/metabolismo , Transição Epitelial-Mesenquimal , Megacariócitos/metabolismo , Células Neoplásicas Circulantes/metabolismo , Animais , Plaquetas/patologia , Neoplasias Ósseas/patologia , Neoplasias Ósseas/terapia , Humanos , Megacariócitos/patologia , Células Neoplásicas Circulantes/patologia
12.
Oncotarget ; 6(24): 20604-20, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26098771

RESUMO

Lysophosphatidic acid (LPA) is a bioactive lipid promoting cancer metastasis. LPA activates a series of six G protein-coupled receptors (LPA1-6). While blockage of LPA1in vivo inhibits breast carcinoma metastasis, down-stream genes mediating LPA-induced metastasis have not been yet identified. Herein we showed by analyzing publicly available expression data from 1488 human primary breast tumors that the gene encoding the transcription factor ZEB1 was the most correlated with LPAR1 encoding LPA1. This correlation was most prominent in basal primary breast carcinomas and restricted to cell lines of basal subtypes. Functional experiments in three different basal cell lines revealed that LPA-induced ZEB1 expression was regulated by the LPA1/Phosphatidylinositol-3-Kinase (Pi3K) axis. DNA microarray and real-time PCR analyses further demonstrated that LPA up-regulated the oncomiR miR-21 through an LPA1/Pi3K/ZEB1-dependent mechanism. Strikingly, treatment with a mirVana miR-21 inhibitor, or silencing LPA1 or ZEB1 completely blocked LPA-induced cell migration in vitro, invasion and tumor cell bone colonization in vivo, which can be restored with a mirVana miR-21 mimic. Finally, high LPAR1 expression in basal breast tumors predicted worse lung-metastasis-free survival. Collectively, our results elucidate a new molecular pathway driving LPA-induced metastasis, thus underscoring the therapeutic potential of targeting LPA1 in patients with basal breast carcinomas.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Proteínas de Homeodomínio/genética , Humanos , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Metástase Neoplásica , Receptores de Ácidos Lisofosfatídicos/genética , Transdução de Sinais , Fatores de Transcrição/genética , Transfecção , Homeobox 1 de Ligação a E-box em Dedo de Zinco
13.
Exp Cell Res ; 333(2): 183-189, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25460336

RESUMO

Lysophosphatidic acid (LPA) is a simple lipid with a single fatty acyl chain linked to a glycerophosphate backbone. Despite the simplicity of its structure but owing to its interactions with a series of at least six G protein-coupled receptors (LPA1-6), LPA exerts pleiotropic bioactivities including stimulation of proliferation, migration and survival of many cell types. Autotaxin (ATX) is a unique enzyme with a lysophospholipase D (lysoPLD) activity that is responsible for the levels of LPA in the blood circulation. Both LPA receptor family members and ATX/LysoPLD are aberrantly expressed in many human cancers. This review will present the more striking as well as novel experimental evidences using cell lines, cancer mouse models and transgenic animals identifying the roles for ATX and LPA receptors in cancer progression, tumor cell invasion and metastasis.


Assuntos
Neoplasias Ósseas/metabolismo , Carcinogênese/metabolismo , Lisofosfolipídeos/fisiologia , Diester Fosfórico Hidrolases/fisiologia , Animais , Neoplasias Ósseas/secundário , Humanos , Neovascularização Patológica/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais
14.
Blood ; 124(20): 3141-50, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25277122

RESUMO

Autotaxin (ATX), through its lysophospholipase D activity controls physiological levels of lysophosphatidic acid (LPA) in blood. ATX is overexpressed in multiple types of cancers, and together with LPA generated during platelet activation promotes skeletal metastasis of breast cancer. However, the pathophysiological sequelae of regulated interactions between circulating LPA, ATX, and platelets remain undefined in cancer. In this study, we show that ATX is stored in α-granules of resting human platelets and released upon tumor cell-induced platelet aggregation, leading to the production of LPA. Our in vitro and in vivo experiments using human breast cancer cells that do not express ATX (MDA-MB-231 and MDA-B02) demonstrate that nontumoral ATX controls the early stage of bone colonization by tumor cells. Moreover, expression of a dominant negative integrin αvß3-Δ744 or treatment with the anti-human αvß3 monoclonal antibody LM609, completely abolished binding of ATX to tumor cells, demonstrating the requirement of a fully active integrin αvß3 in this process. The present results establish a new mechanism for platelet contribution to LPA-dependent metastasis of breast cancer cells, and demonstrate the therapeutic potential of disrupting the binding of nontumor-derived ATX with the tumor cells for the prevention of metastasis.


Assuntos
Plaquetas/imunologia , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Integrina alfaVbeta3/imunologia , Diester Fosfórico Hidrolases/imunologia , Animais , Plaquetas/patologia , Neoplasias Ósseas/sangue , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/patologia , Osso e Ossos/imunologia , Osso e Ossos/patologia , Mama/imunologia , Mama/patologia , Neoplasias da Mama/sangue , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Lisofosfolipídeos/imunologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/imunologia , Invasividade Neoplásica/patologia , Ativação Plaquetária
15.
PLoS One ; 9(5): e97771, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24828490

RESUMO

Lysophosphatidic acid (LPA) is a natural bioactive lipid with growth factor-like functions due to activation of a series of six G protein-coupled receptors (LPA1₋6). LPA receptor type 1 (LPA1) signaling influences the pathophysiology of many diseases including cancer, obesity, rheumatoid arthritis, as well as lung, liver and kidney fibrosis. Therefore, LPA1 is an attractive therapeutic target. However, most mammalian cells co-express multiple LPA receptors whose co-activation impairs the validation of target inhibition in patients because of missing LPA receptor-specific biomarkers. LPA1 is known to induce IL-6 and IL-8 secretion, as also do LPA2 and LPA3. In this work, we first determined the LPA induced early-gene expression profile in three unrelated human cancer cell lines expressing different patterns of LPA receptors (PC3: LPA1,2,6; MDA-MB-231: LPA1,2; MCF-7: LPA2,6). Among the set of genes upregulated by LPA only in LPA1-expressing cells, we validated by QPCR and ELISA that upregulation of heparin-binding EGF-like growth factor (HB-EGF) was inhibited by LPA1-3 antagonists (Ki16425, Debio0719). Upregulation and downregulation of HB-EGF mRNA was confirmed in vitro in human MDA-B02 breast cancer cells stably overexpressing LPA1 (MDA-B02/LPA1) and downregulated for LPA1 (MDA-B02/shLPA1), respectively. At a clinical level, we quantified the expression of LPA1 and HB-EGF by QPCR in primary tumors of a cohort of 234 breast cancer patients and found a significantly higher expression of HB-EGF in breast tumors expressing high levels of LPA1. We also generated human xenograph prostate tumors in mice injected with PC3 cells and found that a five-day treatment with Ki16425 significantly decreased both HB-EGF mRNA expression at the primary tumor site and circulating human HB-EGF concentrations in serum. All together our results demonstrate that HB-EGF is a new and relevant biomarker with potentially high value in quantifying LPA1 activation state in patients receiving anti-LPA1 therapies.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Neoplasias da Próstata/tratamento farmacológico , RNA Mensageiro/genética , Receptores de Ácidos Lisofosfatídicos/genética , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Humanos , Isoxazóis/farmacologia , Lisofosfolipídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Propionatos/farmacologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/metabolismo , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Biol Chem ; 289(10): 6551-6564, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24429286

RESUMO

Lysophosphatidic acid (LPA) is a natural bioactive lipid that acts through six different G protein-coupled receptors (LPA1-6) with pleiotropic activities on multiple cell types. We have previously demonstrated that LPA is necessary for successful in vitro osteoclastogenesis of bone marrow cells. Bone cells controlling bone remodeling (i.e. osteoblasts, osteoclasts, and osteocytes) express LPA1, but delineating the role of this receptor in bone remodeling is still pending. Despite Lpar1(-/-) mice displaying a low bone mass phenotype, we demonstrated that bone marrow cell-induced osteoclastogenesis was reduced in Lpar1(-/-) mice but not in Lpar2(-/-) and Lpar3(-/-) animals. Expression of LPA1 was up-regulated during osteoclastogenesis, and LPA1 antagonists (Ki16425, Debio0719, and VPC12249) inhibited osteoclast differentiation. Blocking LPA1 activity with Ki16425 inhibited expression of nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) and dendritic cell-specific transmembrane protein and interfered with the fusion but not the proliferation of osteoclast precursors. Similar to wild type osteoclasts treated with Ki16425, mature Lpar1(-/-) osteoclasts had reduced podosome belt and sealing zone resulting in reduced mineralized matrix resorption. Additionally, LPA1 expression markedly increased in the bone of ovariectomized mice, which was blocked by bisphosphonate treatment. Conversely, systemic treatment with Debio0719 prevented ovariectomy-induced cancellous bone loss. Moreover, intravital multiphoton microscopy revealed that Debio0719 reduced the retention of CX3CR1-EGFP(+) osteoclast precursors in bone by increasing their mobility in the bone marrow cavity. Overall, our results demonstrate that LPA1 is essential for in vitro and in vivo osteoclast activities. Therefore, LPA1 emerges as a new target for the treatment of diseases associated with excess bone loss.


Assuntos
Reabsorção Óssea/patologia , Proteínas de Membrana/metabolismo , Fatores de Transcrição NFATC/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Osteoclastos/patologia , Receptores de Ácidos Lisofosfatídicos/fisiologia , Animais , Células da Medula Óssea/patologia , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/genética , Diferenciação Celular/efeitos dos fármacos , Movimento Celular , Feminino , Isoxazóis/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Ácidos Oleicos/farmacologia , Organofosfatos/farmacologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Propionatos/farmacologia , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/genética
17.
Biochim Biophys Acta ; 1831(1): 99-104, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22710393

RESUMO

Bone is a common metastatic site for solid cancers. Bone homeostasis is tightly regulated by intimate cross-talks between osteoblast (bone forming cells) and osteoclasts (bone resorbing cells). Once in the bone microenvironment, metastatic cells do not alter bone directly but instead perturb the physiological balance of the bone remodeling process controlled by bone cells. Tumor cells produce growth factors and cytokines stimulating either osteoclast activity leading to osteolytic lesions or osteoblast function resulting in osteoblastic metastases. Growth factors, released from the resorbed bone matrix or throughout osteoblastic bone formation, sustain tumor growth. Therefore, bone metastases are the sites of vicious cycles wherein tumor growth and bone metabolism sustain each other. Lysophosphatidic acid (LPA) promotes the growth of primary tumors and metastatic dissemination of cancer cells. We have shown that by acting on cancer cells via the contribution of blood platelets and the LPA-producing enzyme Autotaxin (ATX), LPA promotes the progression of osteolytic bone metastases in animal models. In the light of recent reports it would appear that the role of LPA in the context of bone metastases is complex involving multiple sources of lipid combined with direct and indirect effects on target cells. This review will present our current knowledge on the LPA/ATX axis involvement in osteolytic and osteoblastic skeletal metastases and will discuss the potential activity of LPA upstream and downstream metastasis seeding of cancer cells to bone as well as its implication in cancer induced bone pain. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Pleiotropia Genética , Lisofosfolipídeos/metabolismo , Animais , Neoplasias Ósseas/complicações , Humanos , Osteoblastos/metabolismo , Osteoblastos/patologia , Dor/etiologia , Dor/metabolismo , Diester Fosfórico Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA