Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 21(1): 162, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915029

RESUMO

Radiation retinopathy (RR) is a major side effect of ocular tumor treatment by plaque brachytherapy or proton beam therapy. RR manifests as delayed and progressive microvasculopathy, ischemia and macular edema, ultimately leading to vision loss, neovascular glaucoma, and, in extreme cases, secondary enucleation. Intravitreal anti-VEGF agents, steroids and laser photocoagulation have limited effects on RR. The role of retinal inflammation and its contribution to the microvascular damage occurring in RR remain incompletely understood. To explore cellular and vascular events after irradiation, we analyzed their time course at 1 week, 1 month and 6 months after rat eyes received 45 Gy X-beam photons. Müller glial cells, astrocytes and microglia were rapidly activated, and these markers of retinal inflammation persisted for 6 months after irradiation. This was accompanied by early cell death in the outer retina, which persisted at later time points, leading to retinal thinning. A delayed loss of small retinal capillaries and retinal hypoxia were observed after 6 months, indicating inner blood‒retinal barrier (BRB) alteration but without cell death in the inner retina. Moreover, activated microglial cells invaded the entire retina and surrounded retinal vessels, suggesting the role of inflammation in vascular alteration and in retinal cell death. Radiation also triggered early and persistent invasion of the retinal pigment epithelium by microglia and macrophages, contributing to outer BRB disruption. This study highlights the role of progressive and long-lasting inflammatory mechanisms in RR development and demonstrates the relevance of this rat model to investigate human pathology.


Assuntos
Modelos Animais de Doenças , Retina , Animais , Ratos , Retina/patologia , Retina/efeitos da radiação , Doenças Retinianas/etiologia , Doenças Retinianas/patologia , Inflamação/patologia , Inflamação/etiologia , Lesões Experimentais por Radiação/patologia , Lesões por Radiação/patologia , Lesões por Radiação/etiologia , Masculino , Microglia/efeitos da radiação , Microglia/patologia
2.
Neuroscience ; 400: 72-84, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30625334

RESUMO

Spino-cerebellar ataxia type 7 (SCA7) is a polyglutamine (polyQ) disorder characterized by neurodegeneration of the brain, cerebellum, and retina caused by a polyglutamine expansion in ataxin7. The presence of an expanded polyQ tract in a mutant protein is known to induce protein aggregation, cellular stress, toxicity, and finally cell death. However, the consequences of the presence of mutant ataxin7 in the retina and the mechanisms underlying photoreceptor degeneration remain poorly understood. In this study, we show that in a retinal SCA7 mouse model, polyQ ataxin7 induces stress within the retina and activates Muller cells. Moreover, unfolded protein response and autophagy are activated in SCA7 photoreceptors. We have also shown that the photoreceptor death does not involve a caspase-dependent apoptosis but instead involves apoptosis inducing factor (AIF) and Leukocyte Elastase Inhibitor (LEI/L-DNase II). When these two cell death effectors are downregulated by their siRNA, a significant reduction in photoreceptor death is observed. These results highlight the consequences of polyQ protein expression in the retina and the role of caspase-independent pathways involved in photoreceptor cell death.


Assuntos
Ataxina-7/metabolismo , Morte Celular , Peptídeos/metabolismo , Degeneração Retiniana/metabolismo , Ataxias Espinocerebelares/metabolismo , Animais , Fator de Indução de Apoptose/metabolismo , Ataxina-7/genética , Calpaína/metabolismo , Caspases/metabolismo , Catepsinas/metabolismo , Modelos Animais de Doenças , Endodesoxirribonucleases/metabolismo , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Fotorreceptoras/metabolismo , Degeneração Retiniana/etiologia , Transdução de Sinais , Ataxias Espinocerebelares/complicações , Estresse Fisiológico
3.
Apoptosis ; 18(9): 1048-59, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23673989

RESUMO

Programmed cell death is an important factor in tissue homeostasis. Lot of work has been performed to characterize the caspase-dependent cell death. Caspase-independent cell death, although important in many physiological situations, is less investigated. In this work we show that two caspase-independent effectors of cell death, namely apoptosis-inducing factor and leukocyte elastase inhibitor derived DNase II interact and can cooperate to induce cell death. These results contribute to the knowledge of molecular pathways of cell death, an important issue in the development of new therapeutic strategies for the treatment of cancer or neurodegenerative diseases.


Assuntos
Fator de Indução de Apoptose/metabolismo , Apoptose , Endodesoxirribonucleases/metabolismo , Doenças Neurodegenerativas/metabolismo , Serpinas/metabolismo , Animais , Fator de Indução de Apoptose/genética , Caspases/metabolismo , Linhagem Celular , Endodesoxirribonucleases/genética , Humanos , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética , Ligação Proteica , Serpinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA