Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 187: 106315, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37783234

RESUMO

G protein-coupled receptor 17 (GPR17) and the WNT pathway are critical players of oligodendrocyte (OL) differentiation acting as essential timers in developing brain to achieve fully-myelinating cells. However, whether and how these two systems are related to each other is still unknown. Of interest, both factors are dysregulated in developing and adult brain diseases, including white matter injury and cancer, making the understanding of their reciprocal interactions of potential importance for identifying new targets and strategies for myelin repair. Here, by a combined pharmacological and biotechnological approach, we examined regulatory mechanisms linking WNT signaling to GPR17 expression in OLs. We first analyzed the relative expression of mRNAs encoding for GPR17 and the T cell factor/Lymphoid enhancer-binding factor-1 (TCF/LEF) transcription factors of the canonical WNT/ß-CATENIN pathway, in PDGFRα+ and O4+ OLs during mouse post-natal development. In O4+ cells, Gpr17 mRNA level peaked at post-natal day 14 and then decreased concomitantly to the physiological uprise of WNT tone, as shown by increased Lef1 mRNA level. The link between WNT signaling and GPR17 expression was further reinforced in vitro in primary PDGFRα+ cells and in Oli-neu cells. High WNT tone impaired OL differentiation and drastically reduced GPR17 mRNA and protein levels. In Oli-neu cells, WNT/ß-CATENIN activation repressed Gpr17 promoter activity through both putative WNT response elements (WRE) and upregulation of the inhibitor of DNA-binding protein 2 (Id2). We conclude that the WNT pathway influences OL maturation by repressing GPR17, which could have implications in pathologies characterized by dysregulations of the OL lineage including multiple sclerosis and oligodendroglioma.


Assuntos
Células Precursoras de Oligodendrócitos , Via de Sinalização Wnt , Camundongos , Animais , beta Catenina/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas do Tecido Nervoso/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Diferenciação Celular/fisiologia , Oligodendroglia/metabolismo , RNA Mensageiro/metabolismo
2.
J Clin Endocrinol Metab ; 107(6): e2553-e2562, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35134944

RESUMO

CONTEXT: Estrogens play an essential role in reproduction. Their action is mediated by nuclear α and ß receptors (ER) and by membrane receptors. Only 3 females and 2 males, from 3 families, with a loss of ERα function have been reported to date. OBJECTIVE: We describe here a new family, in which 2 sisters display endocrine and ovarian defects of different severities despite carrying the same homozygous rare variant of ESR1. METHODS: A 36-year-old woman from a consanguineous Jordanian family presented with primary amenorrhea and no breast development, with high plasma levels of 17ß-estradiol (E2), follicle-stimulating hormone and luteinizing hormone, and enlarged multifollicular ovaries, strongly suggesting estrogen resistance. Her 18-year-old sister did not enter puberty and had moderately high levels of E2, high plasma gonadotropin levels, and normal ovaries. RESULTS: Genetic analysis identified a homozygous variant of ESR1 leading to the replacement of a highly conserved glutamic acid with a valine (ERα-E385V). The transient expression of ERα-E385V in HEK293A and MDA-MB231 cells revealed highly impaired ERE-dependent transcriptional activation by E2. The analysis of the KISS1 promoter activity revealed that the E385V substitution induced a ligand independent activation of ERα. Immunofluorescence analysis showed that less ERα-E385V than ERα-WT was translocated into the nucleus in the presence of E2. CONCLUSION: These 2 new cases are remarkable given the difference in the severity of their ovarian and hormonal phenotypes. This phenotypic discrepancy may be due to a mechanism partially compensating for the ERα loss of function.


Assuntos
Receptor alfa de Estrogênio , Estrogênios , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Estrogênios/farmacologia , Feminino , Humanos , Masculino , Fenótipo , Ativação Transcricional
3.
J Cell Physiol ; 234(9): 15872-15884, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30714133

RESUMO

The present study examined the involvement of zinc (Zn)-transporters (ZnT3) in cadmium (Cd)-induced alterations of Zn homeostasis in rat hippocampal neurons. We treated primary rat hippocampal neurons for 24 or 48 hr with various concentrations of CdCl2 (0, 0.5, 5, 10, 25, or 50 µM) and/or ZnCl 2 (0, 10, 30, 50, 70, or 90 µM), using normal neuronal medium as control. By The CellTiter 96 ® Aqueous One Solution Cell Proliferation Assay (MTS; Promega, Madison, WI) assay and immunohistochemistry for cell death markers, 10 and 25 µM of Cd were found to be noncytotoxic doses, and both 30 and 90 µM of Zn as the best concentrations for cell proliferation. We tested these selected doses. Cd, at concentrations of 10 or 25 µM (and depending on the absence or presence of Zn), decreased the percentage of surviving cells. Cd-induced neuronal death was either apoptotic or necrotic depending on dose, as indicated by 7-AAD and/or annexin V labeling. At the molecular level, Cd exposure induced a decrease in hippocampal brain-derived neurotrophic factor-tropomyosin receptor kinase B (BDNF-TrkB) and Erk1/2 signaling, a significant downregulation of the expression of learning- and memory-related receptors and synaptic proteins such as the NMDAR NR2A subunit and PSD-95, as well as the expression of the synapse-specific vesicular Zn transporter ZnT3 in cultured hippocampal neurons. Zn supplementation, especially at the 30 µM concentration, led to partial or total protection against Cd neurotoxicity both with respect to the number of apoptotic cells and the expression of several genes. Interestingly, after knockdown of ZnT3 by small interfering RNA transfection, we did not find the restoration of the expression of this gene following Zn supplementation at 30 µM concentration. These data indicate the involvement of ZnT3 in the mechanism of Cd-induced hippocampal neurotoxicity.

4.
Brain Behav Immun ; 63: 197-209, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27818218

RESUMO

The cognitive and behavioural deficits caused by traumatic brain injury (TBI) to the immature brain are more severe and persistent than TBI in the mature brain. Understanding this developmental sensitivity is critical as children under four years of age sustain TBI more frequently than any other age group. Microglia (MG), resident immune cells of the brain that mediate neuroinflammation, are activated following TBI in the immature brain. However, the type and temporal profile of this activation and the consequences of altering it are still largely unknown. In a mouse model of closed head weight drop paediatric brain trauma, we characterized i) the temporal course of total cortical neuroinflammation and the phenotype of ex vivo isolated CD11B-positive microglia/macrophage (MG/MΦ) using a battery of 32 markers, and ii) neuropathological outcome 1 and 5days post-injury. We also assessed the effects of targeting MG/MΦ activation directly, using minocycline a prototypical microglial activation antagonist, on these processes and outcome. TBI induced a moderate increase in both pro- and anti-inflammatory cytokines/chemokines in the ipsilateral hemisphere. Isolated cortical MG/MΦ expressed increased levels of markers of endogenous reparatory/regenerative and immunomodulatory phenotypes compared with shams. Blocking MG/MΦ activation with minocycline at the time of injury and 1 and 2days post-injury had only transient protective effects, reducing ventricular dilatation and cell death 1day post-injury but having no effect on injury severity at 5days. This study demonstrates that, unlike in adults, the role of MG/MΦ in injury mechanisms following TBI in the immature brain may not be negative. An improved understanding of MG/MΦ function in paediatric TBI could support translational efforts to design therapeutic interventions.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Ativação de Macrófagos/fisiologia , Microglia/metabolismo , Animais , Encéfalo/metabolismo , Lesões Encefálicas/imunologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas Traumáticas/imunologia , Quimiocinas/imunologia , Quimiocinas/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Minociclina/farmacologia
5.
J Neuroinflammation ; 13(1): 307, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27955671

RESUMO

BACKGROUND: Infectious encephalitides are most often associated with acute seizures during the infection period and are risk factors for the development of epilepsy at later times. Mechanisms of viral encephalitis-induced epileptogenesis are poorly understood. Here, we evaluated the contribution of viral encephalitis-associated inflammation to ictogenesis and epileptogenesis using a rapid kindling protocol in rats. In addition, we examined whether minocycline can improve outcomes of viral-like brain inflammation. METHODS: To produce viral-like inflammation, polyinosinic-polycytidylic acid (PIC), a toll-like receptor 3 (TLR3) agonist, was applied to microglial/macrophage cell cultures and to the hippocampus of postnatal day 13 (P13) and postnatal day 74 (P74) rats. Cell cultures permit the examination of the inflammation induced by PIC, while the in vivo setting better suits the analysis of cytokine production and the effects of inflammation on epileptogenesis. Minocycline (50 mg/kg) was injected intraperitoneally for 3 consecutive days prior to the kindling procedure to evaluate its effects on inflammation and epileptogenesis. RESULTS: PIC injection facilitated kindling epileptogenesis, which was evident as an increase in the number of full limbic seizures at both ages. Furthermore, in P14 rats, we observed a faster seizure onset and prolonged retention of the kindling state. PIC administration also led to an increase in interleukin 1ß (IL-1ß) levels in the hippocampus in P14 and P75 rats. Treatment with minocycline reversed neither the pro-epileptogenic effects of PIC nor the increase of IL-1ß in the hippocampus in both P14 and P75 rats. CONCLUSIONS: Hippocampal injection of PIC facilitates rapid kindling epileptogenesis at both P14 and P75, suggesting that viral-induced inflammation increases epileptogenesis irrespective of brain maturation. Minocycline, however, was unable to reverse the increase of epileptogenesis, which might be linked to its absence of effect on hippocampal IL-1ß levels at both ages.


Assuntos
Encéfalo , Encefalite Viral/complicações , Encefalite/etiologia , Epilepsia/etiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Anticonvulsivantes/uso terapêutico , Antivirais/farmacologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Encéfalo/virologia , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Encefalite/induzido quimicamente , Encefalite/virologia , Epilepsia/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Excitação Neurológica/efeitos dos fármacos , Excitação Neurológica/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Microglia/efeitos dos fármacos , Minociclina/uso terapêutico , Poli I-C/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Estatísticas não Paramétricas
6.
Cell Death Dis ; 7(10): e2440, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27787521

RESUMO

Epidemiological evidence from the current outbreak of Zika virus (ZIKV) and recent studies in animal models indicate a strong causal link between ZIKV and microcephaly. ZIKV infection induces cell-cycle arrest and apoptosis in proliferating neural progenitors. However, the mechanisms leading to these phenotypes are still largely obscure. In this report, we explored the possible similarities between transcriptional responses induced by ZIKV in human neural progenitors and those elicited by three different genetic mutations leading to severe forms of microcephaly in mice. We found that the strongest similarity between all these conditions is the activation of common P53 downstream genes. In agreement with these observations, we report that ZIKV infection increases total P53 levels and nuclear accumulation, as well as P53 Ser15 phosphorylation, correlated with genotoxic stress and apoptosis induction. Interestingly, increased P53 activation and apoptosis are induced not only in cells expressing high levels of viral antigens but also in cells showing low or undetectable levels of the same proteins. These results indicate that P53 activation is an early and specific event in ZIKV-infected cells, which could result from cell-autonomous and/or non-cell-autonomous mechanisms. Moreover, we highlight a small group of P53 effector proteins that could act as critical mediators, not only in ZIKV-induced microcephaly but also in many genetic microcephaly syndromes.


Assuntos
Dano ao DNA/genética , Microcefalia/genética , Mutação/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/virologia , Proteína Supressora de Tumor p53/metabolismo , Zika virus/fisiologia , Animais , Apoptose/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Camundongos , Proteína Supressora de Tumor p53/genética , Regulação para Cima/genética , Infecção por Zika virus/genética , Infecção por Zika virus/patologia , Infecção por Zika virus/virologia
7.
J Neurosci Res ; 94(12): 1546-1560, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27614029

RESUMO

The cognitive and behavioral deficits caused by traumatic brain injury (TBI) to the immature brain are more severe and persistent than injuries to the adult brain. Understanding this developmental sensitivity is critical because children under 4 years of age of sustain TBI more frequently than any other age group. One of the first events after TBI is the infiltration and degranulation of mast cells (MCs) in the brain, releasing a range of immunomodulatory substances; inhibition of these cells is neuroprotective in other types of neonatal brain injury. This study investigates for the first time the role of MCs in mediating injury in a P7 mouse model of pediatric contusion-induced TBI. We show that various neural cell types express histamine receptors and that histamine exacerbates excitotoxic cell death in primary cultured neurons. Cromoglycate, an inhibitor of MC degranulation, altered the inflammatory phenotype of microglia activated by TBI, reversing several changes but accentuating others, when administered before TBI. However, without regard to the time of cromoglycate administration, inhibiting MC degranulation did not affect cell loss, as evaluated by ventricular dilatation or cleaved caspase-3 labeling, or the density of activated microglia, neurons, or myelin. In double-heterozygous cKit mutant mice lacking MCs, this overall lack of effect was confirmed. These results suggest that the role of MCs in this model of pediatric TBI is restricted to subtle effects and that they are unlikely to be viable neurotherapeutic targets. © 2016 Wiley Periodicals, Inc.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Mastócitos/patologia , Animais , Contusão Encefálica/patologia , Caspase 3/biossíntese , Caspase 3/genética , Morte Celular/efeitos dos fármacos , Células Cultivadas , Pré-Escolar , Cromolina Sódica/farmacologia , Modelos Animais de Doenças , Histamina/farmacologia , Humanos , Lactente , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Células-Tronco Neurais , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Receptores Histamínicos/metabolismo
8.
Am J Hum Genet ; 99(2): 451-9, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27476655

RESUMO

Cellular homeostasis is maintained by the highly organized cooperation of intracellular trafficking systems, including COPI, COPII, and clathrin complexes. COPI is a coatomer protein complex responsible for intracellular protein transport between the endoplasmic reticulum and the Golgi apparatus. The importance of such intracellular transport mechanisms is underscored by the various disorders, including skeletal disorders such as cranio-lenticulo-sutural dysplasia and osteogenesis imperfect, caused by mutations in the COPII coatomer complex. In this article, we report a clinically recognizable craniofacial disorder characterized by facial dysmorphisms, severe micrognathia, rhizomelic shortening, microcephalic dwarfism, and mild developmental delay due to loss-of-function heterozygous mutations in ARCN1, which encodes the coatomer subunit delta of COPI. ARCN1 mutant cell lines were revealed to have endoplasmic reticulum stress, suggesting the involvement of ER stress response in the pathogenesis of this disorder. Given that ARCN1 deficiency causes defective type I collagen transport, reduction of collagen secretion represents the likely mechanism underlying the skeletal phenotype that characterizes this condition. Our findings demonstrate the importance of COPI-mediated transport in human development, including skeletogenesis and brain growth.


Assuntos
Complexo I de Proteína do Envoltório/metabolismo , Proteína Coatomer/genética , Anormalidades Craniofaciais/genética , Mutação , Adulto , Proteína Coatomer/metabolismo , Colágeno/metabolismo , Estresse do Retículo Endoplasmático , Heterozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Síndrome
9.
J Cereb Blood Flow Metab ; 36(8): 1396-411, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26661194

RESUMO

Remote ischemic postconditioning (RIPostC) is a promising therapeutic intervention whereby brief episodes of ischemia/reperfusion of one organ (limb) mitigate damage in another organ (brain) that has experienced severe hypoxia-ischemia. Our aim was to assess whether RIPostC is protective following cerebral hypoxia-ischemia in a piglet model of neonatal encephalopathy (NE) using magnetic resonance spectroscopy (MRS) biomarkers and immunohistochemistry. After hypoxia-ischemia (HI), 16 Large White female newborn piglets were randomized to: (i) no intervention (n = 8); (ii) RIPostC - with four, 10-min cycles of bilateral lower limb ischemia/reperfusion immediately after HI (n = 8). RIPostC reduced the hypoxic-ischemic-induced increase in white matter proton MRS lactate/N acetyl aspartate (p = 0.005) and increased whole brain phosphorus-31 MRS ATP (p = 0.039) over the 48 h after HI. Cell death was reduced with RIPostC in the periventricular white matter (p = 0.03), internal capsule (p = 0.002) and corpus callosum (p = 0.021); there was reduced microglial activation in corpus callosum (p = 0.001) and more surviving oligodendrocytes in corpus callosum (p = 0.029) and periventricular white matter (p = 0.001). Changes in gene expression were detected in the white matter at 48 h, including KATP channel and endothelin A receptor. Immediate RIPostC is a potentially safe and promising brain protective therapy for babies with NE with protection in white but not grey matter.


Assuntos
Substância Cinzenta/patologia , Hipóxia-Isquemia Encefálica/terapia , Pós-Condicionamento Isquêmico/métodos , Extremidade Inferior/irrigação sanguínea , Substância Branca/patologia , Trifosfato de Adenosina/metabolismo , Animais , Animais Recém-Nascidos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Biomarcadores/metabolismo , Mapeamento Encefálico , Modelos Animais de Doenças , Eletroencefalografia , Expressão Gênica , Substância Cinzenta/irrigação sanguínea , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Imuno-Histoquímica , Canais KATP/genética , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética , Receptor de Endotelina A/genética , Suínos , Substância Branca/irrigação sanguínea , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo
10.
J Neurosci ; 35(34): 11960-75, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26311777

RESUMO

Within the hippocampus, the major somatostatin (SRIF) receptor subtype, the sst2A receptor, is localized at postsynaptic sites of the principal neurons where it modulates neuronal activity. Following agonist exposure, this receptor rapidly internalizes and recycles slowly through the trans-Golgi network. In epilepsy, a high and chronic release of somatostatin occurs, which provokes, in both rat and human tissue, a decrease in the density of this inhibitory receptor at the cell surface. The insulin-regulated aminopeptidase (IRAP) is involved in vesicular trafficking and shares common regional distribution with the sst2A receptor. In addition, IRAP ligands display anticonvulsive properties. We therefore sought to assess by in vitro and in vivo experiments in hippocampal rat tissue whether IRAP ligands could regulate the trafficking of the sst2A receptor and, consequently, modulate limbic seizures. Using pharmacological and cell biological approaches, we demonstrate that IRAP ligands accelerate the recycling of the sst2A receptor that has internalized in neurons in vitro or in vivo. Most importantly, because IRAP ligands increase the density of this inhibitory receptor at the plasma membrane, they also potentiate the neuropeptide SRIF inhibitory effects on seizure activity. Our results further demonstrate that IRAP is a therapeutic target for the treatment of limbic seizures and possibly for other neurological conditions in which downregulation of G-protein-coupled receptors occurs. SIGNIFICANCE STATEMENT: The somatostatin type 2A receptor (sst2A) is localized on principal hippocampal neurons and displays anticonvulsant properties. Following agonist exposure, however, this receptor rapidly internalizes and recycles slowly. The insulin-regulated aminopeptidase (IRAP) is involved in vesicular trafficking and shares common regional distribution with the sst2A receptor. We therefore assessed by in vitro and in vivo experiments whether IRAP could regulate the trafficking of this receptor. We demonstrate that IRAP ligands accelerate sst2A recycling in hippocampal neurons. Because IRAP ligands increase the density of sst2A receptors at the plasma membrane, they also potentiate the effects of this inhibitory receptor on seizure activity. Our results further demonstrate that IRAP is a therapeutic target for the treatment of limbic seizures.


Assuntos
Cistinil Aminopeptidase/metabolismo , Hipocampo/metabolismo , Receptores de Somatostatina/metabolismo , Convulsões/metabolismo , Convulsões/prevenção & controle , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Sistema Límbico/metabolismo , Masculino , Camundongos , Transporte Proteico/fisiologia , Ratos , Ratos Wistar
11.
Biosci Rep ; 35(4)2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-26182429

RESUMO

Betaine is the substrate of the liver- and kidney-specific betaine-homocysteine (Hcy) methyltransferase (BHMT), an alternate pathway for Hcy remethylation. We hypothesized that BHMT is a major pathway for homocysteine removal in cases of hyperhomocysteinaemia (HHcy). Therefore, we measured betaine in plasma and tissues from patients and animal models of HHcy of genetic and acquired cause. Plasma was collected from patients presenting HHcy without any Hcy interfering treatment. Plasma and tissues were collected from rat models of HHcy induced by diet and from a mouse model of cystathionine ß-synthase (CBS) deficiency. S-adenosyl-methionine (AdoMet), S-adenosyl-homocysteine (AdoHcy), methionine, betaine and dimethylglycine (DMG) were quantified by ESI-LC-MS/MS. mRNA expression was quantified using quantitative real-time (QRT)-PCR. For all patients with diverse causes of HHcy, plasma betaine concentrations were below the normal values of our laboratory. In the diet-induced HHcy rat model, betaine was decreased in all tissues analysed (liver, brain, heart). In the mouse CBS deficiency model, betaine was decreased in plasma, liver, heart and brain, but was conserved in kidney. Surprisingly, BHMT expression and activity was decreased in liver. However, in kidney, BHMT and SLC6A12 expression was increased in CBS-deficient mice. Chronic HHcy, irrespective of its cause, induces betaine depletion in plasma and tissues (liver, brain and heart), indicating a global decrease in the body betaine pool. In kidney, betaine concentrations were not affected, possibly due to overexpression of the betaine transporter SLC6A12 where betaine may be conserved because of its crucial role as an osmolyte.


Assuntos
Betaína/sangue , Homocisteína/sangue , Homocistinúria/sangue , Animais , Betaína-Homocisteína S-Metiltransferase/genética , Betaína-Homocisteína S-Metiltransferase/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Feminino , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Homocisteína/genética , Homocistinúria/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Ratos , Ratos Wistar
12.
Dev Neurosci ; 37(4-5): 363-75, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25721106

RESUMO

Neonatal encephalopathy (NE) is a leading cause of childhood death and disability in term infants. Treatment options for perinatal brain injury are limited and developing therapies that target multiple pathways within the pathophysiology of NE are of great interest. Pifithrin-µ (PFT-µ) is a drug with striking neuroprotective abilities in a preclinical model of hypoxia-ischemia (HI)-induced NE wherein cell death is a substantial cause of injury. Work from neurons and tumor cells reports that PFT-µ is able to inhibit p53 binding to the mitochondria, heat shock protein (HSP)-70 substrate binding and activation of the NF-kB pathway. The purpose of this study is to understand whether the neuroprotective effects of PFT-µ also include direct effects on microglia. We utilized the microglial cell line, BV2, and we studied the dose-dependent effect of PFT-µ on M1-like and M2-like phenotype using qRT-PCR and Western blotting, including the requirement for the presence of p53 or HSP-70 in these effects. We also assessed phagocytosis and the effects of PFT-µ on genes within metabolic pathways related to phenotype. We noted that PFT-µ robustly reduced the M1-like (lipopolysaccharide, LPS-induced) BV2 response, spared the LPS-induced phagocytic ability of BV2 and had no effect on the genes related to metabolism and that effects on phenotype were partially dependent on the presence of HSP-70 but not p53. This study demonstrates that the neuroprotective effects of PFT-µ in HI-induced NE may include an anti-inflammatory effect on microglia and adds to the evidence that this drug might be of clinical interest for the treatment of NE.


Assuntos
Benzotiazóis/farmacologia , Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Tolueno/análogos & derivados , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular , Inflamação/imunologia , Camundongos , Microglia/imunologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/imunologia , Tolueno/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores
13.
Hum Mol Genet ; 22(14): 2894-904, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23552101

RESUMO

Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease characterized by ataxia, variously associating heart disease, diabetes mellitus and/or glucose intolerance. It results from intronic expansion of GAA triplet repeats at the FXN locus. Homozygous expansions cause silencing of the FXN gene and subsequent decreased expression of the encoded mitochondrial frataxin. Detailed analyses in fibroblasts and neuronal tissues from FRDA patients have revealed profound cytoskeleton anomalies. So far, however, the molecular mechanism underlying these cytoskeleton defects remains unknown. We show here that gene silencing spreads in cis over the PIP5K1B gene in cells from FRDA patients (circulating lymphocytes and primary fibroblasts), correlating with expanded GAA repeat size. PIP5K1B encodes phosphatidylinositol 4-phosphate 5-kinase ß type I (pip5k1ß), an enzyme functionally linked to actin cytoskeleton dynamics that phosphorylates phosphatidylinositol 4-phosphate [PI(4)P] to generate phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. Accordingly, loss of pip5k1ß function in FRDA cells was accompanied by decreased PI(4,5)P2 levels and was shown instrumental for destabilization of the actin network and delayed cell spreading. Knockdown of PIP5K1B in control fibroblasts using shRNA reproduced abnormal actin cytoskeleton remodeling, whereas over-expression of PIP5K1B, but not FXN, suppressed this phenotype in FRDA cells. In addition to provide new insights into the consequences of the FXN gene expansion, these findings raise the question whether PIP5K1B silencing may contribute to the variable manifestation of this complex disease.


Assuntos
Citoesqueleto/metabolismo , Ataxia de Friedreich/enzimologia , Inativação Gênica , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Citoesqueleto/genética , Fibroblastos/metabolismo , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Humanos , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Linfócitos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Expansão das Repetições de Trinucleotídeos , Frataxina
14.
Hum Mutat ; 34(2): 283-6, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23042644

RESUMO

Smith-McCort dysplasia (SMC) is a rare autosomal recessive spondylo-epi-metaphyseal dysplasia with skeletal features identical to those of Dyggve-Melchior-Clausen syndrome (DMC) but with normal intelligence and no microcephaly. Although both syndromes were shown to result from mutations in the DYM gene, which encodes the Golgi protein DYMECLIN, a few SMC patients remained negative in DYM mutation screening. Recently, autozygosity mapping and exome sequencing in a large SMC family have allowed the identification of a missense mutation in RAB33B, another Golgi protein involved in retrograde transport of Golgi vesicles. Here, we report a novel RAB33B mutation in a second SMC case that leads to a marked reduction of the protein as shown by Western blot and immunofluorescence. These data confirm the genetic heterogeneity of SMC dysplasia and highlight the role of Golgi transport in the pathogenesis of SMC and DMC syndromes.


Assuntos
Mutação , Osteocondrodisplasias/genética , Osteocondrodisplasias/fisiopatologia , Proteínas rab de Ligação ao GTP/genética , Nanismo/genética , Nanismo/fisiopatologia , Exoma , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Heterogeneidade Genética , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Osteocondrodisplasias/congênito , Osteocondrodisplasias/diagnóstico , Fenótipo , Proteínas/genética , Proteínas/metabolismo , Análise de Sequência , Adulto Jovem , Proteínas rab de Ligação ao GTP/metabolismo
15.
Eur J Med Genet ; 55(3): 157-62, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22330346

RESUMO

We report two male sibs, born from unrelated French Caribbean parents, presenting with an unclassifiable storage disorder. Pregnancy and delivery were uneventful. Stunted growth was noted during the first year of life. Both children have short stature (below - 4SD) with short trunk, barrel chest, micromelia with rhizomelic shortening, severe kyphoscoliosis, pectus carinatum, short hands and feet with metatarsus adductus, and excessive joint laxity of the small joints. Learning difficulties with borderline intelligence quotient (IQ) were noted in one of them. They had no hepatomegaly, no splenomegaly, and no dysmorphism. Skeletal X-rays survey demonstrated generalized platyspondyly with tongue-like deformity of the anterior part of the vertebral bodies, hypoplasia of the odontoid process, generalized epiphyseal dysplasia and abnormally shaped metaphyses. The acetabular roofs had a trident aspect. Ophthalmologic and cardiac examinations were normal. Spine deformity required surgical correction in one of the patient at age 4 years. Lysosomal enzymes assays including N-acetylgalactosamine-6-sulfate sulfatase and ß-galactosidase were normal, excluding mucopolysaccharidoses type IV A and IV B (Morquio syndrome), respectively. Qualitative analysis found traces of dermatan and chondroitin-sulfates in urine, but quantitative glycosaminoglycan excretion fell within normal limits. They were no vacuolated lymphocytes. Abnormal coarse inclusions were present in eosinophils. Mild Alder anomaly was observed in polymorphonuclears. Granulations were discretely metachromatic with toluidine blue. Those morphological anomalies are in favor of a lysosomal storage disease. No inclusions were found in skin fibroblasts. We hypothesize that these two boys have a distinct autosomal recessive or X-linked lysosomal storage disorder of unknown origin that shares clinical and radiological features with Morquio disease.


Assuntos
Doenças por Armazenamento dos Lisossomos/diagnóstico , Criança , Pré-Escolar , Humanos , Doenças por Armazenamento dos Lisossomos/diagnóstico por imagem , Masculino , Radiografia , Irmãos
16.
J Clin Invest ; 121(8): 3071-87, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21737879

RESUMO

Autosomal recessive primary microcephaly (MCPH) is a genetic disorder that causes a reduction of cortical outgrowth without severe interference with cortical patterning. It is associated with mutations in a number of genes encoding protein involved in mitotic spindle formation and centrosomal activities or cell cycle control. We have shown previously that blocking vasoactive intestinal peptide (VIP) during gestation in mice by using a VIP antagonist (VA) results in microcephaly. Here, we have shown that the cortical abnormalities caused by prenatal VA administration mimic the phenotype described in MCPH patients and that VIP blockade during neurogenesis specifically disrupts Mcph1 signaling. VA administration reduced neuroepithelial progenitor proliferation by increasing cell cycle length and promoting cell cycle exit and premature neuronal differentiation. Quantitative RT-PCR and Western blot showed that VA downregulated Mcph1. Inhibition of Mcph1 expression led to downregulation of Chk1 and reduction of Chk1 kinase activity. The inhibition of Mcph1 and Chk1 affected the expression of a specific subset of cell cycle­controlling genes and turned off neural stem cell proliferation in neurospheres. Furthermore, in vitro silencing of either Mcph1 or Chk1 in neurospheres mimicked VA-induced inhibition of cell proliferation. These results demonstrate that VIP blockade induces microcephaly through Mcph1 signaling and suggest that VIP/Mcph1/Chk1 signaling is key for normal cortical development.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica , Microcefalia/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Peptídeo Intestinal Vasoativo/fisiologia , Animais , Ciclo Celular , Proteínas de Ciclo Celular , Diferenciação Celular , Proliferação de Células , Quinase 1 do Ponto de Checagem , Proteínas do Citoesqueleto , Feminino , Camundongos , Modelos Biológicos , Neurônios/metabolismo , Células-Tronco/citologia , Peptídeo Intestinal Vasoativo/metabolismo
17.
J Am Soc Nephrol ; 14(8): 2099-108, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12874464

RESUMO

The A3243G mutation of the mitochondrial tRNA(Leu) gene has been recently reported in rare patients with focal and segmental glomerulosclerosis (FSGS). However, the full spectrum of systemic and kidney manifestations in adults presenting with this mutation remains poorly defined. Assessment of renal and nonrenal manifestations was performed in nine patients with A3243G mutation and prominent kidney disease diagnosed in adulthood. At first renal evaluation, median age was 35 years. Renal lesions consisted of FSGS (n = 2), tubulointerstitial nephropathy (n = 3), or bilateral enlarged cystic kidneys (n = 1). All but one patient exhibited extrarenal manifestations: deafness (8 of 9) requiring hearing aid in half the cases, diabetes mellitus (3 of 9), neuromuscular involvement (2 of 9), hypertrophic cardiomyopathy (1 of 9), and macular dystrophy (1 of 9). After a median follow-up of 5 yr, five patients progressed to end-stage renal disease between the ages of 15 and 51 years, four being successfully transplanted. Similarly, extrarenal manifestations progressed since all patients had deafness and diabetes (including three posttransplants), while half had neuromuscular, cardiac, or retinal involvement. In the adult patients with A3243G mutation and renal involvement, preexisting deafness is almost consistently found. While FSGS remains the most typical lesion, tubulointerstitial nephropathy or bilateral, enlarged cystic kidneys may also be encountered. In most cases, diabetes mellitus, macular dystrophy, hypertrophic cardiomyopathy, or neuromuscular features occur later in the course of the disease. The severity of the clinical course is heterogeneous, with end-stage renal failure being reached between the second and sixth decades. Renal transplantation may be offered to these patients, despite a high incidence of steroid-induced diabetes mellitus.


Assuntos
Nefropatias/genética , Mutação , RNA de Transferência de Leucina/genética , RNA/metabolismo , Adolescente , Adulto , Cardiomiopatias , DNA Mitocondrial/metabolismo , Feminino , Humanos , Rim/patologia , Nefropatias/patologia , Falência Renal Crônica/metabolismo , Transplante de Rim , Lactatos/sangue , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fenótipo , Mutação Puntual , RNA Mitocondrial , Retina/patologia , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA