Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1337708, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288343

RESUMO

Three types of muscles, cardiac, smooth and skeletal muscles are classically distinguished in eubilaterian animals. The skeletal, striated muscles are innervated multinucleated syncytia, which, together with bones and tendons, carry out voluntary and reflex body movements. Alary muscles (AMs) are another type of striated syncytial muscles, which connect the exoskeleton to the heart in adult arthropods and were proposed to control hemolymph flux. Developmental studies in Drosophila showed that larval AMs are specified in embryos under control of conserved myogenic transcription factors and interact with excretory, respiratory and hematopoietic tissues in addition to the heart. They also revealed the existence of thoracic AMs (TARMs) connecting to specific gut regions. Their asymmetric attachment sites, deformation properties in crawling larvae and ablation-induced phenotypes, suggest that AMs and TARMs could play both architectural and signalling functions. During metamorphosis, and heart remodelling, some AMs trans-differentiate into another type of muscles. Remaining critical questions include the enigmatic modes and roles of AM innervation, mechanical properties of AMs and TARMS and their evolutionary origin. The purpose of this review is to consolidate facts and hypotheses surrounding AMs/TARMs and underscore the need for further detailed investigation into these atypical muscles.

2.
Front Cell Dev Biol ; 10: 834720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237606

RESUMO

The Drosophila lymph gland is the larval hematopoietic organ and is aligned along the anterior part of the cardiovascular system, composed of cardiac cells, that form the cardiac tube and its associated pericardial cells or nephrocytes. By the end of embryogenesis the lymph gland is composed of a single pair of lobes. Two additional pairs of posterior lobes develop during larval development to contribute to the mature lymph gland. In this study we describe the ontogeny of lymph gland posterior lobes during larval development and identify the genetic basis of the process. By lineage tracing we show here that each posterior lobe originates from three embryonic pericardial cells, thus establishing a bivalent blood cell/nephrocyte potential for a subset of embryonic pericardial cells. The posterior lobes of L3 larvae posterior lobes are composed of heterogeneous blood progenitors and their diversity is progressively built during larval development. We further establish that in larvae, homeotic genes and the transcription factor Klf15 regulate the choice between blood cell and nephrocyte fates. Our data underline the sequential production of blood cell progenitors during larval development.

3.
PLoS Genet ; 14(2): e1007167, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29420531

RESUMO

Several transcription factors have been identified that activate an epithelial-to-mesenchymal transition (EMT), which endows cells with the capacity to break through basement membranes and migrate away from their site of origin. A key program in development, in recent years it has been shown to be a crucial driver of tumour invasion and metastasis. However, several of these EMT-inducing transcription factors are often expressed long before the initiation of the invasion-metastasis cascade as well as in non-invasive tumours. Increasing evidence suggests that they may promote primary tumour growth, but their precise role in this process remains to be elucidated. To investigate this issue we have focused our studies on two Drosophila transcription factors, the classic EMT inducer Snail and the Drosophila orthologue of hGATAs4/6, Serpent, which drives an alternative mechanism of EMT; both Snail and GATA are specifically expressed in a number of human cancers, particularly at the invasive front and in metastasis. Thus, we recreated conditions of Snail and of Serpent high expression in the fly imaginal wing disc and analysed their effect. While either Snail or Serpent induced a profound loss of epithelial polarity and tissue organisation, Serpent but not Snail also induced an increase in the size of wing discs. Furthermore, the Serpent-induced tumour-like tissues were able to grow extensively when transplanted into the abdomen of adult hosts. We found the differences between Snail and Serpent to correlate with the genetic program they elicit; while activation of either results in an increase in the expression of Yorki target genes, Serpent additionally activates the Ras signalling pathway. These results provide insight into how transcription factors that induce EMT can also promote primary tumour growth, and how in some cases such as GATA factors a 'multi hit' effect may be achieved through the aberrant activation of just a single gene.


Assuntos
Proliferação de Células/genética , Proteínas de Drosophila/fisiologia , Drosophila/genética , Transição Epitelial-Mesenquimal/genética , Fatores de Transcrição GATA/fisiologia , Neoplasias/patologia , Fatores de Transcrição da Família Snail/fisiologia , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Drosophila/embriologia , Drosophila/crescimento & desenvolvimento , Drosophila/fisiologia , Proteínas de Drosophila/genética , Embrião não Mamífero , Feminino , Fatores de Transcrição GATA/genética , Invasividade Neoplásica , Neoplasias/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Carga Tumoral/genética , Asas de Animais/embriologia , Asas de Animais/transplante
4.
Dev Cell ; 33(6): 675-89, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26073018

RESUMO

Left-right (LR) asymmetry is essential for organ development and function in metazoans, but how initial LR cue is relayed to tissues still remains unclear. Here, we propose a mechanism by which the Drosophila LR determinant Myosin ID (MyoID) transfers LR information to neighboring cells through the planar cell polarity (PCP) atypical cadherin Dachsous (Ds). Molecular interaction between MyoID and Ds in a specific LR organizer controls dextral cell polarity of adjoining hindgut progenitors and is required for organ looping in adults. Loss of Ds blocks hindgut tissue polarization and looping, indicating that Ds is a crucial factor for both LR cue transmission and asymmetric morphogenesis. We further show that the Ds/Fat and Frizzled PCP pathways are required for the spreading of LR asymmetry throughout the hindgut progenitor tissue. These results identify a direct functional coupling between the LR determinant MyoID and PCP, essential for non-autonomous propagation of early LR asymmetry.


Assuntos
Padronização Corporal/fisiologia , Caderinas/fisiologia , Sistema Digestório/crescimento & desenvolvimento , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Caderinas/genética , Polaridade Celular/genética , Polaridade Celular/fisiologia , Sistema Digestório/citologia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Genes de Insetos , Modelos Biológicos , Miosinas/genética , Miosinas/fisiologia
5.
Development ; 135(13): 2301-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18508864

RESUMO

The Drosophila adult head mostly derives from the composite eye-antenna imaginal disc. The antennal disc gives rise to two adult olfactory organs: the antennae and maxillary palps. Here, we have analysed the regional specification of the maxillary palp within the antennal disc. We found that a maxillary field, defined by expression of the Hox gene Deformed, is established at about the same time as the eye and antennal fields during the L2 larval stage. The genetic program leading to maxillary regionalisation and identity is very similar to the antennal one, but is distinguished primarily by delayed prepupal expression of the ventral morphogen Wingless (Wg). We find that precociously expressing Wg in the larval maxillary field suffices to transform it towards antennal identity, whereas overexpressing Wg later in prepupae does not. These results thus indicate that temporal regulation of Wg is decisive to distinguishing maxillary and antennal organs. Wg normally acts upstream of the antennal selector spineless (ss) in maxillary development. However, mis-expression of Ss can prematurely activate wg via a positive-feedback loop leading to a maxillary-to-antenna transformation. We characterised: (1) the action of Wg through ss selector function in distinguishing maxillary from antenna; and (2) its direct contribution to identity choice.


Assuntos
Estruturas Animais/crescimento & desenvolvimento , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Nervo Óptico/crescimento & desenvolvimento , Nervo Óptico/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Estruturas Animais/anatomia & histologia , Estruturas Animais/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Proteínas Proto-Oncogênicas/genética , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Fatores de Tempo , Proteína Wnt1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA