Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 21(2): 349-355, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31687811

RESUMO

In the recent decades, biodegradable and biocompatible polyphosphoesters (PPEs) have gained wide attention in the biomedical field as relevant substitutes for conventional aliphatic polyesters. These amorphous materials of low glass transition temperature offer promise for the design of soft scaffolds for tissue engineering. Advantageously, the easy variation of the nature of the lateral pendant groups of PPEs allows the insertion of pendent unsaturations valuable for their further cross-linking. In addition, varying the length of the pendent alkyl chains allows tuning their hydrophilicity. The present work aims at synthesizing PPE networks of well-defined hydrophilicity and mechanical properties. More precisely, we aimed at preparing degradable materials exhibiting identical hydrophilicity but different mechanical properties and vice versa. For that purpose, PPE copolymers were synthesized by ring-opening copolymerization of cyclic phosphate monomers bearing different pendent groups (e.g., methyl, butenyl, and butyl). After UV irradiation, a stable and well-defined cross-linked material is obtained with the mechanical property of the corresponding polymer films controlled by the composition of the starting PPE copolymer. The results demonstrate that cross-linking density could be correlated with the mechanical properties, swelling behavior, and degradation rate of the polymers network. The polymers were compatible to human skin fibroblast cells and did not exhibit significant cytotoxicity up to 0.5 mg mL-1. In addition, degradation products appeared nontoxic to skin fibroblast cells and showed their potential as promising scaffolds for tissue engineering.


Assuntos
Materiais Biocompatíveis/química , Polímeros/química , Alicerces Teciduais/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/toxicidade , Células Cultivadas , Ésteres/química , Fibroblastos/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Polimerização , Polímeros/síntese química , Polímeros/metabolismo , Polímeros/toxicidade , Reologia , Engenharia Tecidual/métodos , Raios Ultravioleta
2.
PLoS One ; 7(7): e41005, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22815893

RESUMO

SHIP-1 is an inositol phosphatase predominantly expressed in hematopoietic cells. Over the ten past years, SHIP-1 has been described as an important regulator of immune functions. Here, we characterize a new inhibitory function for SHIP-1 in NOD2 signaling. NOD2 is a crucial cytoplasmic bacterial sensor that activates proinflammatory and antimicrobial responses upon bacterial invasion. We observed that SHIP-1 decreases NOD2-induced NF-κB activation in macrophages. This negative regulation relies on its interaction with XIAP. Indeed, we observed that XIAP is an essential mediator of the NOD2 signaling pathway that enables proper NF-κB activation in macrophages. Upon NOD2 activation, SHIP-1 C-terminal proline rich domain (PRD) interacts with XIAP, thereby disturbing the interaction between XIAP and RIP2 in order to decrease NF-κB signaling.


Assuntos
NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Células Epiteliais/citologia , Regulação da Expressão Gênica , Humanos , Sistema Imunitário , Inflamação , Inositol Polifosfato 5-Fosfatases , Macrófagos/citologia , Macrófagos/metabolismo , Modelos Biológicos , Monócitos/citologia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Estrutura Terciária de Proteína , Transdução de Sinais
3.
Biochem Pharmacol ; 80(12): 2021-31, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20643110

RESUMO

For almost 10 years, Nod2 has been known as a cytosolic innate receptor able to sense peptidoglycan from Gram-positive and -negative bacteria and to trigger RIP2- and NF-κB-mediated pro-inflammatory and antibacterial response. Mutations in the gene encoding Nod2 in humans have been associated with Crohn's disease (CD). Mechanisms by which Nod2 variants can lead to CD development are still under investigation. The most admitted hypothesis suggests that the impaired function of Nod2 variants in intestinal epithelial and phagocytic cells results in deficiencies in epithelial-barrier function which subsequently lead to increased bacterial invasion and inflammation at intestinal sites. Very recent results have just reinforced this hypothesis by demonstrating that Nod2 wild-type (unlike Nod2 variants) could mediate autophagy, allowing an efficient bacterial clearance and adaptative immune response. Other recent data have attributed new roles to Nod2. Indeed, Nod2 has been shown to activate antiviral innate immune responses involving IRF3-dependent IFN-ß production after viral ssRNA recognition through a RIP2-independent mechanism requiring the mitochondrial adaptor protein MAVS. Recently, Nod2 has been also shown to be exquisitely tuned to detect mycobacterial infections and mount a protective immunity against these pathogens.


Assuntos
Proteína Adaptadora de Sinalização NOD2/fisiologia , Imunidade Adaptativa , Animais , Autofagia , Infecções Bacterianas/imunologia , Infecções Bacterianas/metabolismo , Doença de Crohn/genética , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Ativação Enzimática , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Transdução de Sinais , Viroses/imunologia , Viroses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA