Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(6): 104782, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37146970

RESUMO

PKA is a downstream effector of many inflammatory mediators that induce pain hypersensitivity by increasing the mechanosensitivity of nociceptive sensory afferent. Here, we examine the molecular mechanism underlying PKA-dependent modulation of the mechanically activated ion channel PIEZO2, which confers mechanosensitivity to many nociceptors. Using phosphorylation site prediction algorithms, we identified multiple putative and highly conserved PKA phosphorylation sites located on intracellular intrinsically disordered regions of PIEZO2. Site-directed mutagenesis and patch-clamp recordings showed that substitution of one or multiple putative PKA sites within a single intracellular domain does not alter PKA-induced PIEZO2 sensitization, whereas mutation of a combination of nine putative sites located on four different intracellular regions completely abolishes PKA-dependent PIEZO2 modulation, though it remains unclear whether all or just some of these nine sites are required. By demonstrating that PIEZO1 is not modulated by PKA, our data also reveal a previously unrecognized functional difference between PIEZO1 and PIEZO2. Moreover, by demonstrating that PKA only modulates PIEZO2 currents evoked by focal mechanical indentation of the cell, but not currents evoked by pressure-induced membrane stretch, we provide evidence suggesting that PIEZO2 is a polymodal mechanosensor that engages different protein domains for detecting different types of mechanical stimuli.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Canais Iônicos , Mecanotransdução Celular , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Mecanotransdução Celular/genética , Dor/fisiopatologia , Domínios Proteicos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Transporte Proteico/genética
2.
Nat Commun ; 9(1): 1640, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29691410

RESUMO

Mechanical allodynia is a major symptom of neuropathic pain whereby innocuous touch evokes severe pain. Here we identify a population of peripheral sensory neurons expressing TrkB that are both necessary and sufficient for producing pain from light touch after nerve injury in mice. Mice in which TrkB-Cre-expressing neurons are ablated are less sensitive to the lightest touch under basal conditions, and fail to develop mechanical allodynia in a model of neuropathic pain. Moreover, selective optogenetic activation of these neurons after nerve injury evokes marked nociceptive behavior. Using a phototherapeutic approach based upon BDNF, the ligand for TrkB, we perform molecule-guided laser ablation of these neurons and achieve long-term retraction of TrkB-positive neurons from the skin and pronounced reversal of mechanical allodynia across multiple types of neuropathic pain. Thus we identify the peripheral neurons which transmit pain from light touch and uncover a novel pharmacological strategy for its treatment.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hiperalgesia/terapia , Terapia a Laser , Glicoproteínas de Membrana/metabolismo , Neuralgia/metabolismo , Neuralgia/terapia , Proteínas Tirosina Quinases/metabolismo , Células Receptoras Sensoriais/efeitos da radiação , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Feminino , Humanos , Hiperalgesia/genética , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Ligantes , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Neuralgia/genética , Neuralgia/fisiopatologia , Proteínas Tirosina Quinases/genética , Células Receptoras Sensoriais/metabolismo , Tato/efeitos da radiação
3.
Elife ; 72018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29521261

RESUMO

Piezo2 ion channels are critical determinants of the sense of light touch in vertebrates. Yet, their regulation is only incompletely understood. We recently identified myotubularin related protein-2 (Mtmr2), a phosphoinositide (PI) phosphatase, in the native Piezo2 interactome of murine dorsal root ganglia (DRG). Here, we demonstrate that Mtmr2 attenuates Piezo2-mediated rapidly adapting mechanically activated (RA-MA) currents. Interestingly, heterologous Piezo1 and other known MA current subtypes in DRG appeared largely unaffected by Mtmr2. Experiments with catalytically inactive Mtmr2, pharmacological blockers of PI(3,5)P2 synthesis, and osmotic stress suggest that Mtmr2-dependent Piezo2 inhibition involves depletion of PI(3,5)P2. Further, we identified a PI(3,5)P2 binding region in Piezo2, but not Piezo1, that confers sensitivity to Mtmr2 as indicated by functional analysis of a domain-swapped Piezo2 mutant. Altogether, our results propose local PI(3,5)P2 modulation via Mtmr2 in the vicinity of Piezo2 as a novel mechanism to dynamically control Piezo2-dependent mechanotransduction in peripheral sensory neurons.


Assuntos
Canais Iônicos/genética , Mecanotransdução Celular/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Células Receptoras Sensoriais/metabolismo , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Gânglios Espinais/crescimento & desenvolvimento , Gânglios Espinais/fisiologia , Humanos , Canais Iônicos/química , Camundongos , Pressão Osmótica/fisiologia , Nervos Periféricos/metabolismo , Nervos Periféricos/fisiologia , Fosfoinositídeo Fosfolipase C/genética , Fosfolipídeos/química , Fosfolipídeos/genética , Proteínas Tirosina Fosfatases não Receptoras/antagonistas & inibidores , Células Receptoras Sensoriais/fisiologia
4.
Handb Exp Pharmacol ; 220: 251-82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24668476

RESUMO

Nerve growth factor (NGF) is central to the development and functional regulation of sensory neurons that signal the first events that lead to pain. These sensory neurons, called nociceptors, require NGF in the early embryo to survive and also for their functional maturation. The long road from the discovery of NGF and its roles during development to the realization that NGF plays a major role in the pathophysiology of inflammatory pain will be reviewed. In particular, we will discuss the various signaling events initiated by NGF that lead to long-lasting thermal and mechanical hyperalgesia in animals and in man. It has been realized relatively recently that humanized function blocking antibodies directed against NGF show remarkably analgesic potency in human clinical trials for painful conditions as varied as osteoarthritis, lower back pain, and interstitial cystitis. Thus, anti-NGF medication has the potential to make a major impact on day-to-day chronic pain treatment in the near future. It is therefore all the more important to understand the precise pathways and mechanisms that are controlled by NGF to both initiate and sustain mechanical and thermal hyperalgesia. Recent work suggests that NGF-dependent regulation of the mechanosensory properties of sensory neurons that signal mechanical pain may open new mechanistic avenues to refine and exploit relevant molecular targets for novel analgesics.


Assuntos
Hiperalgesia/etiologia , Fator de Crescimento Neural/fisiologia , Nociceptividade/fisiologia , Dor/tratamento farmacológico , Animais , Desenvolvimento Embrionário , Humanos , Fator de Crescimento Neural/antagonistas & inibidores
5.
Transcription ; 3(6): 285-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22889842

RESUMO

The proto-oncogene c-Maf has been shown to be an important transcriptional regulator in the differentiation of a number of cellular contexts, like the eye and hematopoietic system. Here we discuss the recent progress made in understanding c-Maf function in the nervous system.


Assuntos
Proteínas Proto-Oncogênicas c-maf/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Humanos , Mecanorreceptores/fisiologia , Proto-Oncogene Mas , Fenômenos Fisiológicos da Pele , Vibração
6.
Science ; 335(6074): 1373-6, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22345400

RESUMO

The sense of touch relies on detection of mechanical stimuli by specialized mechanosensory neurons. The scarcity of molecular data has made it difficult to analyze development of mechanoreceptors and to define the basis of their diversity and function. We show that the transcription factor c-Maf/c-MAF is crucial for mechanosensory function in mice and humans. The development and function of several rapidly adapting mechanoreceptor types are disrupted in c-Maf mutant mice. In particular, Pacinian corpuscles, a type of mechanoreceptor specialized to detect high-frequency vibrations, are severely atrophied. In line with this, sensitivity to high-frequency vibration is reduced in humans carrying a dominant mutation in the c-MAF gene. Thus, our work identifies a key transcription factor specifying development and function of mechanoreceptors and their end organs.


Assuntos
Mecanorreceptores/citologia , Mecanorreceptores/fisiologia , Proteínas Proto-Oncogênicas c-maf/metabolismo , Tato , Animais , Gânglios Espinais/citologia , Gânglios Espinais/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Camundongos , Mutação , Corpúsculos de Pacini/citologia , Corpúsculos de Pacini/fisiologia , Proteínas Proto-Oncogênicas c-maf/genética , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Pele/inervação , Vibração
7.
J Physiol ; 587(Pt 14): 3493-503, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19505980

RESUMO

Mechanical stimuli impinging on the skin are converted into electrical signals by mechanically gated ion channels located at the peripheral nerve endings of dorsal root ganglion (DRG) neurons. Under inflammatory conditions sensory neurons are commonly sensitised to mechanical stimuli; a putative mechanism that may contribute to such sensitisation of sensory neurons is enhanced responsiveness of mechanotransduction ion channels. Here we show that the algogens UTP and ATP potentiate mechanosensitive RA currents in peptidergic nociceptive DRG neurons and reduce thresholds for mechanically induced action potential firing in these neurones. Pharmacological characterisation suggests that this effect is mediated by the Gq-coupled P2Y(2) nucleotide receptor. Moreover, using the in vitro skin nerve technique, we show that UTP also increases action potential firing rates in response to mechanical stimuli in a subpopulation of skin C-fibre nociceptors. Together our findings suggest that UTP sensitises a subpopulation of cutaneous C-fibre nociceptors via a previously undescribed G-protein-dependent potentiation of mechanically activated RA-type currents.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Potenciação de Longa Duração/fisiologia , Mecanotransdução Celular/fisiologia , Potenciais da Membrana/fisiologia , Nociceptores/fisiologia , Células Receptoras Sensoriais/fisiologia , Pele/inervação , Trifosfato de Adenosina/administração & dosagem , Animais , Células Cultivadas , Potenciação de Longa Duração/efeitos dos fármacos , Mecanotransdução Celular/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Nociceptores/efeitos dos fármacos , Estimulação Física/métodos , Células Receptoras Sensoriais/efeitos dos fármacos , Pele/efeitos dos fármacos , Fenômenos Fisiológicos da Pele , Uridina Trifosfato/administração & dosagem
8.
Mol Pharmacol ; 68(5): 1387-96, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16099842

RESUMO

Presynaptic inhibition of transmitter release is commonly mediated by a direct interaction between G protein betagamma subunits and voltage-activated Ca2+ channels. To search for an alternative pathway, the mechanisms by which presynaptic bradykinin receptors mediate an inhibition of noradrenaline release from rat superior cervical ganglion neurons were investigated. The peptide reduced noradrenaline release triggered by K+-depolarization but not that evoked by ATP, with Ca2+ channels being blocked by Cd2+. Bradykinin also reduced Ca2+ current amplitudes measured at neuronal somata, and this effect was pertussis toxin-insensitive, voltage-independent, and developed slowly within 1 min. The inhibition of Ca2+ currents was abolished by a phospholipase C inhibitor, but it was not altered by a phospholipase A2 inhibitor, by the depletion of intracellular Ca2+ stores, or by the inactivation of protein kinase C or Rho proteins. In whole-cell recordings, the reduction of Ca2+ currents was irreversible but became reversible when 4 mM ATP or 0.2 mM dioctanoyl phosphatidylinositol-4,5-bisphosphate was included in the pipette solution. In contrast, the effect of bradykinin was entirely reversible in perforated-patch recordings but became irreversible when the resynthesis of phosphatidylinositol-4,5-bisphosphate was blocked. Thus, the inhibition of Ca2+ currents by bradykinin involved a consumption of phosphatidylinositol-4,5-bisphosphate by phospholipase C but no downstream effectors of this enzyme. The reduction of noradrenaline release by bradykinin was also abolished by the inhibition of phospholipase C or of the resynthesis of phosphatidylinositol-4,5-bisphosphate. These results show that the presynaptic inhibition was mediated by a closure of voltage-gated Ca2+ channels through depletion of membrane phosphatidylinositol bisphosphates via phospholipase C.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Fosfatidilinositol 4,5-Difosfato/fisiologia , Receptores Pré-Sinápticos/fisiologia , Transmissão Sináptica , Fosfolipases Tipo C/fisiologia , 1-Fosfatidilinositol 4-Quinase/fisiologia , Trifosfato de Adenosina/farmacologia , Animais , Bradicinina/farmacologia , Cádmio/farmacologia , Canais de Cálcio Tipo N/efeitos dos fármacos , Norepinefrina/metabolismo , Toxina Pertussis/farmacologia , Fosfatidilinositol 4,5-Difosfato/antagonistas & inibidores , Potássio/farmacologia , Proteína Quinase C/fisiologia , Ratos , Ratos Sprague-Dawley , Gânglio Cervical Superior/fisiologia , Fosfolipases Tipo C/antagonistas & inibidores
9.
Eur J Neurosci ; 20(11): 2917-28, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15579146

RESUMO

Although feedback inhibition of noradrenaline release by coreleased nucleotides is a well known phenomenon, it remained unclear which P2 receptor subtypes and associated signalling cascades may be involved. In the rat pheochromocytoma cell line PC12, 2-methylthio-ADP reduced noradrenaline release triggered by K+ depolarization more potently than ADP and ATP, whereas UDP or UTP failed to do so. The inhibition by ADP was abolished by pertussis toxin and antagonized by reactive blue 2, 2-methylthio-AMP, and AR-C69931MX, but not by suramin. AR-C69931MX acted as a competitive antagonist with an apparent affinity of 2 nm, but did not alter noradrenaline release, when PC12 cells were continuously superfused. However, when the superfusion was halted during K+ depolarization, release was significantly reduced and this inhibition was attenuated by AR-C69931MX, thus revealing ongoing autoinhibition. Rises in cellular cyclic AMP did not alter depolarization-evoked release nor its reduction by ADP, even though the nucleotide did inhibit cyclic AMP accumulation. ADP and the direct Ca2+ channel blocker Cd2+ inhibited voltage-activated Ca2+ currents, but not ATP-induced currents, and both agents reduced K+-evoked, but not ATP-evoked, release. Hence, if voltage-gated Ca2+ channels do not contribute to stimulation-evoked release, ADP fails to exert its inhibitory action. In primary cultures of rat sympathetic neurons, ADP also reduced Ca2+ currents and K+-evoked noradrenaline release, and AR-C69931MX acted again as competitive antagonist with an apparent affinity of 3 nm. These results show that P2Y12 receptors mediate an autoinhibition of transmitter release from PC12 cells and sympathetic neurons through an inhibition of voltage-gated Ca2+ channels.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Adenosina/análogos & derivados , Canais de Cálcio/metabolismo , Gânglios Simpáticos/citologia , Proteínas de Membrana/metabolismo , Inibição Neural/fisiologia , Neurônios/metabolismo , Norepinefrina/metabolismo , Fosfato de Piridoxal/análogos & derivados , Receptores Purinérgicos P2/metabolismo , 4-(3-Butoxi-4-metoxibenzil)-2-imidazolidinona/farmacologia , Monofosfato de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Cádmio/farmacologia , Canais de Cálcio/efeitos dos fármacos , Células Cultivadas , Colforsina/farmacologia , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Proteínas de Membrana/agonistas , Proteínas de Membrana/antagonistas & inibidores , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Células PC12/metabolismo , Técnicas de Patch-Clamp/métodos , Toxina Pertussis/farmacologia , Fenetilaminas , Potássio/metabolismo , Nucleotídeos de Purina/farmacologia , Agonistas do Receptor Purinérgico P2 , Antagonistas do Receptor Purinérgico P2 , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2Y12 , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Suramina/farmacologia , Tionucleosídeos/farmacologia , Trítio/metabolismo
10.
Br J Pharmacol ; 138(2): 343-50, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12540525

RESUMO

1. In PC12 cells, adenine nucleotides inhibit voltage-activated Ca(2+) currents and adenylyl cyclase activity, and the latter effect was reported to involve P2Y(12) receptors. To investigate whether these two effects are mediated by one P2Y receptor subtype, we used the antithrombotic agents 2-methylthio-AMP (2-MeSAMP) and N(6)-(2-methyl-thioethyl)-2-(3,3,3-trifluoropropylthio)-beta,gamma-dichloromethylene-ATP (AR-C69931MX). 2. ADP reduced A(2A) receptor-dependent cyclic AMP synthesis with half maximal effects at 0.1-0.17 micro M. In the presence of 30 micro M 2-MeSAMP or 100 nM AR-C69931MX, concentration response curves were shifted to the right by factors of 39 and 30, indicative of pA(2) values of 6.1 and 8.5, respectively. 3. The inhibition of Ca(2+) currents by ADP was attenuated by 10-1000 nM AR-C69931MX and by 3-300 micro M 2-MeSAMP. ADP reinhibited Ca(2+) currents after removal of 2-MeSAMP within less than 15 s, but required 2 min to do so after removal of AR-C69931MX. 4. ADP inhibited Ca(2+) currents with half maximal effects at 5-20 micro M. AR-C69931MX (10-100 nM) displaced concentration response curves to the right, and the resulting Schild plot showed a slope of 1.09 and an estimated pK(B) value of 8.7. Similarly, 10-100 micro M 2-MeSAMP also caused rightward shifts resulting in a Schild plot with a slope of 0.95 and an estimated pK(B) of 5.4. 5. The inhibition of Ca(2+) currents by 2-methylthio-ADP and ADPbetaS was also antagonized by AR-C69931MX, which (at 30 nM) caused a rightward shift of the concentration response curve for ADPbetaS by a factor of 3.8, indicative of a pA(2) value of 8.1. 6. These results show that antithrombotic drugs antagonize the inhibition of neuronal Ca(2+) channels by adenine nucleotides, which suggests that this effect is mediated by P2Y(12) receptors.


Assuntos
Canais de Cálcio/fisiologia , Fibrinolíticos/farmacologia , Proteínas de Membrana , Neurônios/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2 , Receptores Purinérgicos P2/fisiologia , Inibidores de Adenilil Ciclases , Animais , Relação Dose-Resposta a Droga , Neurônios/fisiologia , Células PC12 , Ratos , Receptores Purinérgicos P2Y12
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA