Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 9831, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561790

RESUMO

Non-alcoholic fatty liver disease (NAFLD) affects over 30% of adults in the United States. Bone morphogenetic protein (BMP) signaling is known to contribute to hepatic fibrosis, but the role of BMP signaling in the development of NAFLD is unclear. In this study, treatment with either of two BMP inhibitors reduced hepatic triglyceride content in diabetic (db/db) mice. BMP inhibitor-induced decrease in hepatic triglyceride levels was associated with decreased mRNA encoding Dgat2, an enzyme integral to triglyceride synthesis. Treatment of hepatoma cells with BMP2 induced DGAT2 expression and activity via intracellular SMAD signaling. In humans we identified a rare missense single nucleotide polymorphism in the BMP type 1 receptor ALK6 (rs34970181;R371Q) associated with a 2.1-fold increase in the prevalence of NAFLD. In vitro analyses revealed R371Q:ALK6 is a previously unknown constitutively active receptor. These data show that BMP signaling is an important determinant of NAFLD in a murine model and is associated with NAFLD in humans.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais , Animais , Biomarcadores/sangue , Linhagem Celular Tumoral , Diacilglicerol O-Aciltransferase/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo
2.
Arterioscler Thromb Vasc Biol ; 39(2): 178-187, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30587002

RESUMO

Objective- Inflammatory stimuli enhance the progression of atherosclerotic disease. Inflammation also increases the expression of hepcidin, a hormonal regulator of iron homeostasis, which decreases intestinal iron absorption, reduces serum iron levels and traps iron within macrophages. The role of macrophage iron in the development of atherosclerosis remains incompletely understood. The objective of this study was to investigate the effects of hepcidin deficiency and decreased macrophage iron on the development of atherosclerosis. Approach and Results- Hepcidin- and LDL (low-density lipoprotein) receptor-deficient ( Hamp-/-/ Ldlr-/-) mice and Hamp+/+/ Ldlr-/- control mice were fed a high-fat diet for 21 weeks. Compared with control mice, Hamp-/-/ Ldlr-/- mice had decreased aortic macrophage activity and atherosclerosis. Because hepcidin deficiency is associated with both increased serum iron and decreased macrophage iron, the possibility that increased serum iron was responsible for decreased atherosclerosis in Hamp-/-/ Ldlr-/- mice was considered. Hamp+/+/ Ldlr-/- mice were treated with iron dextran so as to produce a 2-fold increase in serum iron. Increased serum iron did not decrease atherosclerosis in Hamp+/+/ Ldlr-/- mice. Aortic macrophages from Hamp-/-/ Ldlr-/- mice had less labile free iron and exhibited a reduced proinflammatory (M1) phenotype compared with macrophages from Hamp+/+/ Ldlr-/- mice. THP1 human macrophages treated with an iron chelator were used to model hepcidin deficiency in vitro. Treatment with an iron chelator reduced LPS (lipopolysaccharide)-induced M1 phenotypic expression and decreased uptake of oxidized LDL. Conclusions- In summary, in a hyperlipidemic mouse model, hepcidin deficiency was associated with decreased macrophage iron, a reduced aortic macrophage inflammatory phenotype and protection from atherosclerosis. The results indicate that decreasing hepcidin activity, with the resulting decrease in macrophage iron, may prove to be a novel strategy for the treatment of atherosclerosis.


Assuntos
Aterosclerose/etiologia , Hepcidinas/fisiologia , Animais , Aterosclerose/prevenção & controle , Feminino , Hepcidinas/deficiência , Ferro/sangue , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de LDL/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA