Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cells ; 45(9): 610-619, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35983702

RESUMO

Cellular senescence plays a paradoxical role in tumorigenesis through the expression of diverse senescence-associated (SA) secretory phenotypes (SASPs). The heterogeneity of SA gene expression in cancer cells not only promotes cancer stemness but also protects these cells from chemotherapy. Despite the potential correlation between cancer and SA biomarkers, many transcriptional changes across distinct cell populations remain largely unknown. During the past decade, single-cell RNA sequencing (scRNA-seq) technologies have emerged as powerful experimental and analytical tools to dissect such diverse senescence-derived transcriptional changes. Here, we review the recent sequencing efforts that successfully characterized scRNA-seq data obtained from diverse cancer cells and elucidated the role of senescent cells in tumor malignancy. We further highlight the functional implications of SA genes expressed specifically in cancer and stromal cell populations in the tumor microenvironment. Translational research leveraging scRNA-seq profiling of SA genes will facilitate the identification of novel expression patterns underlying cancer susceptibility, providing new therapeutic opportunities in the era of precision medicine.


Assuntos
Senescência Celular , Neoplasias , Biomarcadores , Senescência Celular/genética , Humanos , Neoplasias/genética , Análise de Célula Única , Microambiente Tumoral/genética
2.
Cells ; 11(3)2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35159237

RESUMO

The leptin receptor (LepR) acts as a signaling nexus for the regulation of glucose uptake and obesity, among other metabolic responses. The functional role of LepR under leptin-deficient conditions remains unclear. This study reports that epiregulin (EREG) governed glucose uptake in vitro and in vivo in Lepob mice by activating LepR under leptin-deficient conditions. Single and long-term treatment with EREG effectively rescued glucose intolerance in comparative insulin and EREG tolerance tests in Lepob mice. The immunoprecipitation study revealed binding between EREG and LepR in adipose tissue of Lepob mice. EREG/LepR regulated glucose uptake without changes in obesity in Lepob mice via mechanisms, including ERK activation and translocation of GLUT4 to the cell surface. EREG-dependent glucose uptake was abolished in Leprdb mice which supports a key role of LepR in this process. In contrast, inhibition of the canonical epidermal growth factor receptor (EGFR) pathway implicated in other EREG responses, increased glucose uptake. Our data provide a basis for understanding glycemic responses of EREG that are dependent on LepR unlike functions mediated by EGFR, including leptin secretion, thermogenesis, pain, growth, and other responses. The computational analysis identified a conserved amino acid sequence, supporting an evolutionary role of EREG as an alternative LepR ligand.


Assuntos
Intolerância à Glucose , Receptores para Leptina , Animais , Glicemia/metabolismo , Epirregulina , Receptores ErbB , Leptina/metabolismo , Ligantes , Camundongos , Obesidade/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo
3.
J Dairy Sci ; 102(10): 8614-8621, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31351710

RESUMO

Bovine colostrum (BC) has been used for nutraceutical purposes for animals and humans. Bovine colostrum is a complex heterogeneous product and its antimicrobial activity, antioxidant potential, and growth factors can vary depending on age and species of the cow as well as their environment. Bovine colostrum preparation in skimmed or whey fractions can also alter properties of BC. Our goal was to compare cumulative anti-inflammatory, antioxidant, and adipogenic properties of natural (whole) versus whey BC. We compared properties of whole and whey BC in 3T3-L1 preadipocytes permanently transfected with reporters responding to changes in inflammatory (NfκbRE/green fluorescent protein), anti-inflammatory (Nrf2/YFP), and adipogenic (Fabp4/cyan fluorescent protein) status in cells. Interleukin-6 secretion in these cells was measured by ELISA. Whole and whey BC induce IL-6 secretion from 3T3-L1 fibroblasts; however, whey preparation stimulated less IL-6 secretion. Cumulative inflammatory nuclear factor (NF)κB activation in the presence of lipopolysaccharide was reduced by both whole (-27%) and whey BC (-22%) compared with lipopolysaccharide-treated cells (100%). Treatment with whole BC was more effective in the reduction of NFκB activation compared with whey BC and occurred in a dose-dependent manner. In consonance with decreased NFκB activation, the Nrf2 promoter activity was also reduced in response to whole (-27%) and whey (-13%) treatments compared with nontreated cells (100%). Whole and whey BC suppressed adipogenesis, measured as induction of Fabp4, by -27 and -13%, respectively, compared with nontreated 3T3-L1 fibroblasts (100%). Our results showed distinct differences in properties of whey and whole BC that could be used to attain reduced adipogenic or cumulative inflammatory responses.


Assuntos
Adipogenia , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Colostro , Soro do Leite , Células 3T3-L1 , Animais , Bovinos , Suplementos Nutricionais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-6/metabolismo , Camundongos , NF-kappa B/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos
4.
J Endocrinol ; 239(3): 377-388, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30400011

RESUMO

Adipokine leptin regulates neuroendocrine circuits that control energy expenditure, thermogenesis and weight loss. However, canonic regulators of leptin secretion, such as insulin and malonyl CoA, do not support these processes. We hypothesize that epiregulin (EREG), a growth factor that is secreted from fibroblasts under thermogenic and cachexia conditions, induces leptin secretion associated with energy dissipation. The effects of EREG on leptin secretion were studied ex vivo, in the intra-abdominal white adipose tissue (iAb WAT) explants, as well as in vivo, in WT mice with diet-induced obesity (DIO) and in ob/ob mice. These mice were pair fed a high-fat diet and treated with intraperitoneal injections of EREG. EREG increased leptin production and secretion in a dose-dependent manner in iAb fat explants via the EGFR/MAPK pathway. After 2 weeks, the plasma leptin concentration was increased by 215% in the EREG-treated group compared to the control DIO group. EREG-treated DIO mice had an increased metabolic rate and core temperature during the active dark cycle and displayed cold-induced thermogenesis. EREG treatment reduced iAb fat mass, the major site of leptin protein production and secretion, but did not reduce the mass of the other fat depots. In the iAb fat, expression of genes supporting mitochondrial oxidation and thermogenesis was increased in EREG-treated mice vs control DIO mice. All metabolic and gene regulation effects of EREG treatment were abolished in leptin-deficient ob/ob mice. Our data revealed a new role of EREG in induction of leptin secretion leading to the energy expenditure state. EREG could be a potential target protein to regulate hypo- and hyperleptinemia, underlying metabolic and immune diseases.


Assuntos
Metabolismo Energético , Epirregulina/fisiologia , Leptina/sangue , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica , Feminino , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA