Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 100(4)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365999

RESUMO

Spay and neuter surgeries are useful in controlling pet populations, but increase obesity risk due to increased appetite, decreased metabolic rate, and decreased energy expenditure. Dietary management may help limit post-spay weight gain, but few research studies have been conducted in cats. Therefore, the objective of this study was to evaluate the effects of a high-protein, high-fiber diet (HPHF) compared to a moderate-protein, moderate-fiber diet (MPMF) in female cats following spay surgery. Twenty healthy female cats (9.5 ±â€…0.1 mo) were used. After a 4-wk baseline phase with cats fed MPMF to maintain body weight (BW), 16 cats were spayed and allotted to MPMF (n = 8) or HPHF (n = 8), with the remaining cats being sham-operated and fed MPMF (n = 4). Cats were fed to maintain BW for 12 wk and then allowed to eat up to twice that amount for another 12 wk. Daily food intake, twice weekly BW, and twice weekly body condition scores (BCS) were assessed. Back fat thickness (BF) using ultrasound, body composition using dual-energy X-ray absorptiometry (DEXA), feline body mass index (fBMI), body fat percentage estimates using zoometry measurements, serum metabolites, and voluntary physical activity levels were measured prior to spay (week 0) and every 6 wk post-spay. A treatment*time effect was observed for food intake (g/d), but not caloric intake (kcal ME/d). Caloric intake was affected by time and treatment, being reduced over the first 12 wk and reduced at higher amounts in HPHF and MPMF cats vs. sham cats. BW, BCS, and body fat percentage were affected over time. Treatment*time effects were observed for blood urea nitrogen, alkaline phosphatase, and fructosamine, whereas blood triglycerides, total cholesterol, creatinine, total protein, phosphorus, and bicarbonate were affected by time. Physical activity was reduced over time. Our results demonstrate that spay surgery affects food intake, BW, metabolism, and physical activity of cats. Dietary intervention in this study, however, led to minor changes.


Spay surgery helps control pet populations, but increases obesity due to increased appetite, decreased metabolic rate, and decreased energy expenditure. Our objective was to evaluate the effects of high-protein, high-fiber diet (HPHF), and moderate-protein, moderate-fiber diets (MPMF) in female cats following spay surgery. Of the 20 cats used, 16 were spayed and fed MPMF (n = 8) or HPHF (n = 8) and four were sham-operated and fed MPMF. Cats were fed to maintain body weight (BW) for 12 wk and then allowed to overeat for 12 wk. Food intake, BW, body condition scores (BCS), back fat thickness, body composition, feline body mass index, body fat percentage estimates, serum metabolites, and physical activity levels were measured. Over the first 12 wk, caloric intake was reduced at higher amounts in spayed versus sham cats. BW, BCS, body fat percentage, and physical activity levels were altered over time. Our results demonstrate that the diets tested had minor effects, but spaying affected cat food intake, BW, metabolism, and physical activity.


Assuntos
Antioxidantes , Condicionamento Físico Animal , Ração Animal/análise , Animais , Composição Corporal , Peso Corporal , Carnitina , Gatos , Dieta/veterinária , Feminino
2.
J Anim Sci ; 100(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34967874

RESUMO

Canine obesity is associated with reduced lifespan and metabolic dysfunction, but can be managed by dietary intervention. This study aimed to determine the effects of restricted feeding of a high-protein, high-fiber (HPHF) diet and weight loss on body composition, physical activity, blood metabolites, and fecal microbiota and metabolites of overweight dogs. Twelve spayed female dogs (age: 5.5 ± 1.1 yr; body weight [BW]: 14.8 ± 2.0 kg, body condition score [BCS]: 7.9 ± 0.8) were fed a HPHF diet during a 4-wk baseline phase to maintain BW. After baseline (week 0), dogs were first fed 80% of baseline intake and then adjusted to target 1.5% weekly weight loss for 24 wk. Body composition using dual-energy x-ray absorptiometry and blood samples (weeks 0, 6, 12, 18, and 24), voluntary physical activity (weeks 0, 7, 15, and 23), and fresh fecal samples for microbiota and metabolite analysis (weeks 0, 4, 8, 12, 16, 20, and 24) were measured over time. Microbiota data were analyzed using QIIME 2. All data were analyzed statistically over time using SAS 9.4. After 24 wk, dogs lost 31.2% of initial BW and had 1.43 ± 0.73% weight loss per week. BCS decreased (P < 0.0001) by 2.7 units, fat mass decreased (P < 0.0001) by 3.1 kg, and fat percentage decreased (P < 0.0001) by 11.7% with weight loss. Many serum metabolites and hormones were altered, with triglycerides, leptin, insulin, C-reactive protein, and interleukin-6 decreasing (P < 0.05) with weight loss. Relative abundances of fecal Bifidobacterium, Coriobacteriaceae UCG-002, undefined Muribaculaceae, Allobaculum, Eubacterium, Lachnospira, Negativivibacillus, Ruminococcus gauvreauii group, uncultured Erysipelotrichaceae, and Parasutterella increased (P < 0.05), whereas Prevotellaceae Ga6A1 group, Catenibacterium, Erysipelatoclostridium, Fusobacterium, Holdemanella, Lachnoclostridium, Lactobacillus, Megamonas, Peptoclostridium, Ruminococcus gnavus group, and Streptococcus decreased (P < 0.01) with weight loss. Despite the number of significant changes, a state of dysbiosis was not observed in overweight dogs. Fecal ammonia and secondary bile acids decreased, whereas fecal valerate increased with weight loss. Several correlations between gut microbial taxa and biological parameters were observed. Our results suggest that restricted feeding of a HPHF diet and weight loss promotes fat mass loss, minimizes lean mass loss, reduces inflammatory marker and triglyceride concentrations, and modulates fecal microbiota phylogeny and activity in overweight dogs.


Canine obesity is associated with reduced lifespan and metabolic dysfunction, but dietary intervention may aid in its management. This study aimed to determine the effects of restricted feeding of a high-protein, high-fiber (HPHF) diet and weight loss on body composition, physical activity, blood metabolites, and fecal bacteria and metabolites of overweight dogs. Twelve overweight dogs were fed a HPHF diet during a 4-wk baseline to maintain body weight and then fed to lose weight for 24 wk. Body composition, blood samples, voluntary physical activity, and fresh fecal samples were measured over time. After 24 wk, dogs lost over 30% of their initial body weight and had 1.4% weight loss per week. As expected, serum triglycerides, leptin, insulin, C-reactive protein, and interleukin-6 decreased with weight loss. The relative abundances of 4 bacterial phyla and over 30 bacterial genera were altered with weight loss. Fecal ammonia and secondary bile acid concentrations decreased, whereas fecal valerate concentrations increased with weight loss. Several correlations between fecal bacteria and physiological parameters were identified. Our results suggest that a HPHF diet and weight loss promote fat mass loss, reduce inflammatory marker and triglyceride concentrations, and modulate fecal bacterial populations and activity in overweight dogs.


Assuntos
Ração Animal , Microbiota , Ração Animal/análise , Animais , Composição Corporal , Dieta/veterinária , Cães , Fezes , Feminino , Redução de Peso
3.
BMC Gastroenterol ; 21(1): 62, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33573601

RESUMO

BACKGROUND: Cholecystectomy (XGB) is the most common abdominal surgery performed in the United States and is associated with an increased post-surgery incidence of metabolic and gastrointestinal (GI) diseases. Two main risk factors for XGB are sex (female) and age (40-50 yr), corresponding with onset of menopause. Post-menopausal estrogen loss alone facilitates metabolic dysfunction, but the effects of XGB on metabolic and GI health have yet to be investigated in this population. Study objectives were to (1) identify possible short-term effects of XGB and (2) develop a novel murine model of XGB in human menopause via subsequent ovariectomy (OVX) and assess longitudinal effects of OVX on metabolism, GI physiology, and GI microbiota in XGB mice. METHODS: Female C57BL/6 mice were utilized in two parallel studies (S1&S2). In S1, XGB mice were compared to a non-XGB baseline group after six wk. In S2, mice were XGB at wk0, either sham (SHM) or OVX at wk6, and sacrificed at wk12, wk18, and wk24. Body composition assessment and fresh fecal collections were conducted periodically. Serum and tissues were collected at sacrifice for metabolic and GI health endpoints. RESULTS: Compared to baseline, XGB increased hepatic CYP7A1 and decreased HMGCR relative expression, but did not influence BW, fat mass, or hepatic triglycerides after six wk. In S2, XGB/OVX mice had greater BW and fat mass than XGB/SHM. Cecal microbiota alpha diversity metrics were lower in XGB/OVX mice at wk24 compared the XGB/SHM. No consistent longitudinal patterns in fasting serum lipids, fecal microbial diversity, and GI gene expression were observed between S2 groups. CONCLUSIONS: In addition to developing a novel, clinically-representative model of XGB and subsequent OVX, our results suggest that OVX resulted in the expected phenotype to some extent, but that XGB may modify or mask some responses and requires further investigation.


Assuntos
Colecistectomia , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Projetos Piloto , Triglicerídeos
4.
J Anim Sci ; 98(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31820779

RESUMO

An experiment was conducted to test the hypothesis that inclusion of the direct fed microbial Clostridium butyricum in diets for weanling pigs will improve growth performance, systemic immune function, microbiota composition, and gut morphology in weaned pigs. A total of 275 newly weaned pigs (20 ± 2 d of age) with an average initial BW of 6.4 ± 0.8 kg were allotted to a randomized complete block design with 11 pens per treatment. Diets included a positive control diet containing Carbadox, a negative control diet without Carbadox, and three treatment diets in which 1,250 × 108 cfu/kg, 2,500 × 108 cfu/kg, or 3,500 × 108 cfu/kg of C. butyricum was added to the negative control diet. A two-phase feeding program was used (phase 1, 14 d; phase 2, 21 d). At the conclusion of the experiment (day 35), a blood sample was collected from one pig per pen (11 pigs per treatment) and this pig was then euthanized and digesta and tissues samples were collected. Results indicated that for the overall phase, pigs fed the positive control diet had greater (P < 0.05) ADG and ADFI and tended (P = 0.064) to have greater final BW than pigs fed the negative control diet. The ADG and G:F increased and then decreased as increasing doses of C. butyricum were included in the diet (quadratic, P < 0.05). The concentration of tumor necrosis factor-α was less (P < 0.05) in pigs fed the positive control diet compared with pigs fed the negative control diet or diets containing C. butyricum. Crypt depth tended (P = 0.08) to be less in pigs fed the negative control diet compared with pigs fed the positive control diet and villus height tended to increase as the doses of C. butyricum increased in the diets (quadratic, P = 0.08). Villus height also tended (P = 0.084) to be greater in pigs fed diets containing C. butyricum compared with pigs fed the positive control diet. Crypt depth increased as the dose of C. butyricum increased (quadratic, P < 0.05) and villus width at the bottom tended to increase (linear, P = 0.072) as the dose of C. butyricum increased in the diet. Alpha and beta diversity indices of ileal and colonic microbiota were not affected by diet. In conclusion, addition of 1,250 × 108 cfu/kg of C. butyricum, but not greater levels, to diets fed to weanling pigs increased growth performance and tended to increase villus height and crypt depth, but changes in the abundance of intestinal microbiota were not observed.


Assuntos
Ração Animal/microbiologia , Clostridium butyricum , Microbioma Gastrointestinal , Suínos/fisiologia , Animais , Peso Corporal , Dieta/veterinária , Feminino , Mucosa Intestinal/anatomia & histologia , Mucosa Intestinal/microbiologia , Intestinos/anatomia & histologia , Intestinos/microbiologia , Masculino , Distribuição Aleatória , Suínos/crescimento & desenvolvimento , Suínos/microbiologia , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA