Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Neuro Oncol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975694

RESUMO

BACKGROUND: The MEK inhibitor, selumetinib, reduces plexiform neurofibroma (PN) in pediatric patients with neurofibromatosis type 1 (NF1). Its safety and efficacy in adults with PN and effectiveness in other NF1manifestations (e.g., neurocognitive function, growth reduction, and café-au-lait spots) are unknown. METHODS: This open-label, phase 2 trial enrolled 90 pediatric or adult NF1 patients with inoperable, symptomatic, or potentially morbid, measurable PN (≥ 3 cm). Selumetinib was administered at doses of 20 or 25 mg/m2 or 50 mg q 12 hrs for 2 years. Pharmacokinetics, PN volume, growth parameters, neurocognitive function, café-au-lait spots, and quality of life (QoL) were evaluated. RESULTS: Fifty-nine children and 30 adults (median age, 16 years; range, 3-47) received an average of 22±5 (4-26) cycles of selumetinib. Eighty-eight (98.9%) out of 89 per-protocol patients showed volume reduction in the target PN (median, 40.8%; 4.2%-92.2%), and 81 (91%) patients showed partial response (≥ 20% volume reduction). The response lasted until cycle 26. Scores of neurocognitive functions (verbal comprehension, perceptual reasoning, processing speed, and full-scale IQ) significantly improved in both pediatric and adult patients (P <0.05). Prepubertal patients showed increases in height score and growth velocity (P <0.05). Café-au-lait spot intensity decreased significantly (P <0.05). Improvements in QoL and pain scores were observed in both children and adults. All adverse events were CTCAE grade 1 or 2 and were successfully managed without drug discontinuation. CONCLUSION: Selumetinib decrease PN volume in the majority of pediatric and adult NF1 patients while also showing efficacy in non-malignant diverse NF1 manifestations.

2.
Mol Genet Genomic Med ; 12(3): e2330, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38265426

RESUMO

BACKGROUND: Tuberous sclerosis complex (TSC) is an autosomal dominant multisystem disorder, caused by a loss-of-function of either TSC1 or TSC2 gene. However, in 10%-15% TSC patients there is no pathogenic variant identified in either TSC1 or TSC2 genes based on standard clinical testing. METHODS: In this study, genome sequencing was performed for families with clinical diagnosis of TSC with negative results from TSC1 and TSC2 single-gene tests. RESULTS: Herein, we report a family presenting a classical TSC phenotype with an unusual, complex structural variant involving the TSC1 gene: an intrachromosomal inverted insertion in the long arm of chromosome 9. We speculate that the inverted 9q33.3q34.13 region was inserted into the q31.2 region with the 3'-end of the breakpoint of the inversion being located within the TSC1 gene, resulting in premature termination of TSC1. CONCLUSIONS: In this study, we demonstrate the utility of genome sequencing for the identification of complex chromosomal rearrangement. Because the breakpoints are located within the deep intronic/intergenic region, this copy-neutral variant was missed by the TSC1 and TSC2 single-gene tests and contributed to an unknown etiology. Together, this finding suggests that complex structural variants may be underestimated causes for the etiology of TSC.


Assuntos
Esclerose Tuberosa , Proteínas Supressoras de Tumor , Humanos , Proteínas Supressoras de Tumor/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética , Mutação , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Cromossomos Humanos Par 9 , República da Coreia
3.
Front Endocrinol (Lausanne) ; 14: 1242387, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745698

RESUMO

Introduction: MIRAGE syndrome is a rare disease characterized by myelodysplasia, infection, growth restriction, adrenal hypoplasia, genital phenotypes, and enteropathy. Herein, we report the case of a girl with MIRAGE syndrome who presented with adrenal insufficiency and chronic diarrhea. Case presentation: The patient was born at 29 + 6 weeks of gestational age with a birth weight of 656 g (<3p). Her height and head circumference were also <3p. At birth, she presented with respiratory distress, meconium staining, and pneumomediastinum, which were managed with high-frequency ventilation and empirical antibiotics. Physical examination showed generalized hyperpigmentation and normal female genitalia. A few days after birth, polyuria and hypotension developed, and laboratory findings revealed hypoglycemia, hyponatremia, and hyperkalemia. Plasma adrenocorticotropic hormone levels were elevated with low serum cortisol levels and high plasma renin activity, which were suggestive of adrenal insufficiency. Hydrocortisone and fludrocortisone were introduced and maintained, and hyperpigmentation attenuated with time. Both kidneys looked dysplastic, and adrenal glands could not be traced on abdominal ultrasound. From the early days of life, thrombocytopenia and anemia were detected, but not to life-threatening level and slowly recovered up to the normal range. Despite aggressive nutritional support, weight gain and growth spurt were severely retarded during the hospital stay. Additionally, after introducing enteral feeding, she experienced severe diarrhea and subsequent perineal skin rashes and ulcerations. Fecal calprotectin level was highly elevated; however, a small bowel biopsy resulted in non-specific submucosal congestion. The patient was diagnosed with MIRAGE syndrome with SAMD9 gene mutation. She was discharged with tube feeding and elemental formula feeding continued, but chronic diarrhea persisted. By the time of the last follow-up at 15 months of corrected age, she was fortunately not subjected to severe invasive infection and myelodysplastic syndrome. However, she was dependent on tube feeding and demonstrated a severe developmental delay equivalent to approximately 5-6 months of age. Conclusion: The early diagnosis of adrenal crisis and hormone replacement therapy can save the life of -patients with MIRAGE syndrome; however, chronic intractable diarrhea and growth and developmental delay continue to impede the patient's well-being.


Assuntos
Insuficiência Adrenal , Hiperpigmentação , Síndromes Mielodisplásicas , Humanos , Recém-Nascido , Lactente , Feminino , Retardo do Crescimento Fetal/genética , Peptídeos e Proteínas de Sinalização Intracelular , Insuficiência Adrenal/complicações , Insuficiência Adrenal/diagnóstico , Insuficiência Adrenal/genética , Recém-Nascido Prematuro , Diarreia/genética , Síndromes Mielodisplásicas/genética
4.
Clin Genet ; 104(3): 298-312, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37270787

RESUMO

The genetic spectrum of genetic kidney diseases (GKD) and the application of genetic diagnoses to patient care were assessed by whole exome sequencing (WES) of the DNA of 172 pediatric or adult patients with various kidney diseases. WES diagnosed genetic diseases in 63 (36.6%) patients. The diagnostic yields in patients with glomerulopathy were 33.8% (25/74 pts) due to variants in 10 genes, 58.8% (20/34) in patients with tubulointerstitial disease due to variants in 18 genes, 33.3% (15/45) in patients with cystic disease/ciliopathy due to variants in 10 genes, 18.2% (2/11) in patients with congenital anomalies of the kidneys and urinary tract (CAKUT) due to variants in two genes, and 12.5% (1/8) in patients with end stage kidney disease (ESKD). The diagnosis rate was high in patients aged <1-6 years (46-50.0%), and low in patients aged ≥40 years (9.1%). Renal phenotype was reclassified in 10 (15.9%) of 63 patients and clinical management altered in 10 (15.9%) of 63 patients after genetic diagnosis. In conclusion, these findings demonstrated the diagnostic utility of WES and its effective clinical application in patients, with various kinds of kidney diseases, across the different age groups.


Assuntos
Nefrite Intersticial , Sistema Urinário , Humanos , Sequenciamento do Exoma , Rim/anormalidades , Fenótipo
5.
BMB Rep ; 56(8): 463-468, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37156631

RESUMO

Screening for genetic defects in the cells should be examined for clinical application. The Pearson syndrome (PS) patient harbored nuclear mutations in the POLG and SSBP1 genes, which could induce systemic large-scale mitochondrial genome (mtDNA) deletion. We investigated iPSCs with mtDNA deletions in PS patient and whether deletion levels could be maintained during differentiation. The iPSC clones derived from skin fibroblasts (9% deletion) and blood mononuclear cells (24% deletion) were measured for mtDNA deletion levels. Of the 13 skin-derived iPSC clones, only 3 were found to be free of mtDNA deletions, whereas all blood-derived iPSC clones were found to be free of deletions. The iPSC clones with (27%) and without mtDNA deletion (0%) were selected and performed in vitro and in vivo differentiation, such as embryonic body (EB) and teratoma formation. After differentiation, the level of deletion was retained or increased in EBs (24%) or teratoma (45%) from deletion iPSC clone, while, the absence of deletions showed in all EBs and teratomas from deletion-free iPSC clones. These results demonstrated that non-deletion in iPSCs was maintained during in vitro and in vivo differentiation, even in the presence of nuclear mutations, suggesting that deletion-free iPSC clones could be candidates for autologous cell therapy in patients. [BMB Reports 2023; 56(8): 463-468].


Assuntos
Células-Tronco Pluripotentes Induzidas , Teratoma , Humanos , DNA Mitocondrial/genética , Diferenciação Celular/genética , Terapia Baseada em Transplante de Células e Tecidos , Teratoma/genética , Proteínas de Ligação a DNA , Proteínas Mitocondriais
6.
Mol Ther ; 31(4): 1002-1016, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36755495

RESUMO

Fabry disease (FD), a lysosomal storage disorder, is caused by defective α-galactosidase (GLA) activity, which results in the accumulation of globotriaosylceramide (Gb3) in endothelial cells and leads to life-threatening complications such as left ventricular hypertrophy (LVH), renal failure, and stroke. Enzyme replacement therapy (ERT) results in Gb3 clearance; however, because of a short half-life in the body and the high immunogenicity of FD patients, ERT has a limited therapeutic effect, particularly in patients with late-onset disease or progressive complications. Because vascular endothelial cells (VECs) derived from FD-induced pluripotent stem cells display increased thrombospondin-1 (TSP1) expression and enhanced SMAD2 signaling, we screened for chemical compounds that could downregulate TSP1 and SMAD2 signaling. Fasudil reduced the levels of p-SMAD2 and TSP1 in FD-VECs and increased the expression of angiogenic factors. Furthermore, fasudil downregulated the endothelial-to-mesenchymal transition (EndMT) and mitochondrial function of FD-VECs. Oral administration of fasudil to FD mice alleviated several FD phenotypes, including LVH, renal fibrosis, anhidrosis, and heat insensitivity. Our findings demonstrate that fasudil is a novel candidate for FD therapy.


Assuntos
Doença de Fabry , Animais , Camundongos , Doença de Fabry/tratamento farmacológico , Doença de Fabry/genética , Células Endoteliais/metabolismo , alfa-Galactosidase/genética , Fenótipo , Terapia de Reposição de Enzimas
7.
JIMD Rep ; 64(1): 27-34, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36636588

RESUMO

Niemann-Pick disease type C (NPC) is a rare, autosomal recessive, lysosomal storage disease, resulting from mutations in the cholesterol trafficking proteins NPC1 or NPC2, which is characterized by progressive neurodegeneration and hepatic dysfunction. The hepatic involvement in NPC is usually neonatal cholestasis and hepatosplenomegaly. Only a few cases of severe hepatic complications were reported including acute liver failure, cirrhosis, and hepatocellular carcinoma (HCC). We described the case of a 6-year-old male with NPC with HCC. He had a history of neonatal cholestasis and motor delay. At the age of 6 months, he was diagnosed with NPC, which was confirmed by the detection of a compound heterozygous NPC1 mutation (p.C113Y/p.A927V). He presented recurrent hypoglycemia and abdominal distension. An ultrasound, computed tomography scan, and biopsy revealed that he had a stage IV HCC with pulmonary metastasis. With the literature review and this case, HCC can be a rare fatal comorbid condition in patients with NPC, particularly infantile-onset, male patients with a relatively long disease history, necessitating appropriate HCC surveillance.

8.
Mol Genet Genomic Med ; 11(4): e2127, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36564961

RESUMO

BACKGROUND: KBG syndrome is a rare genetic disorder involving macrodontia of the upper central incisors, craniofacial, skeletal, and neurologic symptoms, caused either by a heterozygous variant in ANKRD11 or deletion of 16q24.3, including ANKRD11. Diagnostic criteria were proposed in 2007 based on 50 cases, but KBG syndrome remains underdiagnosed. METHODS: Whole exome sequencing (WES) and array comparative genomic hybridization (array CGH) were conducted for genetic analysis and patient phenotypes were characterized based on medical records. RESULTS: Eight patients from seven unrelated families were confirmed with KBG syndrome. All patients (8/8, 100%) had some degree of craniofacial dysmorphism and developmental delay or intellectual disabilities. Triangular face, synophrys, anteverted nostril, prominent ears, long philtrum, and tented upper lip, which are typical facial dysmorphism findings in patients with KBG syndrome, were uniformly identified in the eight patients participating in this study, with co-occurrence rates of 4/8 (50%), 4/8 (50%), 4/8 (50%), 4/8 (50%), 5/8 (62.5%), and 5/8 (62.5%), respectively. Various clinical manifestations not included in the diagnostic criteria were observed. Six patients had point mutations in ANKRD11, one had an exonic deletion of ANKRD11, and one had a 16q24.3 microdeletion. According to the ACMG guidelines, all mutations were classified as pathogenic. The c.2454dup (p.Asn819fs*1) mutation in Pt 4 was reported previously. The remaining variants (c.397 + 1G>A, c.226 + 1G>A, c.2647del (p.Glu883Argfs*94), and c.4093C>T (p.Arg1365Ter)) were novel. CONCLUSION: The clinical and molecular features of eight patients from seven unrelated Korean families with KBG syndrome described here will assist physicians in understanding this rare genetic condition.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Deficiência Intelectual , Anormalidades Dentárias , Humanos , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Dentárias/genética , Anormalidades Dentárias/diagnóstico , Fácies , Hibridização Genômica Comparativa , Deleção Cromossômica , Proteínas Repressoras/genética , Fatores de Transcrição/genética , República da Coreia
9.
BMC Med Genomics ; 15(1): 206, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36175890

RESUMO

BACKGROUND: The genetic features and treatment strategies of lateralized overgrowth have been elusive. We performed this study to analyze the genetic characteristics and treatment results of propranolol- or alpelisib-treated patients with lateralized overgrowth. METHODS: Fifteen patients with lateralized overgrowth were involved. Clinical characteristics and whole-body magnetic resonance imaging (WB-MRI) findings were evaluated. Targeted exome sequencing with a gene panel of affected tissue and peripheral white blood cells was performed. Propranolol was administered and treatment results were evaluated. The PIK3CA inhibitor alpelisib was prescribed via a managed access program. RESULTS: The identified mutations were PIK3CA (n = 7), KRAS (n = 2), PTEN (n = 1), MAP2K3 (n = 1), GNAQ (n = 1), TBC1D4 (n = 1), and TEK (n = 1). Propranolol was prescribed in 12 patients, and 7 experienced mild improvement of symptoms. Alpelisib was prescribed in two patients with a PIK3CA mutation, and the reduction of proliferated masses after 1 year of treatment was proved by WB-MRI. CONCLUSIONS: Targeted exome sequencing identified various genetic features of lateralized overgrowth. Propranolol could be applied as an adjuvant therapy for reducing vascular symptoms, but a PIK3CA inhibitor would be the primary therapeutic strategy for PIK3CA-related overgrowth syndrome.


Assuntos
Imageamento por Ressonância Magnética , Propranolol , Classe I de Fosfatidilinositol 3-Quinases/genética , Humanos , Mutação , Propranolol/farmacologia , Propranolol/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genética , Tiazóis , Imagem Corporal Total
10.
Medicine (Baltimore) ; 101(37): e30345, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36123934

RESUMO

BACKGROUND: Fabry disease (FD) is caused by a deficiency in the activity of the lysosomal enzyme, α-galactosidase A (α-Gal A), which leads to globotriaosylceramide (Gb3) deposition in multiple tissues. The current management of FD is enzyme replacement therapy (ERT). We report on the efficacy and safety of a new agalsidase beta, ISU303, in FD. METHODS: Ten patients (7 males, 3 females) were enrolled and administered a 1 mg/kg dose of ISU303, every other week for 6 months. The primary endpoint was the normalization of plasma Gb3 level. The secondary endpoints were the changes from baseline in urine Gb3 and the plasma and urine lyso-globotriaosylsphingosine (lyso-Gb3) level. Echocardiography, renal function test, and pain-related quality of life were also assessed before and after administration. Safety evaluation was performed including vital signs, laboratory tests, electrocardiograms, antibody screening tests, and adverse events at each visit. RESULTS: At 22 weeks of treatment, plasma and urine Gb3 level decreased by a mean of 4.01 ±â€…1.29 µg/mL (range 2.50-5.70) (P = .005) and 1.12 ±â€…1.98 µg/mg Cr. (range 0.04-5.65) (P = .017), respectively. However, no significant difference was observed in plasma and urine lyso-Gb3 levels. Echocardiography also was not changed. Renal function and pain-related quality of life showed improvements, but there was no clinical significance. No severe adverse events were observed. Only 1 patient developed an anti-drug antibody without neutralizing activity during the trial. CONCLUSION: This study showed the efficacy and safety of ISU303. Treatment with ISU303 significantly resulted in plasma and urine Gb3 decrease in patients with FD. These results suggest that ISU303 is safe and effective and can alternative ERT for FD.


Assuntos
Doença de Fabry , alfa-Galactosidase , Doença de Fabry/diagnóstico , Doença de Fabry/tratamento farmacológico , Feminino , Humanos , Isoenzimas , Masculino , Dor/tratamento farmacológico , Qualidade de Vida , alfa-Galactosidase/uso terapêutico
11.
Am J Hum Genet ; 109(10): 1909-1922, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36044892

RESUMO

The transmembrane protein TMEM147 has a dual function: first at the nuclear envelope, where it anchors lamin B receptor (LBR) to the inner membrane, and second at the endoplasmic reticulum (ER), where it facilitates the translation of nascent polypeptides within the ribosome-bound TMCO1 translocon complex. Through international data sharing, we identified 23 individuals from 15 unrelated families with bi-allelic TMEM147 loss-of-function variants, including splice-site, nonsense, frameshift, and missense variants. These affected children displayed congruent clinical features including coarse facies, developmental delay, intellectual disability, and behavioral problems. In silico structural analyses predicted disruptive consequences of the identified amino acid substitutions on translocon complex assembly and/or function, and in vitro analyses documented accelerated protein degradation via the autophagy-lysosomal-mediated pathway. Furthermore, TMEM147-deficient cells showed CKAP4 (CLIMP-63) and RTN4 (NOGO) upregulation with a concomitant reorientation of the ER, which was also witnessed in primary fibroblast cell culture. LBR mislocalization and nuclear segmentation was observed in primary fibroblast cells. Abnormal nuclear segmentation and chromatin compaction were also observed in approximately 20% of neutrophils, indicating the presence of a pseudo-Pelger-Huët anomaly. Finally, co-expression analysis revealed significant correlation with neurodevelopmental genes in the brain, further supporting a role of TMEM147 in neurodevelopment. Our findings provide clinical, genetic, and functional evidence that bi-allelic loss-of-function variants in TMEM147 cause syndromic intellectual disability due to ER-translocon and nuclear organization dysfunction.


Assuntos
Deficiência Intelectual , Anormalidades Musculoesqueléticas , Anomalia de Pelger-Huët , Núcleo Celular/genética , Criança , Cromatina , Humanos , Deficiência Intelectual/genética , Perda de Heterozigosidade , Anomalia de Pelger-Huët/genética
12.
Front Genet ; 13: 829558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719373

RESUMO

The complex and evolving nature of clinical phenotypes have made genetically diagnosing pediatric patients with movement disorders difficult. Here, we describe this diverse complexity in the clinical and genetic features of a pediatric cohort examined by whole-exome sequencing (WES) and demonstrate the clinical benefit of WES as a diagnostic tool in a pediatric cohort. We evaluated 75 patients with diverse single or combined movement phenomenologies using WES. WES identified 42 variants in 37 genes (56.0%). The detection rate was highest in patients with dystonia (11/13, 84.6%), followed by ataxia (21/38, 55.3%), myoclonus (3/6, 50.0%), unspecified dyskinesia (1/4, 25.0%), tremor (1/1, 100%), respectively. Most genetically diagnosed patients (90.5%) were affected by other neurologic or systemic manifestations; congenital hypotonia (66.7%), and epilepsy (42.9%) were the most common phenotypes. The genetic diagnosis changed the clinical management for five patients (6.7%), including treatments targeting molecular abnormalities, and other systemic surveillance such as cancer screening. Early application of WES yields a high diagnostic rate in pediatric movement disorders, which can overcome the limitations of the traditional phenotype-driven strategies due to the diverse phenotypic and genetic complexity. Additionally, this early genetic diagnosis expands the patient's clinical spectrum and provides an opportunity for tailored treatment.

13.
Medicine (Baltimore) ; 101(5): e28793, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119049

RESUMO

ABSTRACT: Pearson syndrome (PS) is a multisystem mitochondrial cytopathy arising from deletions in mitochondrial DNA. Pearson syndrome is a sporadic disease that affects the hematopoietic system, pancreas, eyes, liver, and heart and the prognosis is poor. Causes of morbidity include metabolic crisis, bone marrow dysfunction, sepsis, and liver failure in early infancy or childhood. Early diagnosis may minimize complications, but suspicion of the disease is difficult and only mitochondrial DNA gene testing can identify mutations. There is no specific treatment for PS, which remains supportive care according to symptoms; however, hematopoietic stem cell transplantation may be considered in cases of bone marrow failure.We herein describe the clinical and genetic characteristics of four patients with PS. One patient presented with hypoglycemia, two developed pancytopenia, and the final patient had hypoglycemia and acute hepatitis as the primary manifestation. All patients had lactic acidosis. Additionally, all patients showed a variety of clinical features including coagulation disorder, pancreatic, adrenal, and renal tubular insufficiencies. Two patients with pancytopenia died in their early childhood. Our experience expands the phenotypic spectrum associated with PS and its clinical understanding.


Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea/diagnóstico , Erros Inatos do Metabolismo Lipídico/diagnóstico , Doenças Mitocondriais/diagnóstico , Doenças Musculares/diagnóstico , Pré-Escolar , DNA Mitocondrial , Hepatite , Humanos , Hipoglicemia , Pancitopenia
14.
Neurology ; 98(9): e938-e946, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35017312

RESUMO

BACKGROUND AND OBJECTIVES: Although the recent approval of selumetinib is expected to transform the management of children with neurofibromatosis type 1 (NF1), particularly those with symptomatic and inoperable plexiform neurofibromas, no systematic review has summarized its efficacy and safety based on the latest studies. This study was conducted to systematically evaluate the efficacy and safety of selumetinib in children with NF1. METHODS: Original articles reporting the efficacy and safety of selumetinib in patients with NF1 were identified in PubMed and EMBASE up to January 28, 2021. The pooled objective response rates (ORRs) and disease control rates (DCRs) were calculated using the DerSimonian-Laird method based on random-effects modeling. The pooled proportion of adverse events (AEs) was also calculated. The quality of the evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluation system. RESULTS: Five studies involving 126 patients were included in our analysis. The studies had a very low to moderate quality of the evidence. The pooled ORR was 73.8% (95% CI 57.3%-85.5%) and the DCR was 92.5% (95% CI 66.5%-98.7%). The 2 most common AEs were diarrhea, which had a pooled rate of 63.8% (95% CI 52.9%-73.4%), and an increase in creatine kinase levels, which had a pooled rate of 63.3% (95% CI 35.6%-84.3%). DISCUSSION: Our results indicate that selumetinib is an effective and safe treatment for pediatric patients with symptomatic, inoperable plexiform neurofibromas. Further larger-scale randomized controlled studies are needed to confirm the long-term outcome of patients treated with this drug.


Assuntos
Neurofibroma Plexiforme , Neurofibromatose 1 , Benzimidazóis/efeitos adversos , Criança , Diarreia , Humanos , Neurofibromatose 1/complicações , Neurofibromatose 1/tratamento farmacológico
15.
Orphanet J Rare Dis ; 17(1): 24, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093157

RESUMO

BACKGROUND: Neurofibromatosis type 1 (NF1) is a common human genetic disease with age-dependent phenotype progression. The overview of clinical and radiological findings evaluated by whole-body magnetic resonance imaging (WBMRI) in NF1 patients < 3 years old assessed with a genetic contribution to disease progression is presented herein. METHODS: This study included 70 clinically or genetically diagnosed NF1 patients who received WBMRI before 3 years old. Clinical, genetic, and radiologic features were collected by retrospective chart review. In NF1+, widely spread diffuse cutaneous neurofibromas, developmental delay, autism, seizure, cardiac abnormalities, hearing defect, optic pathway glioma, severe plexiform neurofibromas (> 3 cm in diameter, disfigurement, accompanying pain, bony destruction, or located para-aortic area), brain tumors, nerve root tumors, malignant peripheral nerve sheath tumors, moyamoya disease, and bony dysplasia were included. RESULTS: The age at WBMRI was 1.6 ± 0.7 years old, and NF1 mutations were found in 66 patients (94.3%). Focal areas of signal intensity (FASI) were the most common WBMRI finding (66.1%), followed by optic pathway glioma (15.7%), spine dural ectasia (12.9%), and plexiform neurofibromas (10.0%). Plexiform neurofibromas and NF1+ were more prevalent in familial case (28.7% vs 5.7%, p = 0.030; 71.4% vs 30.2%, p = 0.011). Follow-up WBMRI was conducted in 42 patients (23 girls and 19 boys) after 1.21 ± 0.50 years. FASI and radiologic progression were more frequent in patients with mutations involving GTPase activating protein-related domain (77.8% vs 52.4%, p = 0.047; 46.2% vs 7.7%, p = 0.029). CONCLUSIONS: WBMRI provides important information for the clinical care for young pediatric NF1 patients. As NF1 progresses in even these young patients, and is related to family history and the affected NF1 domains, serial evaluation with WBMRI should be assessed based on the clinical and genetic features for the patients' best care.


Assuntos
Neurofibromatose 1 , Criança , Progressão da Doença , Humanos , Imageamento por Ressonância Magnética/métodos , Neurofibromatose 1/diagnóstico por imagem , Neurofibromatose 1/genética , Estudos Retrospectivos , Imagem Corporal Total
16.
Front Immunol ; 12: 782780, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950147

RESUMO

Mevalonic aciduria (MA) is the most severe clinical subtype of mevalonate kinase deficiency (MKD) caused by an inherited defect in the mevalonate pathway. The treatment of MKD focuses on the suppression of recurrent hyperinflammatory attacks using anti-inflammatory drugs. Recently, allogeneic hematopoietic stem cell transplantation (HCT) was shown to successfully ameliorate autoinflammatory attacks in patients with MKD. Here, we report a case of an infant who showed severe recurrent systemic inflammation and was diagnosed with MA. Although she responded to steroids, her symptoms relapsed after the dose was tapered, and organ deterioration occurred. Therefore, at the age of 11 months, HCT from a matched, unrelated donor was performed for curative treatment. However, at 50 days after transplantation, acute myeloid leukemia was diagnosed, which was chemo-refractory. A second HCT from her haploidentical father was performed to treat the acute myeloid leukemia, but the patient died of sepsis on day 4 after transplantation. This is the first report of malignancy following HCT for MA. Our findings suggest that normalizing the mevalonate pathway after HCT in patients with MKD impacts patients differently depending on the clinical spectrum and severity of disease.


Assuntos
Leucemia Mieloide Aguda/complicações , Deficiência de Mevalonato Quinase/complicações , Deficiência de Mevalonato Quinase/diagnóstico , Biomarcadores , Biópsia , Medula Óssea/patologia , Evolução Fatal , Feminino , Transplante de Células-Tronco Hematopoéticas , Humanos , Hibridização in Situ Fluorescente , Lactente , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Deficiência de Mevalonato Quinase/terapia , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Análise de Sequência de DNA , Avaliação de Sintomas , Transplante Haploidêntico , Sequenciamento do Exoma
17.
BMC Med Genomics ; 14(1): 254, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34706719

RESUMO

BACKGROUND: The switch/sucrose nonfermenting (SWI/SNF) complex is an adenosine triphosphate-dependent chromatin-remodeling complex associated with the regulation of DNA accessibility. Germline mutations in the components of the SWI/SNF complex are related to human developmental disorders, including the Coffin-Siris syndrome (CSS), Nicolaides-Baraitser syndrome (NCBRS), and nonsyndromic intellectual disability. These disorders are collectively referred to as SWI/SNF complex-related intellectual disability disorders (SSRIDDs). METHODS: Whole-exome sequencing was performed in 564 Korean patients with neurodevelopmental disorders. Twelve patients with SSRIDDs (2.1%) were identified and their medical records were retrospectively analyzed. RESULTS: ARID1B, found in eight patients, was the most frequently altered gene. Four patients harbored pathogenic variants in SMARCA4, SMARCB1, ARID2, and SMARCA2. Ten patients were diagnosed with CSS, and one patient without a typical phenotype was diagnosed with ARID1B-related nonsyndromic intellectual disability. Another patient harboring the SMARCA2 pathogenic variant was diagnosed with NCBRS. All pathogenic variants in ARID1B were truncating, whereas variants in SMARCA2, SMARCB1, and SMARCA4 were nontruncating (missense). Frequently observed phenotypes were thick eyebrows (10/12), hypertrichosis (8/12), coarse face (8/12), thick lips (8/12), and long eyelashes (8/12). Developmental delay was observed in all patients, and profound speech delay was also characteristic. Agenesis or hypoplasia of the corpus callosum was observed in half of the patients (6/12). CONCLUSIONS: SSRIDDs have a broad disease spectrum, including NCBRS, CSS, and ARID1B-related nonsyndromic intellectual disability. Thus, SSRIDDs should be considered as a small but important cause of human developmental disorders.


Assuntos
Anormalidades Múltiplas/genética , Face/anormalidades , Deformidades Congênitas do Pé/genética , Deformidades Congênitas da Mão/genética , Hipotricose/genética , Deficiência Intelectual/genética , Micrognatismo/genética , Pescoço/anormalidades , Fenótipo , Fácies , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , República da Coreia
18.
Stem Cell Reports ; 16(8): 1985-1998, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34242618

RESUMO

Costello syndrome (CS) is an autosomal dominant disorder caused by mutations in HRAS. Although CS patients have skeletal abnormalities, the role of mutated HRAS in bone development remains unclear. Here, we use CS induced pluripotent stem cells (iPSCs) undergoing osteogenic differentiation to investigate how dysregulation of extracellular matrix (ECM) remodeling proteins contributes to impaired osteogenesis. Although CS patient-derived iPSCs develop normally to produce mesenchymal stem cells (MSCs), the resulting CS MSCs show defective osteogenesis with reduced alkaline phosphatase activity and lower levels of bone mineralization. We found that hyperactivation of SMAD3 signaling during the osteogenic differentiation of CS MSCs leads to aberrant expression of ECM remodeling proteins such as MMP13, TIMP1, and TIMP2. CS MSCs undergoing osteogenic differentiation also show reduced ß-catenin signaling. Knockdown of TIMPs permits normal differentiation of CS MSCs into osteoblasts and enhances ß-catenin signaling in a RUNX2-independent manner. Thus, this study demonstrates that enhanced TIMP expression induced by hyperactivated SMAD3 signaling impairs the osteogenic development of CS MSCs via an inactivation of ß-catenin signaling.


Assuntos
Diferenciação Celular/genética , Síndrome de Costello/genética , Proteínas da Matriz Extracelular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Fosfatase Alcalina/metabolismo , Calcificação Fisiológica/genética , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Síndrome de Costello/metabolismo , Síndrome de Costello/patologia , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Humanos , Osteoblastos/citologia , Osteoblastos/metabolismo , Transdução de Sinais/genética , Proteína Smad3/genética , Proteína Smad3/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
19.
BMC Med Genomics ; 14(1): 177, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217267

RESUMO

BACKGROUND: This study aimed to use whole-exome sequencing (WES) to diagnose ultra-rare renal diseases and the clinical impact of such an approach on patient care. METHODS: Clinical, radiological, pathological, and genetic findings were reviewed in the patients and their family members. RESULTS: Nine patients from nine unrelated Korean families were included in the study and evaluated. WES identified eight different conditions in these patients, i.e., autosomal dominant tubulointerstitial kidney disease associated with UMOD mutation; recurrent urinary stones associated with APRT deficiency; Ayme-Gripp syndrome associated with MAF mutation; short rib-thoracic dysplasia associated with IFT140 mutation; renal coloboma syndrome associated with PAX2 mutations; idiopathic infantile hypercalcemia associated with CYP24A1 mutation; and hypomagnesemia associated with TRPM mutation. Eleven different mutations, including seven novel mutations, were identified, i.e., four truncating mutations, six missense mutations, and one splice-acceptor variant. After genetic confirmation, strategies for the management of the following: medications, donor selection for renal transplantation, and surveillance for extra-renal manifestations were altered. In addition, genetic counseling was provided for the patients and their family members with respect to family member screening for affected but yet unidentified patients and future reproductive planning. CONCLUSION: As WES can effectively identify ultra-rare genetic renal diseases, facilitate the diagnosis process, and improve patient care, it is a good approach to enable a better understanding of ultra-rare conditions and for the establishment of appropriate counseling, surveillance, and management strategies.


Assuntos
Sequenciamento do Exoma
20.
Respirol Case Rep ; 9(5): e00747, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33959295

RESUMO

A 19-year-old male patient was referred to our hospital for recurrent pneumothorax. He previously experienced seven episodes of pneumothorax refractory to conventional treatment including pleurodesis and wedge resection. On admission, chest computed tomography scan showed multiple cystic lesions with surrounding ground-glass opacities and several nodules in both lungs. Detailed history revealed that the patient experienced haemoptysis whenever pneumothorax developed and had a family history of sudden death. Physical examination showed large eyes with conjunctival injection, hypermobile joints, and hyper-extensive and easily bruised skin. All these findings led to the suspicion of vascular Ehlers-Danlos syndrome (EDS). Genetic testing for the diagnosis of vascular EDS was performed and a heterozygous mutation in COL3A1 gene, c.1662+1G>A (IVS23(+1) G>A), was confirmed. Clinicians should consider vascular EDS as the differential diagnosis of cystic lung disease with recurrent pneumothorax.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA