Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
J Nucl Med ; 61(5): 743-750, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31757844

RESUMO

Molecular radiotherapy using 177Lu-DOTATATE is a most effective treatment for somatostatin receptor-expressing neuroendocrine tumors. Despite its frequent and successful use in the clinic, little or no radiobiologic considerations are made at the time of treatment planning or delivery. On positive uptake on octreotide-based PET/SPECT imaging, treatment is usually administered as a standard dose and number of cycles without adjustment for peptide uptake, dosimetry, or radiobiologic and DNA damage effects in the tumor. Here, we visualized and quantified the extent of DNA damage response after 177Lu-DOTATATE therapy using SPECT imaging with 111In-anti-γH2AX-TAT. This work was a proof-of-principle study of this in vivo noninvasive biodosimeter with ß-emitting therapeutic radiopharmaceuticals. Methods: Six cell lines were exposed to external-beam radiotherapy (EBRT) or 177Lu-DOTATATE, after which the number of γH2AX foci and the clonogenic survival were measured. Mice bearing CA20948 somatostatin receptor-positive tumor xenografts were treated with 177Lu-DOTATATE or sham-treated and coinjected with 111In-anti-γH2AX-TAT, 111In-IgG-TAT control, or vehicle. Results: Clonogenic survival after external-beam radiotherapy was cell-line-specific, indicating varying levels of intrinsic radiosensitivity. Regarding in vitro cell lines treated with 177Lu-DOTATATE, clonogenic survival decreased and γH2AX foci increased for cells expressing high levels of somatostatin receptor subtype 2. Ex vivo measurements revealed a partial correlation between 177Lu-DOTATATE uptake and γH2AX focus induction between different regions of CA20948 xenograft tumors, suggesting that different parts of the tumor may react differentially to 177Lu-DOTATATE irradiation. Conclusion:111In-anti-γH2AX-TAT allows monitoring of DNA damage after 177Lu-DOTATATE therapy and reveals heterogeneous damage responses.


Assuntos
Dano ao DNA , Reparo do DNA/efeitos da radiação , Octreotida/análogos & derivados , Compostos Organometálicos/uso terapêutico , Tomografia Computadorizada de Emissão de Fóton Único , Linhagem Celular Tumoral , Histonas/metabolismo , Humanos , Radioisótopos de Índio , Octreotida/uso terapêutico
3.
J Nucl Med ; 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29959216

RESUMO

The spatial distribution of radiopharmaceuticals that emit short-range high linear-energy-transfer electrons greatly affects the absorbed dose and their biological effectiveness. The purpose of this study was to investigate the effect of heterogeneous radionuclide distribution on tumor control probability (TCP) in a micrometastases model. Methods: Cancer cell lines; MDA-MB-468, SQ20B and 231-H2N were grown as spheroids to represent micrometastases. The intracellular distribution of a representative radiopeptide (111In-labelled epidermal growth factor, EGF) and radioimmunotherapeutic (111In-labelled Trastuzumab) was determined in cell internalization experiments. The intratumoral distribution was evaluated by microautoradiography of spheroids. γH2AX staining was performed on spheroid sections to correlate DNA damage with radionuclide distribution. Experimental surviving fractions (SFexp ) were obtained using clonogenic assays. A random closed-packed algorithm, which models the random packing behavior of cells and reflects variation in the radii of cells and nuclei, was used to simulate 3-D spheroids. Calculated survival fractions (SFcal ) were generated using an iterative modelling method based on Monte Carlo determined absorbed dose with the PENELOPE code and were compared to (SFexp ). Radiobiological parameters deduced from experimental results and MC simulations were used to predict the TCP for a 3-D spheroid model. Results: Calculated SFs were in good agreement with experimental data, particularly when an increased value for relative biological effectiveness (RBE) was applied to self-dose deposited by sources located in the nucleus and when radiobiological parameters were adjusted to account for dose protraction. Only in MDA-MB-468 spheroids treated with 111In-EGF was a TCP>0.5 achieved, indicating that for this cell type the radiopeptide would be curative when targeting micrometastases. This is attributed to the relative radiosensitivity of MDA-MB-468 cells, high nuclear uptake of the radiopeptide and uniform distribution of radioactivity throughout the spheroid. Conclusion: It is imperative to include biological endpoints when evaluating the distribution of radionuclides in models emulating micrometastatic disease. The spatial distribution of radioactivity is a clear determinant of biological effect and TCP as demonstrated in this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA