Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(11): 5584-5602, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37140056

RESUMO

DNA double-strand break (DSB) repair via homologous recombination is initiated by end resection. The extent of DNA end resection determines the choice of the DSB repair pathway. Nucleases for end resection have been extensively studied. However, it is still unclear how the potential DNA structures generated by the initial short resection by MRE11-RAD50-NBS1 are recognized and recruit proteins, such as EXO1, to DSB sites to facilitate long-range resection. We found that the MSH2-MSH3 mismatch repair complex is recruited to DSB sites through interaction with the chromatin remodeling protein SMARCAD1. MSH2-MSH3 facilitates the recruitment of EXO1 for long-range resection and enhances its enzymatic activity. MSH2-MSH3 also inhibits access of POLθ, which promotes polymerase theta-mediated end-joining (TMEJ). Collectively, we present a direct role of MSH2-MSH3 in the initial stages of DSB repair by promoting end resection and influencing the DSB repair pathway by favoring homologous recombination over TMEJ.


Assuntos
Reparo do DNA , Exodesoxirribonucleases , Proteína 2 Homóloga a MutS , Proteína 3 Homóloga a MutS , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Exodesoxirribonucleases/metabolismo , Recombinação Homóloga , Proteína 2 Homóloga a MutS/metabolismo , Humanos , Linhagem Celular , DNA Helicases/metabolismo , Proteína 3 Homóloga a MutS/metabolismo
2.
J Med Chem ; 66(4): 2893-2903, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36749109

RESUMO

Strategies for developing targeted covalent inhibitors (TCIs), which have the advantages of a prolonged duration of action and selectivity toward a drug target, have attracted great interest in drug discovery. Herein, we report chemoselective covalent inhibitors that specifically target lysine ε-amine groups that conjugate with an endogenous protein to prevent disease-causing protein misfolding and aggregation. These TCIs are unique because the benzoyl group is preferentially conjugated to Lys15 at the top of the T4 binding site within transthyretin (TTR) while simultaneously releasing a potent noncovalent TTR kinetic stabilizer. The potency of these covalent inhibitors is superior to tafamidis, the only FDA-approved drug for the treatment of hereditary TTR amyloidosis. In addition to investigations into the covalent modification of TTR via reverse-phase high-performance liquid chromatography, direct methods are performed to confirm and visualize the presumed covalent interaction via mass spectrometry and X-ray crystallography.


Assuntos
Neuropatias Amiloides Familiares , Humanos , Modelos Moleculares , Neuropatias Amiloides Familiares/tratamento farmacológico , Sítios de Ligação , Descoberta de Drogas , Pré-Albumina/metabolismo
3.
Mol Biol Rep ; 50(1): 267-277, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36331742

RESUMO

Expression changes for tryptophan hydroxylase 1 (TPH1), the rate-limiting enzyme in serotonin synthesis, by environmental glutamine (GLN) were examined in mouse mastocytoma-derived P815-HTR cells. GLN-treated cells exhibited a robust increase in TPH1 mRNA after a 6 h exposure to GLN. 6-Diazo-5-oxo-L-norleucine (DON), a glutamine-utilizing glutaminase inhibitor, significantly inhibited the GLN-induction of TPH1 mRNA. Nuclear run-on assays and mRNA decay experiments demonstrated that the primary mechanism leading to increased TPH1 mRNA levels was not due to transcriptional changes, but rather due to increased TPH1 RNA stability induced by GLN. Treatment with GLN also led to activation of p38 MAP kinase, but not p42/44 MAPK. In addition, SB203580, a p38 MAP kinase specific inhibitor, completely abolished the GLN-mediated increase of TPH1 mRNA levels, suggesting the pathway stabilizing TPH1 mRNA might be mediated by the activated p38 MAP kinase pathway. Additionally, SB203580 significantly reduced the stability of TPH1 mRNA, and this reduction of the stability was not affected by GLN in the culture medium, implying a sequential signaling from GLN being mediated by p38 MAP kinase, resulting in alteration of TPH1 mRNA stability. TPH1 mRNA stability loss was also dependent on de novo protein synthesis as shown by treatment of cells with a transcriptional/translational blocker. We provide evidence that TPH1 mRNA levels are increased in response to increased exogenous GLN in mouse mastocytoma cells via a stabilization of TPH1 mRNA due to the activity of the p38 MAP kinase.


Assuntos
Mastocitoma , Mitógenos , Camundongos , Animais , Glutamina , RNA Mensageiro/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Inibidores Enzimáticos/farmacologia , Triptofano Hidroxilase/genética
4.
J Am Chem Soc ; 143(47): 19684-19696, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34758612

RESUMO

Heat shock protein 90 (Hsp90) family proteins are molecular chaperones that modulate the functions of various substrate proteins (clients) implicated in pro-tumorigenic pathways. In this study, the mitochondria-targeted antioxidant mitoquinone (MitoQ) was identified as a potent inhibitor of mitochondrial Hsp90, known as a tumor necrosis factor receptor-associated protein 1 (TRAP1). Structural analyses revealed an asymmetric bipartite interaction between MitoQ and the previously unrecognized drug binding sites located in the middle domain of TRAP1, believed to be a client binding region. MitoQ effectively competed with TRAP1 clients, and MitoQ treatment facilitated the identification of 103 TRAP1-interacting mitochondrial proteins in cancer cells. MitoQ and its redox-crippled SB-U014/SB-U015 exhibited more potent anticancer activity in vitro and in vivo than previously reported mitochondria-targeted TRAP1 inhibitors. The findings indicate that targeting the client binding site of Hsp90 family proteins offers a novel strategy for the development of potent anticancer drugs.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Compostos Organofosforados/uso terapêutico , Ubiquinona/análogos & derivados , Animais , Antineoplásicos/farmacologia , Sítios de Ligação , Proteínas de Choque Térmico HSP90/química , Células HeLa , Humanos , Camundongos Nus , Compostos Organofosforados/farmacologia , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
5.
ACS Med Chem Lett ; 12(7): 1173-1180, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34267888

RESUMO

Tumor necrosis factor receptor-associated protein 1 (TRAP1) is overexpressed in the mitochondria of various cancer cells, reprograms cellular metabolism to enable cancer cells to adapt to harsh tumor environments. As inactivation of TRAP1 induces massive apoptosis in cancer cells in vitro and in vivo, the development of TRAP1-selective inhibitors has become an attractive approach. A series of purine-8-one and pyrrolo[2,3-d]pyrimidine derivatives was developed based on TRAP1 structure and identified to be highly selective in vitro for TRAP1 over the paralogous enzymes, Hsp90α and Grp94. The TRAP1-selective inhibition strategy via utilization of the Asn171 residue of the ATP-lid was investigated using X-ray crystallography and molecular dynamics simulation studies. Among various synthesized potent TRAP1 inhibitors, 5f possessed a 65-fold selectivity over Hsp90α and a 13-fold selectivity over Grp94. Additionally, 6f had a half-maximal inhibitory concentration (IC50) of 63.5 nM for TRAP1, with a 78-fold and 30-fold selectivity over Hsp90α and Grp94, respectively.

6.
Bioorg Chem ; 101: 103901, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32590225

RESUMO

TNF Receptor Associated Protein 1 (TRAP1) is a mitochondrial paralog of Hsp90 related to the promotion of tumorigenesis in various cancers via maintaining mitochondrial integrity, reducing the production of reactive oxygen species, and reprogramming cellular metabolism. Consequently, Hsp90 and TRAP1 have been targeted to develop cancer therapeutics. Herein, we report a series of pyrazolo[3,4-d]pyrimidine derivatives that are mitochondria-permeable TRAP1 inhibitors. Structure-based drug design guided the optimization of potency, leading to the identification of compounds 47 and 48 as potent TRAP1 and Hsp90 inhibitors with good metabolic and plasma stability as well as acceptable CYP and hERG inhibition. X-ray co-crystallization studies confirmed both 47 and 48 interact with the ATP binding pocket in the TRAP1 protein. Compounds 47 and 48 demonstrated excellent anticancer efficiency in various cancer cells, with limited toxicity over normal hepatocyte and prostate cells. Mouse PC3 xenograft studies showed 47 and 48 significantly reduced tumor growth.


Assuntos
Aminas/química , Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Pirazóis/química , Pirimidinas/farmacologia , Animais , Cristalografia por Raios X , Desenho de Fármacos , Camundongos , Estrutura Molecular , Pirimidinas/química , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Bioorg Med Chem Lett ; 30(2): 126809, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31839539

RESUMO

As the most abundant heat shock protein (HSP), Hsp90 is actively involved in tumor cell growth and various responses to anti-carcinogenic stress. Hsp90 has thus emerged as a potential drug target. A structure-based drug design approach was applied to develop novel resorcinolyltriazole derivatives as Hsp90 inhibitors. Structure-activity relationships (SARs) and molecular docking were investigated to provide a rationale for binding affinity and paralog selectivity. Click chemistry between iodoethynylresorcinol and an azido derivative was used to synthesize a new family of 2-((4-resorcinolyl)-5-aryl-1,2,3-triazol-1-yl) acetates that exhibited Hsp90 binding affinities of 40-100 nM (IC50). Among the synthesized molecules, the triazole alkyl acetates displayed the highest Hsp90 binding affinities. Their potency against Hsp90 was over 100-fold stronger than against TRAP1 and 1-3-fold stronger than against Grp94. In particular, compounds 18, 19, and 30 had Hsp90 inhibitory activities of ~45 nM (IC50) and they displayed over 350-fold selectivity for Hsp90 over TRAP1.


Assuntos
Acetatos/uso terapêutico , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Acetatos/farmacologia , Proteínas de Choque Térmico HSP90/efeitos dos fármacos , Humanos , Relação Estrutura-Atividade
8.
Invest Ophthalmol Vis Sci ; 59(7): 3181-3188, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30025138

RESUMO

Purpose: We investigate the genotype and phenotype spectrum of FRMD7-associated infantile nystagmus syndrome in Korean probands. Methods: A total of 37 patients with infantile nystagmus syndrome were recruited prospectively for genetic analysis. We performed polymerase chain reaction (PCR)-based direct sequencing and haplotype analysis for FRMD7. Detailed ophthalmic examinations and eye movement recordings were compared between FRMD7 and non-FRMD7 groups. Results: In 13 (35%) of 37 patients, five different mutations of FRMD7 were detected: start codon mutation c.1A>G, splice site mutation c.162+6T>C, and three missense mutations (c.575A>C, c.722A>G, and c.875T>C). The latter mutation was identified in seven unrelated patients, and always was accompanied with two single nucleotide polymorphisms of exon 12 (rs6637934, rs5977623). Compared to non-FRMD7 groups, a cup-to-disc ratio was significantly decreased in FRMD7 groups (P < 0.001), and a disc-macula distance to disc diameter ratio markedly increased in the FRMD7 group (P = 0.015). Most patients in the FRMD7 group had at least two types of the nystagmus waveforms, and the most common type was unidirectional jerk nystagmus (75%), such as pure jerk and jerk with extended foveation, followed by pendular (25%), bidirectional jerk (19%), and dual jerk (6%) nystagmus. No significant differences were observed between FRMD7 and non-FRMD7 groups in terms of the nystagmus waveform, presence of periodic alternating nystagmus, and mean foveation time. Conclusions: We identified five FRMD7 mutations in 35% of our infantile nystagmus syndrome cohort, expanding its mutational spectrum. The missense mutation c.875T>C may be a common mutation arisen from the founder effect in Korea. Optic nerve dysplasia associated with FRMD7 mutations suggests that the abnormal development of afferent visual systems may affect neural circuitry within the oculomotor system.


Assuntos
Proteínas do Citoesqueleto/genética , Proteínas de Membrana/genética , Mutação , Nistagmo Congênito/genética , Adolescente , Adulto , Idoso , Criança , Análise Mutacional de DNA , Medições dos Movimentos Oculares , Feminino , Testes Genéticos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Nistagmo Congênito/diagnóstico , Linhagem , Fenótipo , Reação em Cadeia da Polimerase , Estudos Prospectivos , Elementos Estruturais de Proteínas , República da Coreia , Adulto Jovem
9.
Chem Commun (Camb) ; 53(66): 9226-9229, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28766590

RESUMO

Alkyl halides are potentially mutagenic carcinogens. However, no efficient fluorescent sensor for alkyl halide detection in human-derived samples has been developed to date. Herein, we report a new protein-based fluorescent sensor for alkyl halides. Analysis of the HaloTag holo-crystal structure with its covalently attached ligand revealed an unexpected cavity, allowing for the design of a new fluorogenic ligand. This ligand showed the highest fluorescence response (300-fold) and fastest binding kinetics (t1/2 < 150 s) to a HaloTag mutant (M175P) protein. This protein-based sensor system was effectively used to detect alkyl halides in human serum and monitor real-time protein alkylation.

10.
J Med Chem ; 60(17): 7569-7578, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28816449

RESUMO

Although Hsp90 inhibitors can inhibit multiple tumorigenic pathways in cancer cells, their anticancer activity has been disappointingly modest. However, by forcing Hsp90 inhibitors into the mitochondria with mitochondrial delivery vehicles, they were converted into potent drugs targeting the mitochondrial Hsp90 paralog TRAP1. Here, to improve mitochondrial drug accumulation without using the mitochondrial delivery vehicle, we increased freely available drug concentrations in the cytoplasm by reducing the binding of the drugs to the abundant cytoplasmic Hsp90. After analyzing X-ray cocrystal structures, the purine ring of the Hsp90 inhibitor 2 (BIIB021) was modified to pyrazolopyrimidine scaffolds. One pyrazolopyrimidine, 12b (DN401), bound better to TRAP1 than to Hsp90, inactivated the mitochondrial TRAP1 in vivo, and it exhibited potent anticancer activity. Therefore, the rationale and feasible guidelines for developing 12b can potentially be exploited to design a potent TRAP1 inhibitor.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Pirazóis/química , Pirazóis/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cristalografia por Raios X , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Humanos , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Simulação de Acoplamento Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Pirazóis/farmacocinética , Pirazóis/uso terapêutico , Pirimidinas/farmacocinética , Pirimidinas/uso terapêutico
11.
ACS Synth Biol ; 6(4): 667-677, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28035820

RESUMO

A bacterial flavin transferase (ApbE) was recently employed for flavin mononucleotide (FMN) modification on the Na+-translocating NADH:quinone oxidoreductase C (NqrC) protein in the pathogenic Gram-negative bacterium Vibrio cholerae. We employed this unique post-translational modification in mammalian cells and found that the FMN transfer reaction robustly occurred when NqrC and ApbE were genetically targeted in the cytosol of live mammalian cells. Moreover, NqrC expression in the endoplasmic reticulum (NqrC-ER) induced the retro-translocation of NqrC to the cytosol, leading to the proteasome-mediated ER-associated degradation of NqrC, which is considered to be an innate immunological response toward the bacterial protein. This unexpected cellular process of NqrC-ER could be exploited for the construction of an in cellulo proteasome inhibitor screening system, and our proposed approach yielded substantially improved results compared to a previous method. In addition, a truncated version of RnfG (half-RnfG) was found to be potentially useful as a genetically encoded tag for monitoring protein-protein interactions in a specific compartment, even in the ER, in a live cell according to its fluorogenic post-translational modification via ApbE. This new genetically encoded system in mammalian cells should serve as a valuable tool for anticancer drug screening and other applications in molecular and synthetic biology.


Assuntos
Proteínas de Bactérias/metabolismo , Flavinas/metabolismo , Transferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bortezomib/química , Bortezomib/metabolismo , Bortezomib/farmacologia , Dicroísmo Circular , Degradação Associada com o Retículo Endoplasmático/efeitos dos fármacos , Flavinas/química , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Leupeptinas/química , Leupeptinas/metabolismo , Leupeptinas/farmacologia , Microscopia Confocal , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteoma/antagonistas & inibidores , Proteoma/metabolismo , Quinona Redutases/química , Quinona Redutases/genética , Quinona Redutases/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Transferases/genética , Vibrio cholerae/enzimologia
12.
J Am Chem Soc ; 137(13): 4358-67, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25785725

RESUMO

The mitochondrial pool of Hsp90 and its mitochondrial paralogue, TRAP1, suppresses cell death and reprograms energy metabolism in cancer cells; therefore, Hsp90 and TRAP1 have been suggested as target proteins for anticancer drug development. Here, we report that the actual target protein in cancer cell mitochondria is TRAP1, and current Hsp90 inhibitors cannot effectively inactivate TRAP1 because of their insufficient accumulation in the mitochondria. To develop mitochondrial TRAP1 inhibitors, we determined the crystal structures of human TRAP1 complexed with Hsp90 inhibitors. The isopropyl amine of the Hsp90 inhibitor PU-H71 was replaced with the mitochondria-targeting moiety triphenylphosphonium to produce SMTIN-P01. SMTIN-P01 showed a different mode of action from the nontargeted PU-H71, as well as much improved cytotoxicity to cancer cells. In addition, we determined the structure of a TRAP1-adenylyl-imidodiphosphate (AMP-PNP) complex. On the basis of comparative analysis of TRAP1 structures, we propose a molecular mechanism of ATP hydrolysis that is crucial for chaperone function.


Assuntos
Benzodioxóis/química , Benzodioxóis/farmacologia , Desenho de Fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/química , Mitocôndrias/efeitos dos fármacos , Purinas/química , Purinas/farmacologia , Aminas/química , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Mitocôndrias/metabolismo , Modelos Moleculares , Compostos Organofosforados/química , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína
13.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 12): 1683-7, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25484226

RESUMO

Hsp90 is a molecular chaperone responsible for the assembly and regulation of many cellular client proteins. In particular, Trap1, a mitochondrial Hsp90 homologue, plays a pivotal role in maintaining mitochondrial integrity, protecting against apoptosis in cancer cells. The N (N-terminal)-M (middle) domain of human Trap1 was crystallized in complex with Hsp90 inhibitors (PU-H71 and BIIB-021) by the hanging-drop vapour-diffusion method at pH 6.5 and 293 K using 15% PEG 8K as a precipitant. Diffraction data were collected from crystals of the Trap1-PU-H71 (2.7 Å) and Trap1-BIIB-021 (3.1 Å) complexes to high resolution at a synchrotron-radiation source. Preliminary X-ray diffraction analysis revealed that both crystals belonged to space group P41212 or P43212, with unit-cell parameters a = b = 69.2, c = 252.5 Å, and contained one molecule per asymmetric unit according to Matthews coefficient calculations.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Sequência de Bases , Cristalização , Cristalografia por Raios X , Primers do DNA , Proteínas de Choque Térmico HSP90/química
14.
Proc Natl Acad Sci U S A ; 110(33): 13386-91, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23901103

RESUMO

P-glycoprotein (P-gp) is one of the best-known mediators of drug efflux-based multidrug resistance in many cancers. This validated therapeutic target is a prototypic, plasma membrane resident ATP-Binding Cassette transporter that pumps xenobiotic compounds out of cells. The large, polyspecific drug-binding pocket of P-gp recognizes a variety of structurally unrelated compounds. The transport of these drugs across the membrane is coincident with changes in the size and shape of this pocket during the course of the transport cycle. Here, we present the crystal structures of three inward-facing conformations of mouse P-gp derived from two different crystal forms. One structure has a nanobody bound to the C-terminal side of the first nucleotide-binding domain. This nanobody strongly inhibits the ATP hydrolysis activity of mouse P-gp by hindering the formation of a dimeric complex between the ATP-binding domains, which is essential for nucleotide hydrolysis. Together, these inward-facing conformational snapshots of P-gp demonstrate a range of flexibility exhibited by this transporter, which is likely an essential feature for the binding and transport of large, diverse substrates. The nanobody-bound structure also reveals a unique epitope on P-gp.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Sistemas de Liberação de Medicamentos/métodos , Modelos Moleculares , Conformação Proteica , Animais , Mapeamento de Epitopos , Camundongos , Anticorpos de Domínio Único/química
15.
Annu Rev Pharmacol Toxicol ; 50: 157-86, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20055701

RESUMO

Lysophosphatidic acid (LPA) is a small, ubiquitous phospholipid that acts as an extracellular signaling molecule by binding to and activating at least five known G protein-coupled receptors (GPCRs): LPA(1)-LPA(5). They are encoded by distinct genes named LPAR1-LPAR5 in humans and Lpar1-Lpar5 in mice. The biological roles of LPA are diverse and include developmental, physiological, and pathophysiological effects. This diversity is mediated by broad and overlapping expression patterns and multiple downstream signaling pathways activated by cognate LPA receptors. Studies using cloned receptors and genetic knockout mice have been instrumental in uncovering the significance of this signaling system, notably involving basic cellular processes as well as multiple organ systems such as the nervous system. This has further provided valuable proof-of-concept data to support LPA receptors and LPA metabolic enzymes as targets for the treatment of medically important diseases that include neuropsychiatric disorders, neuropathic pain, infertility, cardiovascular disease, inflammation, fibrosis, and cancer.


Assuntos
Receptores de Ácidos Lisofosfatídicos/classificação , Receptores de Ácidos Lisofosfatídicos/fisiologia , Animais , Fenômenos Fisiológicos Cardiovasculares , Fibrose , Humanos , Sistema Imunitário/fisiologia , Lisofosfolipídeos/metabolismo , Neoplasias/etiologia , Fenômenos Fisiológicos do Sistema Nervoso , Obesidade/etiologia , Receptores de Ácidos Lisofosfatídicos/agonistas , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Reprodução , Transdução de Sinais
16.
Biochim Biophys Acta ; 1791(1): 61-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19007912

RESUMO

Lysophospholipids regulate a wide array of biological processes including apoptosis and neutrophil migration. Fas/Apo-1 and its ligand (FasL) participate in neuronal cell apoptosis causing various neurological diseases. Here, we use hippocampal neuroprogenitor cells to investigate how lysophosphatidylcholine (LPC) induces apoptosis in H19-7 hippocampal progenitor cells via Fas/Fas ligand-mediated apoptotic signaling pathway. Exposed cells with LPC presented on apoptotic morphology, positive TUNEL staining, and DNA fragmentation. We found that the expression of FasL was increased after LPC treatment. Furthermore, LPC-induced H19-7 cell apoptosis was decreased by agonistic anti-FasL antibody. In addition to promotion of caspase cascade activity by LPC, the administration of the caspase inhibitor, DEVD-fmk, prevented H19-7 cell apoptosis. LPC also increased the activation of nuclear factor-kappaB (NF-kappaB), which in turn, significantly increased FasL mRNA level. The increase in FasL mRNA level by NF-kappaB transfection was significantly decreased in the presence of IkappaB-SR, a super-repressor of IkappaB. Taken together, these results demonstrate that LPC has the ability to induce apoptosis in H19-7 cells through the upregulation of FasL expression via NF-kappaB activation.


Assuntos
Apoptose/efeitos dos fármacos , Proteína Ligante Fas/metabolismo , Hipocampo/citologia , Lisofosfatidilcolinas/farmacologia , Animais , Caspases/metabolismo , Proteínas de Ciclo Celular/fisiologia , Células Cultivadas , NF-kappa B/metabolismo , Ratos , Receptores Acoplados a Proteínas G/fisiologia , Células-Tronco/efeitos dos fármacos , Regulação para Cima
17.
J Cell Biochem ; 104(3): 785-94, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18172855

RESUMO

Lysophosphatidic acid (LPA) is a lipid growth factor that exerts diverse biological effects through its cognate receptor-mediated signaling cascades. Recently, we reported that LPA stimulates cAMP response element-binding protein (CREB) through mitogen- and stress-activated protein kinase-1 (MSK1). Previously, LPA has been shown to stimulate c-fos mRNA expression in Rat-2 fibroblast cells via a serum response element binding protein (SRF). However, involvement of CREB in LPA-stimulated c-fos gene expression is not elucidated yet. To investigate the CREB-mediated c-fos activation by LPA, various c-fos promoter-reporter constructs containing wild-type and mutated SRE and CRE were tested for their inducibility by LPA in transient transfection assays. LPA-stimulated c-fos promoter activation was markedly decreased when SRE and CRE were mutated. A dominant negative CREB significantly down-regulated the LPA-stimulated c-fos promoter activation. Chromatin immunoprecipitation assay revealed that LPA induced an increased binding of phosphorylated CREB and CREB-binding protein (CBP) to the CRE region of the endogenous c-fos promoter. Immunoblot analyses with various pharmacological inhibitors further showed that LPA induces up-regulation of c-fos mRNA level by activation of ERK, p38 MAPK, and MSK1. Taken together, our results suggest that CREB plays an important role in up-regulation of c-fos mRNA level in LPA-stimulated Rat-2 fibroblast cells.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Lisofosfolipídeos/farmacologia , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-fos/biossíntese , Regulação para Cima , Animais , Fibroblastos/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
J Biol Chem ; 282(7): 4310-4317, 2007 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-17166850

RESUMO

Lysophosphatidic acid (LPA) is a bioactive lysophospholipid that signals through G protein-coupled receptors (GPCRs) to produce a range of biological responses. A recently reported fourth receptor, LPA(4)/GPR23, was notable for its low homology to the previously identified receptors LPA(1-3) and for its ability to increase intracellular concentrations of cAMP and calcium. However, the signaling pathways leading to LPA(4)-mediated induction of cAMP and calcium levels have not been reported. Using epitope-tagged LPA(4), pharmacological intervention, and G protein mini-genes, we provide independent confirmatory evidence that supports LPA(4) as a fourth LPA receptor, including LPA concentration-dependent responses and specific membrane binding. Importantly, we further demonstrate new LPA-dependent activities of LPA(4) that include the following: receptor internalization; G(12/13)- and Rho-mediated neurite retraction and stress fiber formation; G(q) protein and pertussis toxin-sensitive calcium mobilization and activation of a nonselective cation conductance; and cAMP increases mediated by G(s). The receptor is broadly expressed in embryonic tissues, including brain, as determined by Northern blot and reverse transcription-PCR analysis. Adult tissues have increased expression in skin, heart, and to a lesser extent, thymus. These data confirm the identification and extend the functionality of LPA(4) as an LPA receptor, bringing the number of independently verified LPA receptors to five, with both overlapping and distinct signaling properties and tissue expression.


Assuntos
Sinalização do Cálcio/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica/fisiologia , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores Purinérgicos P2/metabolismo , Fibras de Estresse/metabolismo , Adulto , Animais , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , AMP Cíclico/genética , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Embrião de Mamíferos/metabolismo , Ativação Enzimática , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/fisiologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genética , Humanos , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Camundongos , Neuritos/metabolismo , Especificidade de Órgãos/fisiologia , Receptores de Ácidos Lisofosfatídicos/genética , Receptores Purinérgicos P2/genética , Fibras de Estresse/genética , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
19.
J Biol Chem ; 281(33): 23589-97, 2006 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-16774927

RESUMO

The signaling effects of lysophospholipids such as lysophosphatidic acid (LPA) are mediated by G protein-coupled receptors (GPCRs). There are currently four LPA receptors known as LPA(1-4). Genetic deletion studies have identified essential biological functions for LPA receptors in mice. However, these studies have also revealed phenotypes consistent with the existence of as yet unidentified receptors. Toward identifying new LPA receptors, we have screened collections of GPCR cDNAs using reverse transfection and cell-based assays. Here we report an interim result of one screen to identify receptors that produced LPA-dependent changes in cell shape: the orphan receptor GPR92 has properties of a new LPA receptor. Sequence analyses of human GPR92 and its mouse homolog have approximately 35% amino acid identity with LPA4/GPR23. The same cell-based approaches that were used to identify and/or characterize LPA(1-4), particularly heterologous expression in B103 cells or RH7777 cells, were utilized and compared with known LPA receptors. Retroviral-mediated expression of epitope-tagged receptors was further combined with G protein minigenes and pharmacological intervention, along with calcium imaging and whole-cell patch clamp electrophysiology. LPA-dependent receptor internalization following exposure to LPA but not related lysophospholipids was observed. Furthermore, LPA induced concentration-dependent activation of G(12/13) and G(q) and increased cAMP levels. Specific [3H]LPA binding was detected in cell membranes heterologously expressing GPR92 but not control membranes. Northern blot and reverse transcriptase-PCR studies indicated a broad low level of expression in many tissues including embryonic brain and enrichment in small intestine and sensory dorsal root ganglia, as well as embryonic stem cells. These results support GPR92 as a fifth LPA receptor, LPA5, which likely has distinct physiological functions in view of its expression pattern.


Assuntos
AMP Cíclico/biossíntese , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/fisiologia , Receptores de Ácidos Lisofosfatídicos/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/química , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Ratos , Receptores de Ácidos Lisofosfatídicos/química , Receptores de Ácidos Lisofosfatídicos/metabolismo
20.
Genes Dev ; 16(24): 3199-212, 2002 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-12502741

RESUMO

Repression of E2F transcription activity by the retinoblastoma (Rb) tumor suppressor through its interaction with the transactivation domain of the E2F transcription factor is one of the central features of G1/S arrest in the mammalian cell cycle. Deregulation of the Rb-E2F interaction results in hyperproliferation, lack of differentiation, and apoptosis, and can lead to cancer. The 2.2-A crystal structure of the Rb pocket complexed with an 18-residue transactivation-domain peptide of E2F-2 reveals that the boomerang-shaped peptide binds to the highly conserved interface between the A-box and the B-box of the Rb pocket in a bipartite manner. The N-terminal segment of the E2F-2 peptide in an extended beta-strand-like structure interacts with helices from the conserved groove at the A-B interface, whereas the C-terminal segment, which contains one 3(10) helix, binds to a groove mainly formed by A-box helices. The flexibility in the middle of the E2F-2 peptide is essential for the tight association of E2F to the Rb pocket. The binding of Rb to the E2F-2 peptide conceals several conserved residues that are crucial for transcription activation of E2F. We provide the structural basis for the Rb-mediated repression of E2F transcription activity without the requirement of histone-modifying enzymes.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Fragmentos de Peptídeos/metabolismo , Proteína do Retinoblastoma/metabolismo , Fatores de Transcrição/metabolismo , Sequência Conservada , Cristalografia por Raios X , Fatores de Transcrição E2F , Fator de Transcrição E2F2 , Humanos , Dados de Sequência Molecular , Mutação , Fragmentos de Peptídeos/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteína do Retinoblastoma/genética , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície , Fatores de Transcrição/genética , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA