Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21895, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081952

RESUMO

Nonsurgical treatment and surgical repairment of injured Achilles tendons seldom restore the wounded tendon to its original elasticity and stiffness. Therefore, we hypothesized that the surgically repaired Achilles tendon can achieve satisfactory regeneration by applying multi-drug encapsulated hydrogels. In this study, a novel bupivacaine-eluting carbon dioxide-encapsulated Pluronic F127 hydrogel (BC-hydrogel) was developed for the treatment of Achilles tendon injuries. The rheological properties of BC-hydrogel were measured. A high-performance liquid chromatography assay was used to assess the release characteristics of bupivacaine in both in vitro and in vivo settings. Furthermore, the effectiveness of BC-hydrogel in treating torn tendons was examined in a rat model, and histological analyses were conducted. Evidently, the degradable hydrogels continuously eluted bupivacaine for more than 14 days. The animal study results revealed that the BC-hydrogel improved the post-surgery mobility of the animals compared with pristine hydrogels. Histological assay results demonstrated a significant reaction to high vascular endothelial growth factor in the surrounding tissues and expression of collagen I within the repaired tendon. This demonstrates the potential of this novel BC-hydrogel as an effective treatment method for Achilles tendon injuries.


Assuntos
Tendão do Calcâneo , Traumatismos dos Tendões , Ratos , Animais , Hidrogéis/farmacologia , Tendão do Calcâneo/patologia , Dióxido de Carbono/metabolismo , Poloxâmero/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Traumatismos dos Tendões/patologia , Bupivacaína/farmacologia
2.
Biomaterials ; 291: 121864, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36343608

RESUMO

Exosome-based regenerative therapies are potentially easier to manufacture and safer to apply compared to cell-based therapies. However, many questions remain about how to bio-manufacture reproducible and potent exosomes using animal-free reagents. Here we evaluate the hypothesis that designer biomaterial substrates can be used to alter the potency of exosomes secreted by human induced pluripotent stem cells (iPSCs). Two animal-free designer matrices were fabricated based on recombinant elastin-like polypeptides (ELPs): one including a cell-adhesive RGD ligand and a second with a non-adhesive RDG peptide. While iPSCs cultured on these two substrates and Matrigel-coated controls had similar levels of proliferation, the RDG-ELP substrate significantly increased protein expression of stemness markers OCT4 and SOX2 and suppressed spontaneous differentiation compared to those on RGD-ELP. The pro-survival potency of iPSC-derived exosomes was evaluated using three distinct stress tests: serum starvation in murine fibroblasts, hypoxia in human endothelial cells, and hyperosmolarity in canine kidney cells. In all three cases, exosomes produced by iPSCs grown on RDG-ELP substrates had similar pro-survival effects to those produced using iPSCs grown on Matrigel, while use of RGD-ELP substrates led to significantly reduced exosome potency. These data demonstrate that recombinant substrates can be designed for the robust bio-manufacturing of iPSC-derived, pro-survival exosomes.


Assuntos
Exossomos , Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Cães , Camundongos , Elastina/metabolismo , Exossomos/metabolismo , Células Endoteliais , Peptídeos/farmacologia , Peptídeos/metabolismo , Oligopeptídeos/farmacologia , Oligopeptídeos/metabolismo
3.
Int J Mol Sci ; 23(4)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216381

RESUMO

A novel hybrid biodegradable Nuss bar model was developed to surgically correct the pectus excavatum and reduce the associated pain during treatment. The scheme consisted of a three-dimensional (3D) printed biodegradable polylactide (PLA) Nuss bar as the surgical implant and electrospun polylactide-polyglycolide (PLGA) nanofibers loaded with lidocaine and ketorolac as the analgesic agents. The degradation rate and mechanical properties of the PLA Nuss bars were characterized after submersion in a buffered mixture for different time periods. In addition, the in vivo biocompatibility of the integrated PLA Nuss bars/analgesic-loaded PLGA nanofibers was assessed using a rabbit chest wall model. The outcomes of this work suggest that integration of PLA Nuss bar and PLGA/analgesic nanofibers could successfully enhance the results of pectus excavatum treatment in the animal model. The histological analysis also demonstrated good biocompatibility of the PLA Nuss bars with animal tissues. Eventually, the 3D printed biodegradable Nuss bars may have a potential role in pectus excavatum treatment in humans.


Assuntos
Analgésicos/farmacologia , Tórax em Funil/tratamento farmacológico , Tórax em Funil/cirurgia , Nanofibras/administração & dosagem , Animais , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Poliésteres/química , Ácido Poliglicólico/farmacologia , Impressão Tridimensional , Coelhos , Procedimentos de Cirurgia Plástica/métodos , Parede Torácica/efeitos dos fármacos , Parede Torácica/cirurgia , Resultado do Tratamento
4.
ACS Infect Dis ; 6(10): 2688-2697, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32902952

RESUMO

More than half of diabetic wounds demonstrate clinical signs of infection at presentation and lead to poor outcomes. This work develops coaxial sheath-core nanofibrous poly(lactide-co-glycolide) (PLGA) scaffolds that are loaded with bioactive antibiotics and platelet-derived growth factor (PDGF) for the repair of diabetic infectious wounds. PDGF and PLGA/antibiotic solutions were pumped, respectively, into two independent capillary tubings for coaxial electrospinning to prepare biodegradable sheath-core nanofibers. Spun nanofibrous scaffolds sustainably released PDGF, vancomycin, and gentamicin for 3 weeks. The scaffolds also reduced the phosphatase and tensin homologue content, enhanced the amount of angiogenesis marker (CD31) around the wound area, and accelerated healing in the early stage of infected diabetic wound repair. Antibiotic/biomolecule-loaded PLGA nanofibers may provide a very effective way to aid tissue regeneration at the sites of infected diabetic wounds.


Assuntos
Diabetes Mellitus , Nanofibras , Antibacterianos , Humanos , Fator de Crescimento Derivado de Plaquetas , Vancomicina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA