Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gels ; 9(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38131937

RESUMO

Starch-based hydrogels have gained significant attention in biomedical applications as a type of drug delivery system due to their biocompatibility, biodegradability, and ability to absorb and release drugs. Starch-based hydrogels can serve as effective carriers for pharmaceutical compounds such as drugs and proteins to develop drug-loaded hydrogel systems, providing controlled release over an extended period. The porous structure of a hydrogel allows for the diffusion of drugs, ensuring sustained and localized delivery to the target site. Moreover, starch-based hydrogels have been used as a powerful option in various biomedical fields, including cancer and infectious disease treatment. In addition, starch-based hydrogels have shown promise in tissue engineering applications since hydrogels can be used as scaffolds or matrices to support cell growth and tissue regeneration. Depending on techniques such as chemical crosslinking or physical gelation, it can create a three-dimensional network structure that tunes its mechanical properties and mimics the extracellular matrix. Starch-based hydrogels can also provide a supportive environment for cell attachment, proliferation, and differentiation to promote specific cellular responses and tissue regeneration processes with the loading of growth factors, cytokines, or other bioactive molecules. In this review, starch-based hydrogels as a versatile platform for various biomedical applications are discussed.

2.
Mol Pharm ; 20(11): 5278-5311, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37867343

RESUMO

Recently, stem cells and their secretomes have attracted great attention in biomedical applications, particularly extracellular vesicles (EVs). EVs are secretomes of cells for cell-to-cell communication. They play a role as intercellular messengers as they carry proteins, nucleic acids, lipids, and therapeutic agents. They have also been utilized as drug-delivery vehicles due to their biocompatibility, low immunogenicity, stability, targetability, and engineerable properties. The therapeutic potential of EVs can be further enhanced by surface engineering and modification using functional molecules such as aptamers, peptides, and antibodies. As a consequence, EVs hold great promise as effective delivery vehicles for enhancing treatment efficacy while avoiding side effects. Among various cell types that secrete EVs, stem cells are ideal sources of EVs because stem cells have unique properties such as self-renewal and regenerative potential for transplantation into damaged tissues that can facilitate their regeneration. However, challenges such as immune rejection and ethical considerations remain significant hurdles. Stem cell-derived EVs have been extensively explored as a cell-free approach that bypasses many challenges associated with cell-based therapy in cancer therapy and tissue regeneration. In this review, we summarize and discuss the current knowledge of various types of stem cells as a source of EVs, their engineering, and applications of EVs, focusing on cancer therapy and tissue engineering.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Engenharia Tecidual , Vesículas Extracelulares/metabolismo , Células-Tronco/metabolismo , Sistemas de Liberação de Medicamentos , Proteínas/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo
3.
Biomaterials ; 302: 122335, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37748419

RESUMO

The bone morphogenetic protein (BMP) signaling pathway plays a crucial role in bone development and regeneration. While BMP-2 is widely used as an alternative to autograft, its clinical application has raised concerns about adverse side effects and deteriorated bone quality. Therefore, there is a need to develop more sophisticated approaches to regulate BMP signaling and promote bone regeneration. Here, we present a novel complementary strategy that targets both BMP antagonist noggin and agonist Trb3 to enhance bone defect repair without the application of exogenous BMP-2. In vitro studies showed that overexpression of Trb3 with simultaneous noggin suppression significantly promotes osteogenic differentiation of mesenchymal stem cells. This was accompanied by increased BMP/Smad signaling. We also developed sterosome nanocarriers, a non-phospholipid liposomal system, to achieve non-viral mediated noggin suppression and Trb3 overexpression. The gene-loaded sterosomes were integrated onto an apatite-coated polymer scaffold for in vivo calvarial defect implantation, resulting in robust bone healing compared to BMP-2 treatments. Our work provides a promising alternative for high-quality bone formation by regulating expression of BMP agonists and antagonists.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Diferenciação Celular , Regeneração Óssea , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/metabolismo , Transdução de Sinais
4.
Biomater Res ; 26(1): 23, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690811

RESUMO

BACKGROUND: Layered double hydroxides (LDHs) are one type of 2-dimensional material with unique structure and strongly positive surface charge. Particularly, LDHs can be exfoliated by mono-layered double hydroxides (MLHs) as a single layer, showing an increased surface area. Therefore, there is a large focus on LDHs for drug delivery applications. Furthermore, most photosensitizers are hydrophobic that they cannot be soluble in aqueous solvents. Herein, we designed a simple way to solubilize hydrophobic photosensitizers by MLH with electrostatic interactions for anticancer photodynamic therapy (PDT), which has tremendous therapeutic advantages. The photosensitizer solubilized via loading on the MLH exhibited fluorescence and singlet oxygen-generation activities in aqueous solvent without chemical modification, resulting in photo-mediated anticancer treatment. METHODS: Negatively charged hydrophobic photosensitizers, chlorin e6 (Ce6) were solubilized by loading on the MLHs through the electrostatic interaction between positively charged MLHs. MLH/Ce6 complexes evaluated for physico-chemical characterization, pH-sensitive release property, in vitro photocytotoxicity, and in vivo tumor ablation. RESULTS: The photosensitizer solubilized via MLH exhibited fluorescence intensity and singlet-oxygen generation activities in aqueous solvent without chemical modification, resulting photocytotoxicity in cancer cells. The encapsulation efficiency of Ce6 increased to 21.2% through MLH compared to 0.6% when using LDH. In tumor-bearing mice, PDT with solubilized MLH/Ce6 indicated a tumor-suppressing effect approximately 3.4-fold greater than that obtained when Ce6 was injected alone. CONCLUSIONS: This study provided the solubilized Ce6 by the MLH in a simple way without chemical modification. We demonstrated that MLH/Ce6 complexes would have a great potential for anticancer PDT.

5.
Adv Sci (Weinh) ; 8(23): e2100118, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34693665

RESUMO

Recently, viral infectious diseases, including COVID-19 and Influenza, are the subjects of major concerns worldwide. One strategy for addressing these concerns focuses on nasal vaccines, which have great potential for achieving successful immunization via safe, easy, and affordable approaches. However, conventional nasal vaccines have major limitations resulting from fast removal when pass through nasal mucosa and mucociliary clearance hindering their effectiveness. Herein a nanoparticulate vaccine (NanoVac) exhibiting photochemical immunomodulation and constituting a new self-assembled immunization system of a photoactivatable polymeric adjuvant with influenza virus hemagglutinin for efficient nasal delivery and antigen-specific immunity against pathogenic influenza viruses is described. NanoVac increases the residence period of antigens and further enhances by spatiotemporal photochemical modulation in the nasal cavity. As a consequence, photochemical immunomodulation of NanoVacs successfully induces humoral and cellular immune responses followed by stimulation of mature dendritic cells, plasma cells, memory B cells, and CD4+ and CD8+ T cells, resulting in secretion of antigen-specific immunoglobulins, cytokines, and CD8+ T cells. Notably, challenge with influenza virus after nasal immunization with NanoVacs demonstrates robust prevention of viral infection. Thus, this newly designed vaccine system can serve as a promising strategy for developing vaccines that are active against current hazardous pathogen outbreaks and pandemics.


Assuntos
Hemaglutininas/química , Vacinas contra Influenza/administração & dosagem , Luz , Nanopartículas/química , Infecções por Orthomyxoviridae/prevenção & controle , Adjuvantes Imunológicos/administração & dosagem , Administração por Inalação , Animais , Antígenos/administração & dosagem , Antígenos/química , Antígenos/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Hemaglutininas/administração & dosagem , Hemaglutininas/imunologia , Humanos , Imunidade Celular , Imunidade Humoral , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Interferon gama/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Fármacos Fotossensibilizantes/química , Polímeros/química
6.
ACS Appl Bio Mater ; 4(6): 5189-5200, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34661086

RESUMO

Hydrogels have been widely used in bone tissue engineering due to their tunable characteristics that allow facile modifications with various biochemical properties to support cell growth and guide proper cell functions. Herein, we report a design of hydrogel-siRNA conjugate that facilitates osteogenesis via gene silencing and activation of bone morphogenetic protein (BMP) signaling. A sulfonate hydrogel is prepared by modifying chitosan with sulfoacetic acid to mimic a natural sulfated polysaccharide and to provide a hydrogel surface that enables BMP binding. Then, siRNA targeting noggin, an endogenous extracellular antagonist of BMP signaling, is covalently conjugated to the sulfonate hydrogel by visible blue light crosslinking. The sulfonate hydrogel-siRNA conjugate is efficient to bind BMPs and also successfully prolongs the release of siRNA for sustained noggin suppression, thereby resulting in significantly increased osteogenic differentiation. Lastly, demineralized bone matrix (DBM) is incorporated into the sulfonate hydrogel-siRNA conjugate, wherein the DBM incorporation induces noggin expression via a negative feedback mechanism that regulates BMP signaling in DBM. However, simultaneous delivery of siRNA downregulates noggin thus facilitating endogenous BMP activity and enhancing the osteogenic efficacy of DBM. These findings support a promising hydrogel RNA silencing platform for bone tissue engineering applications.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Proteínas Morfogenéticas Ósseas/genética , Inativação Gênica , Hidrogéis/química , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/genética
7.
Mol Pharm ; 18(4): 1677-1689, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33760625

RESUMO

Bone repair requires the tightly regulated control of multiple intrinsic and extrinsic cell types and signaling pathways. One of the positive regulatory signaling pathways in membranous and endochondral bone healing is the Hedgehog (Hh) signaling family. Here, a novel therapeutic liposomal delivery vector was developed by self-assembly of an Hh-activating cholesterol analog with an emulsifier, along with the addition of Smoothened agonist (SAG) as a drug cargo, for the enhancement of Hh signaling in bone regeneration. The drug-loaded nanoparticulate agonists of Hh signaling were immobilized onto trabecular bone-mimetic apatite-coated 3D scaffolds using bioinspired polydopamine adhesives to ensure favorable microenvironments for cell growth and local therapeutic delivery. Results showed that SAG-loaded liposomes induced a significant and dose-dependent increase in Hh-mediated osteogenic differentiation, as evidenced by in vitro analysis of bone marrow stromal cells, and in vivo calvarial bone healing, as evidenced using all radiographic parameters and histomorphometric analyses. Moreover, favorable outcomes were achieved in comparison to standards of care, including collagen sponge-delivered rBMP2 or allograft bone. In summary, this study demonstrates using a nanoparticle packaged Hh small molecule as a widely applicable bone graft substitute for robust bone repair.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Cicloexilaminas/farmacologia , Proteínas Hedgehog/metabolismo , Oxisteróis/administração & dosagem , Tiofenos/farmacologia , Alicerces Teciduais/química , Animais , Apatitas/química , Transplante Ósseo , Diferenciação Celular/efeitos dos fármacos , Cicloexilaminas/química , Modelos Animais de Doenças , Feminino , Humanos , Lipossomos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Crânio/diagnóstico por imagem , Crânio/lesões , Crânio/cirurgia , Tiofenos/química , Microtomografia por Raio-X
8.
Adv Biol (Weinh) ; 5(1): e202000135, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33585837

RESUMO

Demineralized bone matrix (DBM), a potential alternative to autologous bone-graft, has been increasingly used for clinical bone repair; however, its application in larger defects isn't successful partly due to the rapid dispersion of DBM particles and relatively lower osteoinductivity. Here, a novel strategy is created to complement the osteoinductivity of DBM by incorporating DBM in biopolymer hydrogel combined with the abrogation of BMP antagonism. Combined treatment of DBM + noggin-suppression displays increased osteogenic potency of human bone marrow mesenchymal stem cells (hBMSCs) in vitro. Injectable chitosan (MeGC)-based hydrogel with heparinization (Hep-MeGC) is further developed to localize and stabilize DBM. Noggin-suppression reveals the significant increase in osteogenesis of hBMSCs in the photopolymerizable Hep-MeGC hydrogels with the encapsulation of DBM. Moreover, the combination of DBM + noggin-suppression in the injectable Hep-MeGC hydrogel displays a robust bone healing in mouse critical-sized calvarial defects in vivo. The mechanistic analysis demonstrates that noggin-suppression increased DBM osteoinductivity by stimulating endogenous BMP/Smad signals. These results have shown promise in DBM's ability as a prominent bone grafting material while being coupled with gene editing mechanism and a localizing three-dimensional scaffold. Together, this approach poses a significant increase in the efficiency of DBM-mediated craniofacial bone repair and dental osteointegration.


Assuntos
Matriz Óssea , Células-Tronco Mesenquimais , Animais , Hidrogéis , Camundongos , Osteogênese , Polímeros
9.
Biomaterials ; 264: 120445, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33069136

RESUMO

Aberrant lineage commitment of mesenchymal stem cells (MSCs) in marrow contributes to abnormal bone formation due to reduced osteogenic and increased adipogenic potency. While several major transcriptional factors associated with lineage differentiation have been found during the last few decades, the molecular switch for MSC fate determination and its role in skeletal regeneration remains largely unknown, limiting creation of effective therapeutic approaches. Tribbles homolog 3 (Trb3), a member of tribbles family pseudokinases, is known to exert diverse roles in cellular differentiation. Here, we investigated the reciprocal role of Trb3 in the regulation of osteogenic and adipogenic differentiation of MSCs in the context of bone formation, and examined the mechanisms by which Trb3 controls the adipo-osteogenic balance. Trb3 promoted osteoblastic commitment of MSCs at the expense of adipocyte differentiation. Mechanistically, Trb3 regulated cell-fate choice of MSCs through BMP/Smad and Wnt/ß-catenin signals. Importantly, in vivo local delivery of Trb3 using a novel gelatin-conjugated caffeic acid-coated apatite/PLGA (GelCA-PLGA) scaffold stimulated robust bone regeneration and inhibited fat-filled cyst formation in rodent non-healing mandibular defect models. These findings demonstrate Trb3-based therapeutic strategies that favor osteoblastogenesis over adipogenesis for improved skeletal regeneration and future treatment of bone-loss disease. The distinctive approach implementing a scaffold-mediated local gene transfer may further broaden the translational use of targeting specific therapeutic gene related to lineage commitment for clinical bone treatment.


Assuntos
Células-Tronco Mesenquimais , Adipogenia , Regeneração Óssea , Diferenciação Celular , Linhagem da Célula , Osteogênese
10.
ACS Nano ; 14(9): 11973-11984, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32897692

RESUMO

Administration of exosomes is considered an attractive cell-free approach to skeletal repair and pathological disease treatment. However, poor yield for the production technique and unexpected therapeutic efficacy of exosomes have been obstacles to their widespread use in clinical practices. Here, we report an alternative strategy to produce exosome-related vesicles with high yields and improved regenerative capability. An extrusion approach was employed to amass exosome mimetics (EMs) from human mesenchymal stem cells (hMSCs). The collected EMs had a significantly increased proportion of vesicles positive for the exosome-specific CD-63 marker compared with MSC-derived exosomes. EMs were further obtained from genetically modified hMSCs in which expression of noggin, a natural bone morphogenetic protein antagonist, was down-regulated to enhance osteogenic properties of EMs. Moreover, the administration of hMSC-EMs in conjunction with an injectable chitosan hydrogel into mouse nonhealing calvarial defects demonstrated robust bone regeneration. Importantly, mechanistic studies revealed that the enhanced osteogenesis by EMs in which noggin was suppressed was mediated via inhibition of miR-29a. These findings demonstrate the great promise of MSC-mediated EMs and modulation of small RNA signaling for skeletal regeneration and cell-free therapy.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Animais , Regeneração Óssea , Complexo Multienzimático de Ribonucleases do Exossomo , Camundongos , RNA
11.
ACS Appl Mater Interfaces ; 12(14): 16088-16096, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32175721

RESUMO

Supramolecular hydrogels have great potential as biomaterials for tissue engineering applications or vehicles for delivering therapeutic agents. Herein, a self-healing and pro-osteogenic hydrogel system is developed based on the self-assembly of laponite nanosheets and guanidinylated chitosan, where laponite works as a physical crosslinker with osteoinductive properties to form a network structure with a cationic guanidine group on chitosan chains. The hydrogels can be prepared with varying ratios of chitosan to laponite and display self-healing and injectable properties because of supramolecular forces as well as osteoinductive activity due to nanoclay. They enhance cell adhesion and promote osteogenic differentiation of mesenchymal stem cells by activating the Wnt/ß-catenin signaling pathway. In addition, the hydrogel is used as a malleable carrier for the demineralized bone matrix (DBM). The loading of the DBM does not affect the self-healing and injectable natures of hydrogels while enhancing the osteogenic capacity, indicating that advanced allograft bone formulations with carriers can facilitate handling and bone healing. This work provides the first demonstration of therapeutic supramolecular design for the treatment of bone defects.


Assuntos
Proliferação de Células/efeitos dos fármacos , Hidrogéis/farmacologia , Osteogênese/efeitos dos fármacos , Engenharia Tecidual , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Quitosana/química , Quitosana/farmacologia , Guanidina/química , Guanidina/farmacologia , Humanos , Hidrogéis/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Alicerces Teciduais/química
12.
Chem Commun (Camb) ; 52(13): 2839-42, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26779576

RESUMO

A doxorubicin (DOX)-loaded and light-induced ROS-producing polymeric micelle (D-LRPM), in which light triggers simultaneous DOX-release and endo/lysosomal escape, produces a powerful, spatiotemporally controllable, therapeutic efficacy for tumor treatment.


Assuntos
Luz , Micelas , Polímeros/metabolismo , Espécies Reativas de Oxigênio/metabolismo
13.
Adv Healthc Mater ; 4(18): 2822-30, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26449186

RESUMO

Nanoparticles with "smart" stimuli-responsive materials and multiple therapeutic strategies in a single delivery platform have emerged for highly efficient cancer therapy. Here, photomediated reactive oxygen species (ROS)-generable nanoparticles are designed that can trigger drug release and endo/lysosomal escape upon attenuated single light irradiation, simultaneously, for synergistic chemo-photodynamic ablation. In this study, the self-ROS-generable nanoparticles (SRNs) are prepared from the polymer based on polysaccharide, chlorin e6 as ROS generator and lipoic acid as ROS scavenger covalently conjugated pullulan with anticancer drug (doxorubicin, DOX) through self-assembly, and can disassemble via the ROS-mediated reduction of lipoyl group in response to low level exogenous single light switch. After cellular internalization in hepatic cancer through asialoglycoprotein receptor (ASGPR, as pullulan receptor)-mediated endocytosis, once irradiated, SRNs are able to produce ROS that can simultaneously induce drug release triggering and endo/lysosomal escape of DOX into cytoplasm as well as directly photodynamic therapy for highly efficient chemo-photodynamic cancer therapy. This promising delivery system, which has huge potential in biomedical applications, may be optimal for smart delivery platform.


Assuntos
Doxorrubicina/farmacologia , Endossomos/metabolismo , Luz , Lisossomos/metabolismo , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Endossomos/efeitos dos fármacos , Endossomos/efeitos da radiação , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/efeitos da radiação , Microscopia de Fluorescência , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Biomacromolecules ; 15(11): 4228-38, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25251731

RESUMO

A photochemically triggered cytosolic drug delivery system based on combining tumor-targeting pH-responsive hyaluronic acid (HA) nanoparticles (PHANs) with anticancer therapeutics (doxorubicin; DOX) was successfully developed for light-induced cancer therapy. PHANs were prepared through the self-assembly of a photosensitizer (PS), chlorin e6, and a pH-responsive moiety, poly(diisopropylaminoethyl) aspartamide (PDIPASP),conjugated to HA. DOX encapsulating PHANs (DOX@PHANs) have a uniform spherical shape,a sub-100 nm size distribution and a negative surface charge. The pH-responsiveness of PHANs leads to their disassembly due to the protonation of PDIPASP, which triggers DOX release. Competitive cellular uptake and confocal microscopy studies revealed CD44 receptor-mediated endocytosis, endosomal escape capability and efficient drug targeting. Compared to treatment with free DOX or PHANs, the combined treatment with DOX@PHANs and spatiotemporally defined irradiation remarkably improved the anticancer efficacy both in vitro and in vivo studies. Therefore, this strategy shows promise for the photochemically triggered cytosolic drug delivery of therapeutic agents for light-induced cancer therapy.


Assuntos
Antineoplásicos/química , Citosol/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Ácido Hialurônico/química , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Animais , Antineoplásicos/administração & dosagem , Células HCT116 , Haplorrinos , Humanos , Ácido Hialurônico/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/administração & dosagem , Processos Fotoquímicos , Fármacos Fotossensibilizantes/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
15.
Macromol Biosci ; 14(12): 1688-95, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25251581

RESUMO

Herein, a cancer-recognizing polymeric photosensitizer (CRPP) was demonstrated not only for high water solubility but also for pH-responsive targeted photodynamic cancer therapy. The synthesized CRPP exhibited high water solubility and the pH-dependent charge-switching property. From an in vitro cellular internalization study with HCT-116 human colon cancer cells, significantly enhanced cellular uptake as detected for CRPP at pH 6.5 compared to the cellular uptake of CRPP at pH 7.4, which led to enhanced cytotoxicity in the cancer cells. Finally, the CRPP was found to exhibit high tumor-targeting efficacy in an in vivo tumor model and was finally excreted through the renal route.


Assuntos
Antineoplásicos , Neoplasias do Colo , Sistemas de Liberação de Medicamentos/métodos , Fotoquimioterapia/métodos , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
17.
Biomaterials ; 34(36): 9227-36, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24008035

RESUMO

The endolysosome is a major barrier for the effective intracellular delivery by conventional nanocarriers. Herein, we demonstrate that endolysosome environment-responsive photodynamic nanocarriers (EPNs) are capable of encapsulation of the hydrophobic drug paclitaxel (PTX) and photosensitizer (PS)-mediated ELB disruption for effective cancer therapy. EPNs were self-assembled from PS (chlorin e6, Ce6) or Black Hole Quencher-3 (BHQ3) conjugated covalently to polypeptide-based amphiphilic copolymers [monomethoxy polyethylene glycol-block-poly(ß-benzyl-L-aspartic acid), mPEG-pBLA]. EPNs have a spherical shape and a unimodal size distribution below 100 nm. Photoquenching of the EPNs was dependent on the molar ratio of mPEG-pBLA-BHQ3/mPEG-pBLA-Ce6. However, in the presence of the endolysosomal enzyme (e.g., esterase), the benzyl ester bond is cleaved which leads to the structural collapse of EPNs, thus triggering drug release and restoring photoactivity. Live cell imaging studies demonstrated that PS-mediated lipid peroxidation significantly increased the ability of model drug (i.e., Nile red) to overcome the ELB. In comparison with PTX treatment alone, the combined treatment of PTX encapsulated EPNs with laser irradiation synergistically induced the death of HeLa and drug-resistant HCT-8 cells in vitro, and suppressed CT-26 tumor growth in vivo. These results suggest that this approach is a promising platform for cancer treatment. Furthermore, this EPN system offers significant potential for effective cytosolic delivery of chemical and biological therapeutics.


Assuntos
Membrana Celular/metabolismo , Citosol/metabolismo , Sistemas de Liberação de Medicamentos , Endossomos/metabolismo , Lisossomos/metabolismo , Nanopartículas/química , Fármacos Fotossensibilizantes/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Portadores de Fármacos/química , Endossomos/efeitos dos fármacos , Fluorescência , Humanos , Lisossomos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fotoquimioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA