Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Mol Hepatol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38741238

RESUMO

Background/Aims: The major histocompatibility class II (MHC II) transactivator, known as CIITA, is induced by Interferon gamma (IFN-γ) and plays a well-established role in regulating the expression of class II MHC molecules in antigen-presenting cells. Methods: Primary human hepatocytes (PHH) were isolated via therapeutic hepatectomy from two donors who tested negative for hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), and hepatitis D virus (HDV). The hepatocellular carcinoma (HCC) cell lines HepG2 and Huh7 were used for the mechanistic study, and HBV infection was performed in HepG2-NTCP cells. HBV DNA replication intermediates and secreted antigen levels were measured using Southern blotting and ELISA, respectively. Results: We identified a non-canonical function of CIITA in the inhibition of hepatitis B virus (HBV) replication in both HCC cells and patient-derived PHH. Notably, in vivo experiments demonstrated that HBV DNA and secreted antigen levels were significantly decreased in mice injected with the CIITA construct. Mechanistically, CIITA inhibited HBV transcription and replication by suppressing the activity of HBV-specific enhancers/promoters. Indeed, CIITA exerts antiviral activity in hepatocytes through ERK1/2-mediated down-regulation of the expression of hepatocyte nuclear factor 1α (HNF1α) and HNF4α, which are essential factors for virus replication. In addition, silencing of CIITA significantly abolished the IFN-γ-mediated anti-HBV activity, suggesting that CIITA mediates the anti-HBV activity of IFN-γ to some extent. HBV X protein (HBx) counteracts the antiviral activity of CIITA via direct binding and impairing its function. Conclusions: Our findings reveal a novel antiviral mechanism of CIITA that involves the modulation of the ERK pathway to restrict HBV transcription. Additionally, our results suggest the possibility of a new immune avoidance mechanism involving HBx.

2.
Biomedicines ; 10(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35203489

RESUMO

Hepatitis B virus (HBV) is known to cause severe liver diseases such as acute or chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. Chronic hepatitis B (CHB) infection is a major health problem with nearly 300 million individuals infected worldwide. Currently, nucleos(t)ide analogs (NAs) and interferon alpha are clinically approved treatments for HBV infection. NAs are potent antiviral agents that bind to HBV polymerase and block viral reverse transcription and replication. Besifovir dipivoxil maleate (BSV) is a newly developed NA against HBV in the form of acyclic nucleotide phosphonate that is available for oral administration similar to adefovir and tenofovir. Until now, resistance to BSV treatment has not been reported. In this study, we found a CHB patient who showed viral breakthrough after long-term treatment with BSV. The isolated HBV DNA from patient's serum were cloned into the replication-competent HBV 1.2 mer and the sequence of reverse transcriptase (RT) domain of HBV polymerase were analyzed. We also examined the drug susceptibility of generated clones in vitro. Several mutations were identified in HBV RT domain. A particular mutant harboring ten RT mutations showed resistance to BSV treatment in vitro. The ten mutations include rtV23I (I), rtH55R (R), rtY124H (H), rtD134E (E), rtN139K (K), rtL180M (M), rtM204V (V), rtQ267L (L), rtL269I (I) and rtL336M (M). To further identify the responsible mutations for BSV resistance, we performed in vitro drug susceptibility assay on several artificial clones. As a result, our study revealed that rtL180M (M) and rtM204V (V) mutations, already known as lamivudine-resistant mutations, confer resistance to BSV in the CHB patient.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA