Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
bioRxiv ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38659926

RESUMO

Toll-like Receptor 3 (TLR3) is a pattern recognition receptor that initiates antiviral immune responses upon binding double-stranded RNA (dsRNA). Several nucleic acid-based TLR3 agonists have been explored clinically as vaccine adjuvants in cancer and infectious disease, but present substantial manufacturing and formulation challenges. Here, we use computational protein design to create novel miniproteins that bind to human TLR3 with nanomolar affinities. Cryo-EM structures of two minibinders in complex with TLR3 reveal that they bind the target as designed, although one partially unfolds due to steric competition with a nearby N-linked glycan. Multimeric forms of both minibinders induce NF-κB signaling in TLR3-expressing cell lines, demonstrating that they may have therapeutically relevant biological activity. Our work provides a foundation for the development of specific, stable, and easy-to-formulate protein-based agonists of TLRs and other pattern recognition receptors.

2.
Cell Commun Signal ; 21(1): 315, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924094

RESUMO

BACKGROUND: Breast cancer (BC) is the most common cancer diagnosed in women worldwide. BC stem cells (BCSCs) have been known to be involved in the carcinogenesis of the breast and contribute to therapeutic resistance. The programmed death-ligand 1 (PD-L1) expression of BC correlated with a poor prognosis. Immunotherapies that target PD-L1 have great potential and have been successful when applied to cancer treatment. However, whether PD-L1 regulates BCSC formation is unknown. METHODS: BCSCs were enriched by serum-free suspension culture. The properties of BCSCs were examined by mammosphere formation assay, CD44+/Cd24-, aldehyde dehydrogenase (ALDH) assay, CSC marker analysis, and mammosphere growth assay. To elucidate the functions of bromodomain-containing protein 4 (BRD4), nuclear PD-L1, and RelB proteins in the stemness of BCSCs, mammosphere formation was examined using BRD4 inhibitor and degrader, PD-L1 degrader, and RelB inhibitor. The antitumor function of 3',4',7,8-tetrahydroxyflavone (THF), a specific BRD4 inhibitor, was studied through in vivo tumor model and mouse studies, and the protein levels of c-Myc, PD-L1, and RelB were examined in tumor model under THF treatment. RESULTS: BRD4 was upregulated in breast CSCs and regulates the stemness of BCs. The downregulation of BRD4 using BRD4 PROTAC, ARV-825, and BRD4 inhibitor, (+)-JQ1, inhibits mammosphere formation and reduces the levels of breast CSC markers (CD44+/CD24- and ALDH1), stem cell marker genes, and mammosphere growth. BRD4 inhibitor (JQ1) and degrader (ARV825) downregulate membrane and nuclear fractions of PD-L1 through the inhibition of PD-L1 transcript levels. The knockdown of PD-L1 inhibits mammosphere formation. Verteporfin, a PD-L1 degrader, inhibits the transcripts and protein levels of PD-L1 and downregulates the transcript and protein levels of RelB. Calcitriol, a RelB inhibitor, and the knockdown of RelB using si-RelB regulate mammosphere formation through interleukin-6 (IL-6) expression. THF is a natural product and a potent selective BRD4 inhibitor, inhibits mammosphere formation, and reduces the levels of CD44+/CD24- and mammosphere growth by downregulating c-Myc, PD-L1, and RelB. 3',4',7,8-THF shows tumoricidal activity and increased levels of CD3+CD4+ and CD3+CD8+ T-cells in the tumor and tumor-draining lymph nodes (TDLNs) in the murine tumor model using 4T1 and MC38 cells. CONCLUSIONS: The results show the first evidence of the essential role of the BRD4/nuclear PD-L1/RelB axis in breast CSC formation. The nuclear PD-L1 regulates RelB, and the RelB/p65 complex induces IL6 and breast CSC formation. Targeting nuclear PD-L1 represents a potential and novel tool for immunotherapies of intractable BC. Video Abstract.


Assuntos
Neoplasias da Mama , Fatores de Transcrição , Humanos , Feminino , Animais , Camundongos , Fatores de Transcrição/metabolismo , Neoplasias da Mama/patologia , Antígeno B7-H1/metabolismo , Proteínas Nucleares/metabolismo , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/patologia , Células-Tronco Neoplásicas/metabolismo , Proliferação de Células , Proteínas de Ciclo Celular/metabolismo
3.
In Vivo ; 37(3): 1085-1092, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37103085

RESUMO

BACKGROUND/AIM: Breast cancer stem cells (BCSCs) are involved in the development of breast cancer and contribute to therapeutic resistance. This study aimed to investigate the anticancer stem cell (CSC) mechanism of 13-Oxo-9Z,11E-octadecadienoic acid (13-Oxo-ODE) as a potent CSC inhibitor in breast cancer. MATERIALS AND METHODS: The effects of 13-Oxo-ODE on BCSCs were evaluated using a mammosphere formation assay, CD44high/CD24low analysis, aldehyde dehydrogenase (ALDH) assay, apoptosis assay, quantitative real-time PCR, and western blotting. RESULTS: We found that 13-Oxo-ODE suppressed cell proliferation, CSC formation, and mammosphere proliferation and increased apoptosis of BCSCs. Additionally, 13-Oxo-ODE reduced the subpopulation of CD44high/CD24low cells and ALDH expression. Furthermore, 13-Oxo-ODE decreased c-myc gene expression. These results suggest that 13-Oxo-ODE has potential as a natural inhibitor targeting BCSCs through the degradation of c-Myc. CONCLUSION: In summary, 13-Oxo-ODE induced CSC death possibly through reduced c-Myc expression, making it a promising natural inhibitor of BCSCs.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral
4.
Anticancer Res ; 43(3): 1091-1101, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36854506

RESUMO

BACKGROUND/AIM: Breast cancer stem cells (BCSCs) are involved in carcinogenesis of the breast and contribute to therapeutic resistance. In the present study, we found that isophysalin A acts as a potent cancer stem cell inhibitor and investigated the anti-CSC mechanism of action of isophysalin A on breast cancer. MATERIALS AND METHODS: The effect of isophysalin A on BCSCs was examined using a mammosphere formation, a colony formation and a cell migration assay, as well as CD44 (Cluster of differentiation 44)high/CD24 (Cluster of differentiation 24)low analysis, an apoptosis assay, quantitative real-time PCR, western blotting, an electrophoretic mobility shift assay, and a cytokine profiling assay. RESULTS: Isophysalin A inhibited cell proliferation, colony formation, cell migration, CSC formation, and mammosphere proliferation and increased BCSC apoptosis. The subpopulation of CD44high/CD24low was decreased by isophysalin A, which also reduced the DNA binding of Stat3 and the total and nuclear protein expression levels of Stat3 and phosphorylated Stat3. Furthermore, the mRNA and media IL-6/IL-8 levels of the mammosphere were also reduced by isophysalin A. CONCLUSION: Isophysalin A inhibited the Stat3 and IL-6 signaling pathways and induced CSC death; thus, isophysalin A may be a potential natural inhibitor of BCSCs.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Apoptose , Bioensaio , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Interleucina-6/genética , Transdução de Sinais , Fator de Transcrição STAT3/genética
5.
Cells ; 11(21)2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36359868

RESUMO

Cisplatin is a potent chemotherapeutic used for the treatment of many types of cancer, but it has nephrotoxic side effects leading to acute kidney injury and subsequently chronic kidney disease (CKD). Previous work has focused on acute kidney tubular injury induced by cisplatin, whereas the chronic sequelae post-injury has not been well-explored. In the present study, we established a kidney fibroblast model of CKD induced by repeated administration of cisplatin (RAC) as a clinically relevant model. In NRK-49F rat kidney fibroblasts, RAC upregulated α-smooth muscle actin (α-SMA) and fibronectin proteins, suggesting that RAC induces kidney fibroblast-to-myofibroblast transformation. RAC also enhanced cell size, including the cell attachment surface area, nuclear area, and cell volume. Furthermore, RAC induced p21 expression and senescence-associated ß-galactosidase activity, suggesting that kidney fibroblasts exposed to RAC develop a senescent phenotype. Inhibition of p21 reduced cellular senescence, hypertrophy, and myofibroblast transformation induced by RAC. Intriguingly, after RAC, kidney fibroblasts were arrested at the G2/M phase. Repeated treatment with paclitaxel as an inducer of G2/M arrest upregulated p21, α-SMA, and fibronectin in the kidney fibroblasts. Taken together, these data suggest that RAC transforms kidney fibroblasts into myofibroblasts through G2/M arrest and cellular senescence.


Assuntos
Cisplatino , Insuficiência Renal Crônica , Ratos , Animais , Cisplatino/farmacologia , Cisplatino/metabolismo , Fibronectinas/metabolismo , Apoptose , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Senescência Celular , Fibroblastos/metabolismo , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo
6.
Nat Commun ; 13(1): 6292, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36272973

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a poor 5-year overall survival rate. Patients with PDAC display limited benefits after undergoing chemotherapy or immunotherapy modalities. Herein, we reveal that chemotherapy upregulates placental growth factor (PlGF), which directly activates cancer-associated fibroblasts (CAFs) to induce fibrosis-associated collagen deposition in PDAC. Patients with poor prognosis have high PIGF/VEGF expression and an increased number of PIGF/VEGF receptor-expressing CAFs, associated with enhanced collagen deposition. We also develop a multi-paratopic VEGF decoy receptor (Ate-Grab) by fusing the single-chain Fv of atezolizumab (anti-PD-L1) to VEGF-Grab to target PD-L1-expressing CAFs. Ate-Grab exerts anti-tumor and anti-fibrotic effects in PDAC models via the PD-L1-directed PlGF/VEGF blockade. Furthermore, Ate-Grab synergizes with gemcitabine by relieving desmoplasia. Single-cell RNA sequencing identifies that a CD141+ CAF population is reduced upon Ate-Grab and gemcitabine combination treatment. Overall, our results elucidate the mechanism underlying chemotherapy-induced fibrosis in PDAC and highlight a combinatorial therapeutic strategy for desmoplastic cancers.


Assuntos
Antineoplásicos , Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Anticorpos de Cadeia Única , Feminino , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de Crescimento Placentário/genética , Fator de Crescimento Placentário/metabolismo , Anticorpos de Cadeia Única/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Antineoplásicos/farmacologia , Fibrose , Neoplasias Pancreáticas
7.
Pharmaceuticals (Basel) ; 15(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35745583

RESUMO

Breast cancer is the leading cause of global cancer incidence and breast cancer stem cells (BCSCs) have been identified as the target to overcome breast cancer in patients. In this study, we purified a BCSC inhibitor from Dendropanax morbiferus H.Lév. leaves through several open column and high-performance liquid chromatography via activity-based purification. The purified cancer stem cell (CSC) inhibitor was identified as dihydroconiferyl ferulate using nuclear magnetic resonance and mass spectrometry. Dihydroconiferyl ferulate inhibited the proliferation and mammosphere formation of breast cancer cells and reduced the population of CD44high/CD24low cells. Dihydroconiferyl ferulate also induced apoptosis, inhibited the growth of mammospheres and reduced the level of total and nuclear EGFR protein. It suppressed the EGFR levels, the interaction of Stat3 with EGFR, and c-Myc protein levels. Our findings show that dihydroconiferyl ferulate reduced the level of nuclear epidermal growth factor receptor (EGFR) and induced apoptosis of BCSCs through nEGFR/Stat3-dependent c-Myc deregulation. Dihydroconiferyl ferulate exhibits potential as an anti-CSC agent through nEGFR/Stat3/c-Myc signaling.

8.
Exp Mol Med ; 54(5): 626-638, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35562586

RESUMO

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by inappropriate hyperglycemia, which causes endothelial dysfunction and peripheral neuropathy, ultimately leading to multiple complications. One prevalent complication is diabetic erectile dysfunction (ED), which is more severe and more resistant to treatment than nondiabetic ED. The serum glycoprotein leucine-rich ɑ-2-glycoprotein 1 (LRG1) is a modulator of TGF-ß-mediated angiogenesis and has been proposed as a biomarker for a variety of diseases, including DM. Here, we found that the adhesion GPCR latrophilin-2 (LPHN2) is a TGF-ß-independent receptor of LRG1. By interacting with LPHN2, LRG1 promotes both angiogenic and neurotrophic processes in mouse tissue explants under hyperglycemic conditions. Preclinical studies in a diabetic ED mouse model showed that LRG1 administration into the penile tissue, which exhibits significantly increased LPHN2 expression, fully restores erectile function by rescuing vascular and neurological abnormalities. Further investigations revealed that PI3K, AKT, and NF-κB p65 constitute the key intracellular signaling pathway of the LRG1/LPHN2 axis, providing important mechanistic insights into LRG1-mediated angiogenesis and nerve regeneration in DM. Our findings suggest that LRG1 can be a potential new therapeutic option for treating aberrant peripheral blood vessels and neuropathy associated with diabetic complications, such as diabetic ED.


Assuntos
Diabetes Mellitus , Disfunção Erétil , Animais , Disfunção Erétil/etiologia , Glicoproteínas/metabolismo , Humanos , Masculino , Camundongos , Neovascularização Patológica , Receptores de Peptídeos , Receptores de Fatores de Crescimento Transformadores beta , Fator de Crescimento Transformador beta/metabolismo
9.
Talanta ; 245: 123463, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35430531

RESUMO

Scents released by trees are the secondary metabolites that play various roles, including indirect plant defense against insects, attraction to pollinators, communication, adaptation to heat resistance, environmental stress, and protection from predators. In this study, the scents of three individual trees designated as Korean natural monuments (pair of Chinese junipers, Chinese juniper, and horizontal Chinese juniper tree) were analyzed using headspace in-needle microextraction (HS-INME) method with graphene oxide-polyaniline (GO-PANI) adsorbent followed by gas chromatography-mass spectrometry (GC/MS). GO-PANI layer was coated on a stainless steel wire using cyclic voltammetry (CV). It was characterized through thermogravimetric analysis (TGA), Fourier transform-infrared spectroscopy (FT-IR), and field emission-scanning electron microscope (FE-SEM). As a result, it was confirmed that the GO-PANI coating was successfully prepared. α-Longipinene, α-cedrene, and cedrol, which are representative scent components of common juniper trees, were selected as target compounds through a preliminary test and used in the optimization processes. Response surface methodology (RSM) with Box Behnken Design (BBD) was applied to optimize the experimental conditions. The developed analytical method was validated by checking the limit of detection (LOD), the limit of quantitation (LOQ), recovery rate, sensitivity, and reproducibility. Significant scientific findings from three Korean natural monuments of Juniperus chinensis were characterized by their major scent components such as α-cedrene, γ-cadinene, thujopsene, and cedrol of pungent-woody base note.


Assuntos
Juniperus , Nanocompostos , Compostos de Anilina , Cromatografia Gasosa-Espectrometria de Massas , Grafite , Nanocompostos/química , Odorantes , Reprodutibilidade dos Testes , Microextração em Fase Sólida/métodos , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Antioxidants (Basel) ; 11(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35204063

RESUMO

Glasswort (Salicornia herbacea L.) is a halophyte that exhibits antioxidant and antidiabetic effects. Only a few studies have been conducted on its antioxidant effects. Here, we isolated an antioxidant using an activity-based purification method, and the resulting compound was identified as (9Z,11E)-13-Oxooctadeca-9,11-dienoic acid (13-KODE). We investigated its ability to suppress inflammatory responses and the molecular mechanisms underlying these abilities using lipopolysaccharide-stimulated RAW 264.7 macrophage cells. We studied the anti-inflammatory effects of 13-KODE derived from S. herbacea L on RAW 264.7 macrophages. 13-KODE inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) production by suppressing inducible NO synthase and suppressed LPS-induced tumor necrosis factor and interleukin-1ß expression in RAW 264.7 macrophages. LPS-mediated nuclear localization of NF-κB and mitogen-activated protein kinase activation were inhibited by 13-KODE. 13-KODE significantly reduced LPS-induced production of reactive oxygen species and increased the expression of nuclear factor erythroid-2 like 2 (Nfe2I2) and heme oxygenase 1. Overall, our results indicate that 13-KODE may have potential for treating inflammation.

11.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884765

RESUMO

Triple-negative breast cancer (TNBC) cells overexpress the epidermal growth factor receptor (EGFR). Nuclear EGFR (nEGFR) drives resistance to anti-EGFR therapy and is correlated with poor survival in breast cancer. Inhibition of EGFR nuclear translocation may be a reasonable approach for the treatment of TNBC. The anti-malarial drugs chloroquine and primaquine have been shown to promote an anticancer effect. The aim of the present study was to investigate the effect and mechanism of chloroquine- and primaquine-induced apoptosis of breast cancer cells. We showed that primaquine, a malaria drug, inhibits the growth, migration, and colony formation of breast cancer cells in vitro, and inhibits tumor growth in vivo. Primaquine induces damage to early endosomes and inhibits the nuclear translocation of EGFR. Primaquine inhibits the interaction of Stat3 and nEGFR and reduces the transcript and protein levels of c-Myc. Moreover, primaquine and chloroquine induce the apoptosis of breast cancer cells through c-Myc/Bcl-2 downregulation, induce early endosome damage and reduce nEGFR levels, and induce apoptosis in breast cancer through nEGFR/Stat3-dependent c-Myc downregulation. Our study of primaquine and chloroquine provides a rationale for targeting EGFR signaling components in the treatment of breast cancer.


Assuntos
Apoptose/fisiologia , Primaquina/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antimaláricos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cloroquina/farmacologia , Regulação para Baixo , Reposicionamento de Medicamentos , Endossomos/metabolismo , Receptores ErbB/metabolismo , Humanos , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/patologia
12.
Antioxidants (Basel) ; 10(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34439571

RESUMO

Inflammation is the first response of the immune system against bacterial pathogens. This study isolated and examined an antioxidant derived from Lactobacillus fermentation products using cultured media with 1% beet powder. The antioxidant activity of the beet culture media was significantly high. Antioxidant activity-guided purification and repeated sample isolation yielded an isolated compound, which was identified as 5-hydoxymaltol using nuclear magnetic resonance spectrometry. We examined the mechanism of its protective effect on lipopolysaccharide (LPS)-induced inflammation of macrophages. 5-Hydroxymaltol suppressed nitric oxide (NO) production in LPS-stimulated RAW 264.7 cells. It also suppressed tumor necrosis factor α (TNF-α), interleukin (IL)-1ß, and inducible nitric oxide synthase (iNOS) in the messenger RNA and protein levels in LPS-treated RAW 264.7 cells. Moreover, it suppressed LPS-induced nuclear translocation of NF-κB (p65) and mitogen-activated protein kinase activation. Furthermore, 5-hydroxymaltol reduced LPS-induced reactive oxygen species (ROS) production as well as increased nuclear factor erythroid 2-related factor 2 and heme oxygenase 1 expression. Overall, this study found that 5-hydroxymaltol has anti-inflammatory activities in LPS-stimulated RAW 264.7 macrophage cells based on its inhibition of pro-inflammatory cytokine production depending on the nuclear factor κB signaling pathway, inhibition of LPS-induced reactive oxygen species production, inhibition of LPS-induced mitogen-activated protein kinase induction, and induction of the nuclear factor erythroid 2-related factor 2/heme oxygenase 1 signaling pathway. Our data showed that 5-hydroxymaltol may be an effective compound for treating inflammation-mediated diseases.

13.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445421

RESUMO

The Hedgehog (HH) signaling pathway plays an important role in embryonic development and adult organ homeostasis. Aberrant activity of the Hedgehog signaling pathway induces many developmental disorders and cancers. Recent studies have investigated the relationship of this pathway with various cancers. GPCR-like protein Smoothened (SMO) and the glioma-associated oncogene (GLI1) are the main effectors of Hedgehog signaling. Physalin A, a bioactive substance derived from Physalis alkekengi, inhibits proliferation and migration of breast cancer cells and mammospheres formation. Physalin A-induced apoptosis and growth inhibition of mammospheres, and reduced transcripts of cancer stem cell (CSC) marker genes. Physalin A reduced protein expressions of SMO and GLI1/2. Down-regulation of SMO and GLI1 using siRNA inhibited mammosphere formation. Physalin A reduced mammosphere formation by reducing GLI1 gene expression. Down-regulation of GLI1 reduced CSC marker genes. Physalin A reduced protein level of YAP1. Down-regulation of YAP1 using siRNA inhibited mammosphere formation. Physalin A reduced mammosphere formation through reduction of YAP1 gene expression. Down-regulation of YAP1 reduced CSC marker genes. We showed that treatment of MDA-MB-231 breast cancer cells with GLI1 siRNA induced inhibition of mammosphere formation and down-regulation of YAP1, a Hippo pathway effector. These results show that Hippo signaling is regulated by the Hedgehog signaling pathway. Physalin A also inhibits the canonical Hedgehog and Hippo signaling pathways, CSC-specific genes, and the formation of mammospheres. These findings suggest that physalin A is a potential therapeutic agent for targeting CSCs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Vitanolídeos/farmacologia , Proteína GLI1 em Dedos de Zinco/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Proteínas de Sinalização YAP , Proteína GLI1 em Dedos de Zinco/metabolismo
14.
Life Sci ; 280: 119729, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34146553

RESUMO

AIMS: To study 5-desmethylsinensetin exhibiting potential anticancer activity against breast cancer stem cells and the related molecular mechanism. MAIN METHODS: In this study, isolation of a cancer stem cell (CSC) inhibitor of Artemisia princeps was performed using a silica gel column, a Sephadex gel column, and high-performance liquid chromatography. A single compound was purified via activity-based isolation using mammosphere formation assays. An MTS was used to examine the proliferation of breast cancer cells, and flow cytometry was used to analyze apoptosis and cancer stem cell markers. Western blotting was used to detect the signaling pathway. RESULTS: The isolated compound was identified as 5-desmethylsinensetin using nuclear magnetic resonance and mass spectrometry. 5-Desmethylsinensetin suppresses the proliferation and mammosphere formation of breast cancer cells, reduces the subpopulations of CD44+/CD24- and ALDH1+ cancer cells, and reduces the transcription of the stemness markers Oct4, c-Myc, Nanog and CD44 in Breast CSCs. 5-Desmethylsinensetin inhibits the total and nuclear expression of Stat3 and p-Stat3, as well as the translocation of YAP1. Additionally, 5-desmethylsinensetin reduces the mRNA and protein levels of IL-6. CONCLUSION: Our results show that 5-desmethylsinensetin exhibits potential anticancer activity against breast cancer stem cells via Stat3-IL-6 and Stat3-YAP1 signaling.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Artemisia , Neoplasias da Mama/tratamento farmacológico , Flavonoides/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Artemisia/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Flavonoides/química , Humanos , Interleucina-6/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fator de Transcrição STAT3/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
15.
Molecules ; 25(24)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352739

RESUMO

Ciclesonide is an FDA-approved glucocorticoid used to treat asthma and allergic rhinitis. However, whether it has anticancer and anti-cancer stem cell (CSC) effects is unknown. This study focused on investigating the effect of ciclesonide on breast cancer and CSCs and determining its underlying mechanism. Here, we showed that ciclesonide inhibits breast cancer and CSC formation. Similar glucocorticoids-dexamethasone and prednisone-did not inhibit CSC formation. Ciclesonide-induced glucocorticoid receptor (GR) degradation was dependent on ubiquitination. We showed via GR small interfering RNA (siRNA) that GR plays an important role in CSC formation. We showed via western blot and immunofluorescence assays that ciclesonide reduces the nuclear level of GR. The GR antagonist RU-486 also inhibited CSC formation. Ciclesonide reduced the protein level of the Hippo transducer Yes-associated protein (YAP). GR siRNA induced a decrease in YAP protein expression and inhibited mammosphere formation. The YAP inhibitor verteporfin inhibited CSC formation and transcription of the connective tissue growth factor and cysteine-rich protein 61 genes. The GR/YAP1 pathway regulated breast CSC formation. We showed that the GR/YAP signaling pathway regulates breast CSC formation and revealed a new approach for targeting GR and YAP to inhibit CSC formation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antiasmáticos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Pregnenodionas/farmacologia , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Proteína Rica em Cisteína 61/metabolismo , Glucocorticoides/metabolismo , Humanos , Células MCF-7 , Células-Tronco Neoplásicas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Verteporfina/metabolismo , Proteínas de Sinalização YAP
16.
Antioxidants (Basel) ; 9(11)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202749

RESUMO

Cancer stem cells (CSCs) are undifferentiated cells that give rise to tumor and resistance to chemotherapy. This study reports that phenylacetaldehyde (PAA), a flower flavor, inhibits formation on breast CSCs. PAA showed anti-proliferation and increased apoptosis of breast cancer. PAA also reduced tumor growth in an in vivo mice model. PAA reduced the CD44+/CD24- and ALDH1-expressing cells, mammosphere formation, and CSC marker genes. PAA preferentially induced reactive oxygen species (ROS) production and combined treatment with PAA and N-acetyl cysteine (NAC) decreased inhibition of mammosphere formation. PAA reduced phosphorylation of nuclear Stat3. PAA inhibited Stat3 signaling through de-phosphorylation of Stat3 and reduced secretory IL-6. Our results suggest that the PAA-induced ROS deregulated Stat3/IL-6 pathway and PAA may be a potential agent targeting breast cancer and CSCs.

17.
Molecules ; 25(21)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114669

RESUMO

Cancer stem cells have certain characteristics, such as self-renewal, differentiation, and drug resistance, which are related to tumor progression, maintenance, recurrence, and metastasis. In our study, we targeted breast cancer stem cells (BCSCs) using a natural compound, coriolic acid, from Salicornia herbacea L. This compound was isolated by mammosphere formation inhibition bioassay-guided fractionation and identified by using NMR spectroscopy and electrospray ionization mass spectrometry. Coriolic acid inhibited the formation of mammospheres and induced BCSC apoptosis. It also decreased the subpopulation of CD44high/CD24low cells, a cancer stem cell (CSC) phenotype, and specific genes related to CSCs, such as Nanog,Oct4, and CD44. Coriolic acid decreased the transcriptional and translational levels of the c-Myc gene, which is a CSC survival factor. These results indicated that coriolic acid could be a novel compound to target BCSCs via regulation of c-Myc.


Assuntos
Neoplasias da Mama/patologia , Chenopodiaceae/química , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
18.
Molecules ; 25(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977636

RESUMO

The presence of breast cancer stem cells (BCSCs) induces the aggressive progression and recurrence of breast cancer. These cells are drug resistant, have the capacity to self-renew and differentiate and are involved in recurrence and metastasis, suggesting that targeting BCSCs may improve treatment efficacy. In this report, methanol extracts of carrot root were purified by means of silica gel, Sephadex LH-20, and preparative high-performance liquid chromatography to isolate a compound targeting mammosphere formation. We isolated the compound 6-methoxymellein, which inhibits the proliferation and migration of breast cancer cells, reduces mammosphere growth, decreases the proportion of CD44+/CD24- cells in breast cancer cells and decreases the expression of stemness-associated proteins c-Myc, Sox-2 and Oct4. 6-Methoxymellein reduces the nuclear localization of nuclear factor-κB (NF-κB) subunit p65 and p50. Subsequently, 6-methoxymellein decreases the mRNA transcription and secretion of IL-6 and IL-8. Our data suggest that 6-methoxymellein may be an anticancer agent that inhibits BCSCs via NF-κB/IL-6 and IL-8 regulation.


Assuntos
Neoplasias da Mama/patologia , Daucus carota/química , Isocumarinas/isolamento & purificação , Isocumarinas/farmacologia , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Células MCF-7 , Células-Tronco Neoplásicas/patologia
19.
Molecules ; 25(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630026

RESUMO

Breast cancer is a major health problem that affects lives worldwide. Breast cancer stem cells (BCSCs) are small subpopulations of cells with capacities for drug resistance, self-renewal, recurrence, metastasis, and differentiation. Herein, powder extracts of beetroot were subjected to silica gel, gel filtration, thin layer chromatography (TLC), and preparatory high-pressure liquid chromatography (HPLC) for isolation of one compound, based on activity-guided purification using tumorsphere formation assays. The purified compound was identified as betavulgarin, using nuclear magnetic resonance spectroscopy and electrospray ionization (ESI) mass spectrometry. Betavulgarin suppressed the proliferation, migration, colony formation, and mammosphere formation of breast cancer cells and reduced the size of the CD44+/CD24- subpopulation and the expression of the self-renewal-related genes, C-Myc, Nanog, and Oct4. This compound decreased the total level and phosphorylated nuclear level of signal transducer and activator of transcription 3 (Stat3) and reduced the mRNA and protein levels of sex determining region Y (SRY)-box 2 (SOX2), in mammospheres. These data suggest that betavulgarin inhibit the Stat3/Sox2 signaling pathway and induces BCSC death, indicating betavulgarin might be an anticancer agent against breast cancer cells and BCSCs.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Benzopiranos/farmacologia , Beta vulgaris/química , Neoplasias da Mama/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Fator de Transcrição STAT3/metabolismo , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose , Benzopiranos/uso terapêutico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
20.
Molecules ; 25(11)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503228

RESUMO

Breast cancer stem cells (BCSCs) are responsible for tumor chemoresistance and recurrence. Targeting CSCs using natural compounds is a novel approach for cancer therapy. A CSC-inhibiting compound was purified from citrus extracts using silica gel, gel filtration and high-pressure liquid chromatography. The purified compound was identified as tangeretin by using nuclear magnetic resonance (NMR). Tangeretin inhibited cell proliferation, CSC formation and tumor growth, and modestly induced apoptosis in CSCs. The frequency of a subpopulation with a CSC phenotype (CD44+/CD24-) was reduced by tangeretin. Tangeretin reduced the total level and phosphorylated nuclear level of signal transducer and activator of transcription 3 (Stat3). Our results in this study show that tangeretin inhibits the Stat3 signaling pathway and induces CSC death, indicating that tangeretin may be a potential natural compound that targets breast cancer cells and CSCs.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Citrus/química , Flavonas/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA