Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108616

RESUMO

Mitochondrial oxidative phosphorylation (OXPHOS) system dysfunction in cancer cells has been exploited as a target for anti-cancer therapeutic intervention. The downregulation of CR6-interacting factor 1 (CRIF1), an essential mito-ribosomal factor, can impair mitochondrial function in various cell types. In this study, we investigated whether CRIF1 deficiency induced by siRNA and siRNA nanoparticles could suppress MCF-7 breast cancer growth and tumor development, respectively. Our results showed that CRIF1 silencing decreased the assembly of mitochondrial OXPHOS complexes I and II, which induced mitochondrial dysfunction, mitochondrial reactive oxygen species (ROS) production, mitochondrial membrane potential depolarization, and excessive mitochondrial fission. CRIF1 inhibition reduced p53-induced glycolysis and apoptosis regulator (TIGAR) expression, as well as NADPH synthesis, leading to additional increases in ROS production. The downregulation of CRIF1 suppressed cell proliferation and inhibited cell migration through the induction of G0/G1 phase cell cycle arrest in MCF-7 breast cancer cells. Similarly, the intratumoral injection of CRIF1 siRNA-encapsulated PLGA nanoparticles inhibited tumor growth, downregulated the assembly of mitochondrial OXPHOS complexes I and II, and induced the expression of cell cycle protein markers (p53, p21, and p16) in MCF-7 xenograft mice. Thus, the inhibition of mitochondrial OXPHOS protein synthesis through CRIF1 deletion destroyed mitochondrial function, leading to elevated ROS levels and inducing antitumor effects in MCF-7 cells.


Assuntos
Neoplasias da Mama , Animais , Feminino , Humanos , Camundongos , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/metabolismo , Células MCF-7 , Monoéster Fosfórico Hidrolases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Interferente Pequeno/genética , Proteína Supressora de Tumor p53 , Polietilenoglicóis/química , Nanopartículas
2.
Sci Rep ; 12(1): 20125, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418859

RESUMO

Vasculogenic mimicry (VM) is closely related to cancer progression and metastasis, contributing to poor prognosis in patients with cancer. Resveratrol (RES) is well known to possess anti-cancer activity. This study explored the new role of RES in VM incidence in human prostate cancer (PCa) PC-3 cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, transwell invasion, and three-dimensional culture VM tube formation assays were performed to check the cell viability, invasive ability, and vessel-like networks formation, respectively. VM-related proteins were detected by Western blots. The activity of metalloproteinase-2 (MMP-2) was identified by gelatin zymography. Vascular endothelial cadherin (VE-cadherin) mRNA was assessed by reverse transcriptase-polymerase chain reaction. Nuclear twist expression was observed by immunofluorescence assay. RES reduced serum-induced invasion and VM formation. Serum-induced phosphorylation of erythropoiethin-producing hepatoceullular A2 (EphA2) and the expression of VE-cadherin at the protein and mRNA levels were decreased after RES treatment. RES inhibited serum-induced expression and nuclear localization of twist. Serum-activated AKT signaling pathway, including MMP-2 and laminin subunit 5 gamma-2, was impaired by RES. These results suggested that RES may have an anti-VM effect through suppressing the EphA2/twist-VE-cadherin/AKT signaling cascade in PCa PC-3 cells.


Assuntos
Metaloproteinase 2 da Matriz , Neoplasias da Próstata , Masculino , Humanos , Células PC-3 , Resveratrol/farmacologia , Metaloproteinase 2 da Matriz/genética , Proteínas Proto-Oncogênicas c-akt , Neoplasias da Próstata/tratamento farmacológico , RNA Mensageiro
3.
Biomedicines ; 10(8)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35892680

RESUMO

Capsanthin is a red pigment and the major carotenoid component of red paprika (Capsicum annuum L.). However, its role in atherosclerosis is yet to be fully elucidated. This study investigated the role of dietary capsanthin in vascular inflammation in atherosclerotic mice. We evaluated the anti-atherosclerotic effects of daily oral administration of capsanthin (0.5 mg/kg of body weight/day) in apolipoprotein E-deficient (ApoE-/-) mice fed a Western-type diet (WD). Capsanthin treatment inhibited vascular cell adhesion molecule 1 expression and nuclear factor-κB ser536 phosphorylation in tumor necrosis factor-α-stimulated cultured endothelial cells. Dietary capsanthin significantly inhibited the WD-induced elevation in the plasma levels of total cholesterol, low-density lipoprotein cholesterol (LDL-C), and triglyceride in mice. Interestingly, capsanthin reduced aortic plaque formation and VCAM-1 expression, which is vascular inflammation, in atherosclerotic mice. In addition, the neutrophil-lymphocyte ratio, a systemic inflammatory marker, was inhibited in capsanthin-treated mice. Furthermore, capsanthin significantly reduced the levels of proinflammatory cytokines, such as TNF-α, interleukin-6, and monocyte chemoattractant protein-1, in the plasma of atherosclerotic mice. Collectively, our data demonstrate that dietary capsanthin plays a protective role against atherosclerosis in hyperlipidemic mice. This protective effect could be attributed to the anti-inflammatory properties of capsanthin.

4.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163245

RESUMO

Sp1 transcription factor regulates genes involved in various phenomena of tumor progression. Vasculogenic mimicry (VM) is the alternative neovascularization by aggressive tumor cells. However, there is no evidence of the relationship between Sp1 and VM. This study investigated whether and how Sp1 plays a crucial role in the process of VM in human prostate cancer (PCa) cell lines, PC-3 and DU145. A cell viability assay and three-dimensional culture VM tube formation assay were performed. Protein and mRNA expression levels were detected by Western blot and reverse transcriptase-polymerase chain reaction, respectively. The nuclear twist expression was observed by immunofluorescence assay. A co-immunoprecipitation assay was performed. Mithramycin A (MiA) and Sp1 siRNA significantly decreased serum-induced VM, whereas Sp1 overexpression caused a significant induction of VM. Serum-upregulated vascular endothelial cadherin (VE-cadherin) protein and mRNA expression levels were decreased after MiA treatment or Sp1 silencing. The protein expression and the nuclear localization of twist were increased by serum, which was effectively inhibited after MiA treatment or Sp1 silencing. The interaction between Sp1 and twist was reduced by MiA. On the contrary, Sp1 overexpression enhanced VE-cadherin and twist expressions. Serum phosphorylated AKT and raised matrix metalloproteinase-2 (MMP-2) and laminin subunit 5 gamma-2 (LAMC2) expressions. MiA or Sp1 silencing impaired these effects. However, Sp1 overexpression upregulated phosphor-AKT, MMP-2 and LAMC2 expressions. Serum-upregulated Sp1 was significantly reduced by an AKT inhibitor, wortmannin. These results demonstrate that Sp1 mediates VM formation through interacting with the twist/VE-cadherin/AKT pathway in human PCa cells.


Assuntos
Neovascularização Patológica/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Fator de Transcrição Sp1/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Masculino , Neovascularização Patológica/patologia , Células PC-3 , RNA Mensageiro/metabolismo , Regulação para Cima/fisiologia
5.
Biomedicines ; 9(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34440244

RESUMO

Apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE1/Ref-1) is a multifunctional protein that can be secreted, and recently suggested as new biomarker for vascular inflammation. However, the endogenous hormones for APE1/Ref-1 secretion and its underlying mechanisms are not defined. Here, the effect of twelve endogenous hormones on APE1/Ref-1 secretion was screened in cultured vascular endothelial cells. The endogenous hormones that significantly increased APE1/Ref-1 secretion was 17ß-estradiol (E2), 5?-dihydrotestosterone, progesterone, insulin, and insulin-like growth factor. The most potent hormone inducing APE1/Ref-1 secretion was E2, which in cultured endothelial cells, E2 for 24 h increased APE1/Ref-1 secretion level of 4.56 ± 1.16 ng/mL, compared to a basal secretion level of 0.09 ± 0.02 ng/mL. Among the estrogens, only E2 increased APE1/Ref-1 secretion, not estrone and estriol. Blood APE1/Ref-1 concentrations decreased in ovariectomized (OVX) mice but were significantly increased by the replacement of E2 (0.39 ± 0.09 ng/mL for OVX vs. 4.67 ± 0.53 ng/mL for OVX + E2). E2-induced APE1/Ref-1secretion was remarkably suppressed by the estrogen receptor (ER) blocker fulvestrant and intracellular Ca2+ chelator 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM), suggesting E2-induced APE1/Ref-1 secretion was dependent on ER and intracellular calcium. E2-induced APE1/Ref-1 secretion was significantly inhibited by exosome inhibitor GW4869. Furthermore, APE1/Ref-1 level in CD63-positive exosome were increased by E2. Finally, fluorescence imaging data showed that APE1/Ref-1 co-localized with CD63-labled exosome in the cytoplasm of cells upon E2 treatment. Taken together, E2 was the most potent hormone for APE1/Ref-1 secretion, which appeared to occur through exosomes that were dependent on ER and intracellular Ca2+. Furthermore, hormonal effects should be considered when analyzing biomarkers for vascular inflammation.

6.
J Food Biochem ; 44(8): e13314, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32542699

RESUMO

Hormone replacement therapy may cause various side effects, including enhancing the risk of cardiovascular disease (CVD) in postmenopausal women. Here, we investigated the effect of red clover and hop extract combination (RHEC) on estrogen receptor (ER) binding and endothelial function of human umbilical vein endothelial cells (HUVECs) to develop an herbal agent for reducing the risk of CVDs. In ER competitor assay, RHEC showed binding affinity toward ERα and ERß with IC50 values of 5.92 µg/ml and 1.66 µg/ml, respectively. In HUVECs, RHEC significantly increased the cell viability and reduced the reactive oxygen species production against oxidative stress-induced damage. We also showed that RHEC increased the NO production through upregulating the endothelial nitric oxide synthase expression via ER activation in estrogen depleted condition. In particular, RHEC showed greater efficacy with increase in NO and decrease in endothelin-1 than red clover or hop treatment alone. Additionally, 0.3-0.5 mg/ml of RHEC-induced vasorelaxation of rat aortic rings precontracted by phenylephrine. PRACTICAL APPLICATIONS: Recently, a large interest has grown in the synergistic effects of phytochemicals for better therapies to treat various diseases. Red clover and hop are well-known edible plants which are widely used to help relieve postmenopausal symptoms including CVD. However, their combination has not been studied so far. For the first time, we demonstrated that RHEC, a new herbal combination comprising the extracts from red clover and hop, appeared to be effective in protection of endothelial function against oxidative stress and estrogen depletion. Therefore, RHEC could be a potent herbal agent for reducing the risk of endothelial damage.


Assuntos
Trifolium , Animais , Receptor beta de Estrogênio , Células Endoteliais da Veia Umbilical Humana , Humanos , Extratos Vegetais/farmacologia , Ratos , Vasodilatadores
7.
Int J Mol Sci ; 21(2)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936664

RESUMO

Vasculogenic mimicry (VM) is the alternative process of forming vessel-like networks by aggressive tumor cells, and it has an important role in tumor survival, growth, and metastasis. Epigallocatechin-3-gallate (EGCG) is well known to have diverse bioactivities including anti-cancer effects. However, the efficacy of EGCG on VM is elusive. In this study, we explored whether and how EGCG affects VM in human prostate cancer (PCa) PC-3 cells. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Invasive and VM formation abilities were assessed by an invasion assay and a three-dimensional (3D) culture VM tube formation assay, respectively. Western blots were carried out. An immunofluorescence assay was performed to detect nuclear twist expression. EGCG effectively inhibited the invasive ability, as well as tubular channel formation, without affecting cell viability. EGCG significantly downregulated the expression of vascular endothelial cadherin (VE-cadherin) and its transcription factor, twist, N-cadherin, vimentin, phosphor-AKT, and AKT, but not phospho-erythropoietin-producing hepatocellular receptor A2 (EphA2) and EphA2. In addition, EGCG diminished the nuclear localization of twist. Treatment with SC79, an AKT activator, effectively rescued EGCG-inhibited VM formation. These results demonstrated for the first time that EGCG causes marked suppression of VM through inhibiting the twist/VE-cadherin/AKT pathway in human PCa PC-3 cells.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Catequina/análogos & derivados , Neovascularização Patológica/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/irrigação sanguínea , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteína 1 Relacionada a Twist/metabolismo , Catequina/química , Catequina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Masculino , Invasividade Neoplásica , Transdução de Sinais/efeitos dos fármacos
8.
Free Radic Biol Med ; 139: 16-23, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31100475

RESUMO

Apurinic/apyrimidinic endonuclease/redox factor-1 (Ref-1), a multifunctional protein secreted from stimulated cells, has been identified as a new serological biomarker. Despite recent reports on the role of Ref-1 in inflammation, the biological function of secreted Ref-1 remains unknown, especially in vivo. This study aimed to evaluate the possible roles of secreted Ref-1 in lipopolysaccharide-induced systemic inflammation in vivo. We generated a secretory Ref-1 adenoviral vector system, AdPPT-LS-Ref-1, by conjugation of preprotrypsin leading sequence (PPT-LS) with full-length Ref-1 sequences. Expression of tumor necrosis factor-α (TNF-α)-induced vascular cell adhesion molecule-1 (VCAM-1) in endothelial cells and lipopolysaccharide (LPS)-induced cyclooxygenase-2 in Raw264.7 cells was inhibited by secretory Ref-1, and this inhibitory effect was abrogated following neutralization of Ref-1 with anti-Ref-1 antibody. Plasma Ref-1 levels following administration of AdPPT-LS-Ref-1 (2 × 109 ifu, i.p.) for 24 h were substantially higher than those recorded following administration of Adßgal (84.6 ±â€¯7.2 ng/ml vs. 4.4 ±â€¯1.5 ng/ml). Treatment with LPS (10 mg/kg, i.v. for 6 h) markedly increased VCAM-1 expression, cathepsin or myeloperoxidase activity, which were significantly suppressed by treatment with AdPPT-LS-Ref-1. Furthermore, LPS-induced cytokines, such as TNF-α, interleukin (IL)-1ß, IL-6, and monocyte chemoattractant protein 1, were significantly inhibited in AdPPT-LS-Ref-1-treated mice. However, LPS-induced myeloperoxidase activities were not suppressed by treatment with the redox mutant of secretory Ref-1, AdPPT-LS-Ref-1(C65A/C93A), or wild-type AdRef-1. Collectively, these results suggest that secreted Ref-1 has anti-inflammatory properties and that its redox cysteine residue is associated with the anti-inflammatory activity in vivo. Furthermore, our findings indicate that secretory Ref-1 may be useful as a therapeutic biomolecule against systemic inflammation.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Sepse/terapia , Adenoviridae/genética , Adenoviridae/metabolismo , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Catepsinas/genética , Catepsinas/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos ICR , Peroxidase/genética , Peroxidase/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Células RAW 264.7 , Sepse/induzido quimicamente , Sepse/genética , Sepse/patologia , Tripsina/genética , Tripsina/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
9.
Int J Mol Sci ; 20(5)2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30845749

RESUMO

Fomes fomentarius, an edible mushroom, is known to have anti-cancer, anti-inflammatory, and anti-diabetes effects. However, the underlying anti-cancer mechanism of F. fomentarius is unknown. To determine the molecular mechanism of the anti-cancer effects of F. fomentarius, various methods were used including fluorescence-activated cell sorting, Western blotting, migration, and crystal violet assays. F. fomentarius ethanol extract (FFE) decreased cell viability in six cancer cell lines (MDA-MB-231, MCF-7, A549, H460, DU145, and PC-3). FFE decreased the migration of MDA-MB-231 cells without causing cell toxicity. Furthermore, FFE attenuated the expression of matrix metalloproteinase-9 and phosphorylation of Akt as well as increased E-cadherin in MDA-MB-231 cells. FFE arrested the S and G2/M populations by inhibiting the expression of cell cycle regulatory proteins such as cyclin-dependent kinase 2, cyclin A/E, and S-phase kinase-associated protein 2. FFE increased the sub-G1 population and expression of cleaved caspase-9, -3, and cleaved poly adenosine diphosphate (ADP-ribose) polymerase at 72 h and suppressed B-cell lymphoma 2. Interestingly, FFE and AKT inhibitors showed similar effects in MDA-MB-231 cells. Additionally, FFE contained betulin which inhibited p-AKT in MDA-MB-231 cells. Our findings demonstrate that FFE inhibits cell motility and growth and induces apoptosis by inhibiting the phsphoinositide 3- kinase /AKT pathway and caspase activation.


Assuntos
Produtos Biológicos/farmacologia , Neoplasias da Mama/metabolismo , Coriolaceae/química , Etanol/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Metaloproteinase 9 da Matriz/metabolismo , Fosforilação , Transdução de Sinais/efeitos dos fármacos
10.
Life Sci ; 221: 267-273, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30797819

RESUMO

AIMS: Serum is widely used for in vitro cell culture of eukaryotic cells. Although serum is well known to affect various biological activities in cancer cells, its effect in vasculogenic mimicry (VM) is not yet fully defined. Thus, this study investigated the role of serum in VM in human prostate cancer (PCa) PC-3 cells. MAIN METHODS: Invasion assay and 3D culture VM tube formation assay are performed. VM-related molecules are checked by western blot and reverse transcriptase-polymerase chain reaction. Nuclear twist is detected by confocal after twist-FITC/DAPI double staining. KEY FINDINGS: Serum dramatically induced not only invasion but also VM. Serum increased the phosphorylation of erythropoietin-producing hepatocellular A2 (EphA2) without affecting EphA2 expression. Both the protein and mRNA expression levels of vascular endothelial cadherin (VE-cadherin) are up-regulated by serum. Twist expression was increased in the nucleus by serum. Serum activated AKT through phosphorylation, despite the unchanged AKT expression. Serum caused an increase in matrix metalloproteinase-2 (MMP-2) and laminin subunit 5 gamma-2 (LAMC2) protein expressions. Wortmannin, a phosphoinositide-3-kinase inhibitor, significantly decreased serum-induced invasion and VM. SIGNIFICANCE: These results demonstrated that serum activates EphA2 and up-regulates twist/VE-cadherin, which in turn activate AKT that up-regulates MMP-2 and LAMC2, thereby inducing the invasion and VM of human PCa PC-3 cells.


Assuntos
Neovascularização Fisiológica/fisiologia , Neoplasias da Próstata/metabolismo , Soro/metabolismo , Antígenos CD , Caderinas , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Laminina , Masculino , Metaloproteinase 2 da Matriz , Microvasos/fisiologia , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt , Receptor EphA2 , Soro/fisiologia , Proteína 1 Relacionada a Twist
11.
BMC Complement Altern Med ; 18(1): 242, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30165848

RESUMO

BACKGROUND: Rhus verniciflua Stokes is an Asian tree species that is used as a food supplement and traditional medicine in Korea. However, its use is restricted by its potential to cause allergy. Thus, allergen-free R. verniciflua extracts are currently being marketed as a functional health food in Korea. In the present study, three different allergen-free R. verniciflua extracts (DRVE, FRVE, and FFRVE) were produced by detoxification of R. verniciflua, and their properties and constituents were compared. METHODS: The main components and properties (antibacterial, antioxidant, anticancer, and hepatic lipogenesis inhibitory effects) of the three allergen-free extracts were compared. Moreover, the major phenolic constituents of R. verniciflua, including gallic acid, fustin, fisetin, and quercetin, were analyzed in the three extracts. RESULTS: DRVE was superior to the two other extracts with regard to antioxidant activity, while FRVE was superior with regard to antimicrobial activity and suppression of hepatic lipogenesis. FRVE exhibited lipid-lowering effects by lowering sterol regulatory element-binding protein 1 and triglyceride levels, and promoting the activation of peroxisome proliferator-activated receptor and AMP-activated protein kinase in an in vitro model of non-alcoholic fatty liver. CONCLUSIONS: Overall, our findings demonstrate various differences among the three extracts. This suggests that functional and bioactive compounds present in R. verniciflua could be altered by the detoxification process, and this property could be considered in the development of functional health foods in the future.


Assuntos
Extratos Vegetais , Rhus/química , Anti-Infecciosos/análise , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/análise , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fermentação , Flavonoides/análise , Flavonoides/química , Flavonóis , Humanos , Lipogênese/efeitos dos fármacos , Modelos Biológicos , Hepatopatia Gordurosa não Alcoólica , Fenóis/análise , Fenóis/química , Extratos Vegetais/análise , Extratos Vegetais/química , Extratos Vegetais/farmacologia
12.
Life Sci ; 209: 259-266, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30107166

RESUMO

AIMS: Luteolin, a naturally occurring flavonoid, possesses anti-cancer effects including induction of apoptosis. This study investigated the involvement of osteopontin (OPN) in luteolin-induced apoptosis in human hepatocellular carcinoma (HCC) SK-Hep-1 cells with high OPN expression. MAIN METHODS: MTT assay was used to determine the cell viability. Cell cycle analysis was performed to identify apoptosis. Apoptosis was confirmed by detecting cytoplasmic histone-associated-DNA-fragments using a cell death detection ELISAPLUS kit. The expression of proteins was evaluated by Western blot. Reverse transcriptase-polymerase chain reaction was employed to detect the expression of mRNA. KEY FINDINGS: Cytotoxic effect of luteolin was higher in cancer cell line SK-Hep-1 cells than in normal cell line AML12 cells. Luteolin led a significantly increase in apoptosis accompanied by activation of caspase 8, -9 and -3 and cleavage of poly (ADP-ribose) polymerase (PARP), which was completely blocked by Z-VAD-FMK, a pan caspase inhibitor. Luteolin significantly downregulated the expression of X-linked inhibitor of apoptosis (XIAP), Mcl-1 and Bid. Furthermore, luteolin effectively decreased OPN expression at both mRNA and protein level. Exogenous OPN markedly blocked apoptosis induction, caspases activation, PARP cleavage, downregulation of XIAP and Mcl-1 in luteolin-treated cells. Luteolin impaired the AKT pathway by inhibiting the phosphorylation of AKT. SC79, an AKT activator, blocked apoptosis induction, caspases activation, PARP cleavage, downregulation of OPN, XIAP, Mcl-1 and Bid in luteolin-treated cells. SIGNIFICANCE: These results demonstrated that luteolin inhibits the AKT/OPN pathway, thereby inducing caspase-dependent apoptosis in human HCC SK-Hep-1 cells with little toxicity.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Caspases/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Luteolina/farmacologia , Osteopontina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Inibidores de Caspase/farmacologia , Caspases/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Osteopontina/genética , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/efeitos dos fármacos
13.
Int J Mol Sci ; 19(3)2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29534512

RESUMO

Anthocyanins, the most prevalent flavonoids in red/purple fruits and vegetables, are known to improve immune responses and reduce chronic disease risks. In this study, the anti-inflammatory activities of an anthocyanin-rich extract from red Chinese cabbage (ArCC) were shown based on its inhibitory effects in cultured endothelial cells and hyperlipidemic apolipoprotein E-deficient mice. ArCC treatment suppressed monocyte adhesion to tumor necrosis factor-α-stimulated endothelial cells. This was validated by ArCC's ability to downregulate the expression and transcription of endothelial adhesion molecules, determined by immunoblot and luciferase promoter assays, respectively. The regulation of adhesion molecules was accompanied by transcriptional inhibition of nuclear factor-κB, which restricted cytoplasmic localization as shown by immunocytochemistry. Administration of ArCC (150 or 300 mg/kg/day) inhibited aortic inflammation in hyperlipidemic apolipoprotein E-deficient mice, as shown by in vivo imaging. Immunohistochemistry and plasma analysis showed that the aortas from these mice exhibited markedly lower leukocyte infiltration, reduced plaque formation, and lower concentrations of blood inflammatory cytokines than those observed in the control mice. The results suggest that the consumption of anthocyanin-rich red Chinese cabbage is closely correlated with lowering the risk of vascular inflammatory diseases.


Assuntos
Antocianinas/análise , Apolipoproteínas E/genética , Aterosclerose/tratamento farmacológico , Brassica/química , Endotélio Vascular/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Linhagem Celular Tumoral , Citocinas/sangue , Endotélio Vascular/metabolismo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Masculino , Camundongos , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
14.
Life Sci ; 192: 286-292, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29128513

RESUMO

AIMS: Dihydroartemisinin (DHA) is a semi-synthetic derivative of artemisinin, well known for a safe and effective first-line antimalarial agent. This study investigated whether and how DHA induces apoptosis focusing on the specificity protein 1 (Sp1) pathway in hepatocellular carcinoma (HCC) SK-Hep-1 cells. MAIN METHODS: The cell viability was evaluated by MTT assay. Cell cycle analysis was performed after PI staining by flow cytometry system. Apoptosis was confirmed by DAPI staining and by detecting cytoplasmic histone-associated-DNA-fragments using a cell death detection ELISAPLUS kit. The expression of proteins involved in apoptosis was evaluated by Western blot. The nuclear localization of Sp1 was evaluated by immunofluorescence assay. KEY FINDINGS: DHA exerted potent cytotoxicity against HCC SK-Hep-1 cells compared with normal hepatocyte AML12 cells. The sub-G1 DNA content and apoptosis index were increased by DHA, which was accompanied by nuclei condensation and fragmentation. DHA activated caspase 3, caspase 8, and caspase 9 and cleaved poly (ADP-ribose) polymerase (PARP). DHA-induced apoptotic cell death, activation of caspases and cleavage of PARP were dramatically inhibited by pan caspase inhibitor Z-VAD-FMK. DHA down-regulated protein expression and nuclear localization of Sp1, which in turn decreased Sp1 downstream target protein, X-linked inhibitor of apoptosis. Decreased Sp1 protein expression by DHA was restored by proteasome inhibitor MG132. DHA led to a down-regulation of phospho-ERK, -p38 and -JNK without affecting their total forms. SIGNIFICANCE: These results demonstrate that DHA induces caspase-dependent apoptosis in HCC SK-Hep-1 cells by proteasome-dependent degradation of Sp1, which is involved in mitogen-activate protein kinase pathway.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Artemisininas/farmacologia , Caspases/metabolismo , Fator de Transcrição Sp1/antagonistas & inibidores , Animais , Inibidores de Caspase/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Humanos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Int J Mol Sci ; 18(10)2017 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-28946662

RESUMO

Vascular calcification plays a role in the pathogenesis of atherosclerosis, diabetes, and chronic kidney disease; however, the role of apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) in inorganic phosphate (Pi)-induced vascular smooth muscle cell (VSMC) calcification remains unknown. In this study, we investigated the possible role of APE1/Ref-1 in Pi-induced VSMC calcification. We observed that Pi decreased endogenous APE1/Ref-1 expression and promoter activity in VSMCs, and that adenoviral overexpression of APE1/Ref-1 inhibited Pi-induced calcification in VSMCs and in an ex vivo organ culture of a rat aorta. However, a redox mutant of APE1/Ref-1(C65A/C93A) did not reduce Pi-induced calcification in VSMCs, suggesting APE1/Ref-1-mediated redox function against vascular calcification. Additionally, APE1/Ref-1 overexpression inhibited Pi-induced intracellular and mitochondrial reactive oxygen species production, and APE1/Ref-1 overexpression resulted in decreased Pi-induced lactate dehydrogenase activity, pro-apoptotic Bax levels, and increased anti-apoptotic Bcl-2 protein levels. Furthermore, APE1/Ref-1 inhibited Pi-induced osteoblastic differentiation associated with alkaline phosphatase activity and inhibited Pi-exposure-induced loss of the smooth muscle phenotype. Our findings provided valuable insights into the redox function of APE1/Ref-1 in preventing Pi-induced VSMC calcification by inhibiting oxidative stress and osteoblastic differentiation, resulting in prevention of altered osteoblastic phenotypes in VSMCs.


Assuntos
Calcificação Fisiológica/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Osteoblastos/metabolismo , Fenótipo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Masculino , Mitocôndrias/metabolismo , Músculo Liso Vascular/patologia , Mutação , Miócitos de Músculo Liso/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Oxirredução , Fosfatos/metabolismo , Fosfatos/farmacologia , Interferência de RNA , Ratos , Espécies Reativas de Oxigênio/metabolismo , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia
16.
J Med Food ; 20(5): 511-518, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28504909

RESUMO

Brassica rapa L. ssp. pekinensis, commonly known as Chinese cabbage, is a cruciferous vegetable traditionally consumed in east Asia. Although its habitual consumption could account for the low incidence of chronic vascular inflammation, the therapeutic and protective potential of phytochemicals derived from Chinese cabbage has been poorly studied. In this study, we identified the phenolic compounds, kaempferol and quercetin, from the ethanol extract of Chinese cabbage (EtCC). We show for the first time that EtCC contains effective phytochemicals that suppress tumor necrosis factor (TNF)-α-induced inflammatory response in human umbilical vein endothelial cells. The EtCC inhibited TNF-α-induced monocyte adhesion to endothelial cells in a dose-dependent manner. The antiadhesive activity of EtCC directly correlated with downregulation of expression and transcription of vascular cell adhesion molecule-1 (VCAM-1). It was caused by an Nrf-2-dependent mechanism, leading to activation of antioxidant responsive element-driven promoter. Taken together, these results suggest that EtCC inhibits the expression of TNF-α-induced adhesion molecules through the indirect transcriptional modulation of VCAM-1 in endothelial cells. In conclusion, regular consumption of vegetables containing dietary phytochemicals might be a potential therapeutic strategy to protect against various stresses, to prevent several pathological conditions, and to treat chronic vascular inflammation, such as atherosclerosis.


Assuntos
Brassica rapa/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/imunologia , Extratos Vegetais/farmacologia , Fator de Necrose Tumoral alfa/imunologia , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/imunologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Extratos Vegetais/isolamento & purificação , Fator de Necrose Tumoral alfa/genética , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/imunologia
17.
Bioorg Med Chem Lett ; 27(9): 1914-1918, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28359791

RESUMO

Lung cancer is the second most commonly diagnosed cancer and the leading cause of cancer deaths in both men and women in the United States. It has been recently demonstrated that osteopontin (OPN) effectively inhibits cofilin activity through the focal adhesion kinase (FAK)/AKT/Rho-associated kinase (ROCK) pathway to induce the invasion of human non-small cell lung cancer (NSCLC) cells. Plumbagin was isolated from the roots of the medicinal plant Plumbago zeylanica L. and has been reported to possess anticancer activities. However, the molecular mechanisms by which plumbagin inhibits the invasion of cancer cells is still unclear. In this study, the anti-invasive and anti-metastatic mechanisms of plumbagin were investigated in OPN-treated NSCLC A549 cells. OPN effectively induced the motility and invasion of NSCLC A549 cells and H1299 cells, which was strongly suppressed by plumbagin with no evidence of cytotoxicity. In addition, lamellipodia formation at the leading edge of cells by OPN was dramatically decreased in plumbagin-treated cells. Plumbagin caused an effective inhibition in OPN-induced the expression of ROCK1 as well as the phosphorylation of LIM kinase 1 and 2 (LIMK1/2), and cofilin. OPN-induced the phosphorylation of FAK and AKT was impaired without affecting their total forms by plumbagin treatment. OPN facilitated metastatic lung colonization, which was effectively suppressed in plumbagin-treated mice. Taken together, these results suggest that plumbagin reduces OPN-induced the invasion of NSCLC A549 cells, which resulted from inhibiting the ROCK pathway mediated by the FAK/AKT pathway and suppresses lung metastasis in vivo.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Naftoquinonas/uso terapêutico , Osteopontina/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Quinases Associadas a rho/antagonistas & inibidores , Células A549 , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/efeitos dos fármacos , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Naftoquinonas/química , Naftoquinonas/farmacologia , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Plumbaginaceae/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Quinases Associadas a rho/metabolismo
18.
CNS Neurol Disord Drug Targets ; 15(8): 910-917, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27577740

RESUMO

The S100A9 protein is an important proinflammatory factor of innate immunity that has been proposed to participate in inflammation associated with the pathogenesis of Alzheimer's disease. Here, we provide insights into the potential roles of extracellular S100A9 in the interaction with the immune response in human THP-1 monocytic cells that have been challenged with amyloid ß1-42 (Aß1-42) monomers instead of oligomers. Extracellular S100A9 alone produced a stimulatory effect on tumor necrosis factor-α and interleukin-1ß, expression as well as released monocyte chemoattractant protein-1 into culture supernatants, which was accompanied by an increased level of matrix metalloproteinas-9 activity. Importantly, co-stimulation with S100A9 and Aß1-42 resulted in a marked enhancement of Aß1-42-mediated release of these proinflammatory mediators under the same experimental conditions, whereas heat inactivated S100A9 had little effect. Our findings clearly suggest that excess S100A9 protein may play an important role in the pathological processes of Alzheimer's disease by exacerbating the Aß1-42-induced innate immune response.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Calgranulina B/farmacologia , Imunidade Inata/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Fragmentos de Peptídeos/farmacologia , Linhagem Celular Transformada , Quimiocina CCL2/metabolismo , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1beta/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Arch Dermatol Res ; 308(8): 563-74, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27402316

RESUMO

Omega-hydroxyceramides (ω-OH-Cer) play a crucial role in maintaining the integrity of skin barrier. ω-OH-Cer are the primary lipid constituents of the corneocyte lipid envelope (CLE) covalently attached to the outer surface of the cornified envelope linked to involucrin to become bound form lipids in stratum corneum (SC). CLE becomes a hydrophobic impermeable layer of matured corneocyte preventing loss of natural moisturizing factor inside the corneocytes. More importantly, CLE may also play an important role in the formation of proper orientation of intercellular lipid lamellar structure by interdigitating with the intercellular lipids in a comb-like fashion. Abnormal barrier conditions associated with atopic dermatitis but also UVB-irradiated skins are known to have lowered level of bound lipids, especially ω-OH-Cer, which indicate that ω-OH-Cer play an important role in maintaining the integrity of skin barrier. In this study, protective effects of a novel synthetic C16 omega-hydroxyphytoceramides (ω-OH-phytoceramide) on skin barrier function were investigated. Epidermal barrier disruption was induced by UVB irradiation, tape-stripping in hairless mouse and human skin. Protective effect of damaged epidermis was evaluated using the measurement of transepidermal water loss and cohesion of SC. Increased keratinocyte differentiation was verified using cultured keratinocyte through western blot. Results clearly demonstrated that a synthetic C16 ω-OH-phytoceramide enhanced the integrity of SC and accelerated the recovery of damaged skin barrier function by stimulating differentiation process. In a conclusion, a synthetic C16 ω-OH-phytoceramide treatment improved epidermal homeostasis in several disrupted conditions.


Assuntos
Ceramidas/uso terapêutico , Dermatite Atópica/tratamento farmacológico , Epiderme/efeitos dos fármacos , Doenças do Cabelo/tratamento farmacológico , Queratinócitos/efeitos dos fármacos , Animais , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Ceramidas/química , Ceramidas/farmacologia , Epiderme/patologia , Epiderme/efeitos da radiação , Feminino , Homeostase/efeitos dos fármacos , Humanos , Queratinócitos/patologia , Camundongos , Camundongos Pelados , Raios Ultravioleta/efeitos adversos
20.
Int J Mol Sci ; 17(7)2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27399684

RESUMO

Lambertianic acid (LA) is known to have anti-allergic and antibacterial effects. However, the anticancer activities and mechanism of action of LA have not been investigated. Therefore, the anticancer effects and mechanism of LA are investigated in this study. LA decreased not only AR protein levels, but also cellular and secretory levels of PSA. Furthermore, LA inhibited nuclear translocation of the AR induced by mibolerone. LA suppressed cell proliferation by inducing G1 arrest, downregulating CDK4/6 and cyclin D1 and activating p53 and its downstream molecules, p21 and p27. LA induced apoptosis and the expression of related proteins, including cleaved caspase-9 and -3, c-PARP and BAX, and inhibited BCl-2. The role of AR in LA-induced apoptosis was assessed by using siRNA. Collectively, these findings suggest that LA exerts the anticancer effect by inhibiting AR and is a valuable therapeutic agent in prostate cancer treatment.


Assuntos
Antineoplásicos/toxicidade , Ácidos Carboxílicos/toxicidade , Proliferação de Células/efeitos dos fármacos , Naftalenos/toxicidade , Receptores Androgênicos/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 9/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Regulação para Baixo/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Nandrolona/análogos & derivados , Nandrolona/farmacologia , Antígeno Prostático Específico/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Androgênicos/química , Receptores Androgênicos/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA