Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Gut ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839271

RESUMO

OBJECTIVE: Fat mass and obesity-associated protein (FTO), an eraser of N 6-methyadenosine (m6A), plays oncogenic roles in various cancers. However, its role in hepatocellular carcinoma (HCC) is unclear. Furthermore, small extracellular vesicles (sEVs, or exosomes) are critical mediators of tumourigenesis and metastasis, but the relationship between FTO-mediated m6A modification and sEVs in HCC is unknown. DESIGN: The functions and mechanisms of FTO and glycoprotein non-metastatic melanoma protein B (GPNMB) in HCC progression were investigated in vitro and in vivo. Neutralising antibody of syndecan-4 (SDC4) was used to assess the significance of sEV-GPNMB. FTO inhibitor CS2 was used to examine the effects on anti-PD-1 and sorafenib treatment. RESULTS: FTO expression was upregulated in patient HCC tumours. Functionally, FTO promoted HCC cell proliferation, migration and invasion in vitro, and tumour growth and metastasis in vivo. FTO knockdown enhanced the activation and recruitment of tumour-infiltrating CD8+ T cells. Furthermore, we identified GPNMB to be a downstream target of FTO, which reduced the m6A abundance of GPNMB, hence, stabilising it from degradation by YTH N 6-methyladenosine RNA binding protein F2. Of note, GPNMB was packaged into sEVs derived from HCC cells and bound to the surface receptor SDC4 of CD8+ T cells, resulting in the inhibition of CD8+ T cell activation. A potential FTO inhibitor, CS2, suppresses the oncogenic functions of HCC cells and enhances the sensitivity of anti-PD-1 and sorafenib treatment. CONCLUSION: Targeting the FTO/m6A/GPNMB axis could significantly suppress tumour growth and metastasis, and enhance immune activation, highlighting the potential of targeting FTO signalling with effective inhibitors for HCC therapy.

2.
Cell Mol Gastroenterol Hepatol ; 18(3): 101358, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38750898

RESUMO

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is a heterogeneous cancer with varying levels of liver tumor initiating or cancer stem cells in the tumors. We aimed to investigate the expression of different liver cancer stem cell (LCSC) markers in human HCCs and identify their regulatory mechanisms in stemness-related cells. METHODS: We used an unbiased, single-marker sorting approach by flow cytometry, fluorescence-activated cell sorting, and transcriptomic analyses on HCC patients' resected specimens. Knockdown approach was used, and relevant functional assays were conducted on the identified targets of interest. RESULTS: Flow cytometry on a total of 60 HCC resected specimens showed significant heterogeneity in the expression of LCSC markers, with CD24, CD13, and EpCAM mainly contributing to this heterogeneity. Concomitant expression of CD24, CD13, and EpCAM was detected in 32 HCC samples, and this was associated with advanced tumor stages. Transcriptomic sequencing on the HCC cells sorted for these individual markers identified epidermal growth factor receptor kinase substrate 8-like protein 3 (EPS8L3) as a common gene associated with the 3 markers and was functionally validated in HCC cells. Knocking down EPS8L3 suppressed the expression of all 3 markers. To search for the upstream regulation of EPS8L3, we found SP1 bound to EPS8L3 promoter to drive EPS8L3 expression. Furthermore, using Akt inhibitor MK2206, we showed that Akt signaling-driven SP1 drove the expression of the 3 LCSC markers. CONCLUSIONS: Our findings suggest that Akt signaling-driven SP1 promotes EPS8L3 expression, which is critical in maintaining the downstream expression of CD24, CD13, and EpCAM. The findings provide insight into potential LCSC-targeting therapeutic strategies.

3.
Br J Cancer ; 130(7): 1096-1108, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341509

RESUMO

BACKGROUND: Pancreatic neuroendocrine tumors (PNETs) with low microvessel density and fibrosis often exhibit clinical aggressiveness. Given the contribution of cancer-associated fibroblasts (CAFs) to the hypovascular fibrotic stroma in pancreatic ductal adenocarcinoma, investigating whether CAFs play a similar role in PNETs becomes imperative. In this study, we investigated the involvement of CAFs in PNETs and their effects on clinical outcomes. METHODS: We examined 79 clinical PNET specimens to evaluate the number and spatial distribution of α-smooth muscle actin (SMA)-positive cells, which are indicative of CAFs. Then, the findings were correlated with clinical outcomes. In vitro and in vivo experiments were conducted to assess the effects of CAFs (isolated from clinical specimens) on PNET metastasis and growth. Additionally, the role of the stromal-cell-derived factor 1 (SDF1)-AGR2 axis in mediating communication between CAFs and PNET cells was investigated. RESULTS: αSMA-positive and platelet-derived growth factor-α-positive CAFs were detected in the hypovascular stroma of PNET specimens. A higher abundance of α-SMA-positive CAFs within the PNET stroma was significantly associated with a higher level of clinical aggressiveness. Notably, conditioned medium from PNET cells induced an inflammatory phenotype in isolated CAFs. These CAFs promoted PNET growth and metastasis. Mechanistically, PNET cells secreted interleukin-1, which induced the secretion of SDF1 from CAFs. This cascade subsequently elevated AGR2 expression in PNETs, thereby promoting tumor growth and metastasis. The downregulation of AGR2 in PNET cells effectively suppressed the CAF-mediated promotion of PNET growth and metastasis. CONCLUSION: CAFs drive the growth and metastasis of aggressive PNETs. The CXCR4-SDF1 axis may be a target for antistromal therapy in the treatment of PNET. This study clarifies mechanisms underlying PNET aggressiveness and may guide future therapeutic interventions targeting the tumor microenvironment.


Assuntos
Fibroblastos Associados a Câncer , Tumores Neuroectodérmicos Primitivos , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Fibroblastos Associados a Câncer/metabolismo , Tumores Neuroendócrinos/patologia , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Tumores Neuroectodérmicos Primitivos/metabolismo , Tumores Neuroectodérmicos Primitivos/patologia , Microambiente Tumoral , Fibroblastos/metabolismo , Mucoproteínas/metabolismo , Mucoproteínas/uso terapêutico , Proteínas Oncogênicas/metabolismo
4.
Theranostics ; 14(2): 892-910, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169544

RESUMO

Background: The tumor microenvironment of cancers has emerged as a crucial component in regulating cancer stemness and plays a pivotal role in cell-cell communication. However, the specific mechanisms underlying these phenomena remain poorly understood. Methods: We performed the single-cell RNA sequencing (scRNA-seq) on nine HBV-associated hepatocellular carcinoma (HCC) patients. The heterogeneity of the malignant cells in pathway functions, transcription factors (TFs) regulation, overall survival, stemness, as well as ligand-receptor-based intercellular communication with macrophages were characterized. The aggressive and stemness feature for the target tumor subclone was validated by the conduction of in vitro assays including sphere formation, proliferation, Annexin V apoptosis, flow cytometry, siRNA library screening assays, and multiple in vivo preclinical mouse models including mouse hepatoma cell and human HCC cell xenograft models with subcutaneous or orthotopic injection. Results: Our analysis yielded a comprehensive atlas of 31,664 cells, revealing a diverse array of malignant cell subpopulations. Notably, we identified a stemness-related subclone of HCC cells with concurrent upregulation of CD24, CD47, and ICAM1 expression that correlated with poorer overall survival. Functional characterization both in vitro and in vivo validated S100A11 as one of the top downstream mediators for tumor initiation and stemness maintenance of this subclone. Further investigation of cell-cell communication within the tumor microenvironment revealed a propensity for bi-directional crosstalk between this stemness-related subclone and tumor-associated macrophages (TAMs). Co-culture study showed that this interaction resulted in the maintenance of the expression of cancer stem cell markers and driving M2-like TAM polarization towards a pro-tumorigenic niche. We also consolidated an inverse relationship between the proportions of TAMs and tumor-infiltrating T cells. Conclusions: Our study highlighted the critical role of stemness-related cancer cell populations in driving an immunosuppressive tumor microenvironment and identified the S100A11 gene as a key mediator for stemness maintenance in HCC. Moreover, our study provides support that the maintenance of cancer stemness is more attributed to M2 polarization than the recruitment of the TAMs.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Vírus da Hepatite B , Neoplasias Hepáticas/patologia , Macrófagos/metabolismo , Técnicas de Cocultura , Linhagem Celular Tumoral , Microambiente Tumoral
5.
Hepatology ; 79(2): 323-340, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37540188

RESUMO

BACKGROUND AND AIMS: HCC is an aggressive cancer with a poor clinical outcome. Understanding the mechanisms that drive tumor initiation is important for improving treatment strategy. This study aimed to identify functional cell membrane proteins that promote HCC tumor initiation. APPROACH AND RESULTS: Tailor-made siRNA library screening was performed for all membrane protein-encoding genes that are upregulated in human HCC (n = 134), with sphere formation as a surrogate readout for tumor initiation. Upon confirmation of membranous localization by immunofluorescence and tumor initiation ability by limiting dilution assay in vivo, LanC-like protein-1 (LANCL1) was selected for further characterization. LANCL1 suppressed intracellular reactive oxygen species (ROS) and promoted tumorigenicity both in vitro and in vivo. Mechanistically, with mass spectrometry, FAM49B was identified as a downstream binding partner of LANCL1. LANCL1 stabilized FAM49B by blocking the interaction of FAM49B with the specific E3 ubiquitin ligase TRIM21, thus protecting FAM49B from ubiquitin-proteasome degradation. The LANCL1-FAM49B axis suppressed the Rac1-NADPH oxidase-driven ROS production, but this suppression of ROS was independent of the glutathione transferase function of LANCL1. Clinically, HCCs with high co-expression of LANCL1 and FAM49B were associated with more advanced tumor stage, poorer overall survival, and disease-free survival. In addition, anti-LANCL1 antibodies targeting the extracellular N-terminal domain were able to suppress the self-renewal ability, as demonstrated by the sphere formation ability of HCC cells. CONCLUSIONS: Our data showed that LANCL1 is a cell surface protein and a key contributor to HCC initiation. Targeting the LANCL1-FAM49B-Rac1-NADPH oxidase-ROS signaling axis may be a promising therapeutic strategy for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Membrana/metabolismo , Estresse Oxidativo , NADPH Oxidases/metabolismo , Linhagem Celular Tumoral , Receptores Acoplados a Proteínas G/metabolismo
6.
Einstein (Säo Paulo) ; 22: eAO0931, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1550238

RESUMO

ABSTRACT Objective: This study aimed to present a temporal and spatial analysis of the 2018 measles outbreak in Brazil, particularly in the metropolitan city of Manaus in the Amazon region, and further introduce a new tool for spatial analysis. Methods: We analyzed the geographical data of the residences of over 7,000 individuals with measles in Manaus during 2018 and 2019. Spatial and temporal analyses were conducted to characterize various aspects of the outbreak, including the onset and prevalence of symptoms, demographics, and vaccination status. A visualization tool was also constructed to display the geographical and temporal distribution of the reported measles cases. Results: Approximately 95% of the included participants had not received vaccination within the past decade. Heterogeneity was observed across all facets of the outbreak, including variations in the incubation period and symptom presentation. Age distribution exhibited two peaks, occurring at one year and 18 years of age, and the potential implications of this distribution on predictive analysis were discussed. Additionally, spatial analysis revealed that areas with the highest case densities tended to have the lowest standard of living. Conclusion: Understanding the spatial and temporal spread of measles outbreaks provides insights for decision-making regarding measures to mitigate future epidemics.

7.
Hepatology ; 78(5): 1368-1383, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36632999

RESUMO

BACKGROUND AND AIMS: Understanding the mechanisms of HCC progression and metastasis is crucial to improve early diagnosis and treatment. This study aimed to identify key molecular targets involved in HCC metastasis. APPROACH AND RESULTS: Using whole-transcriptome sequencing of patients' HCCs, we identified and validated midline 1 interacting protein 1 (MID1IP1) as one of the most significantly upregulated genes in metastatic HCCs, suggesting its potential role in HCC metastasis. Clinicopathological correlation demonstrated that MID1IP1 upregulation significantly correlated with more aggressive tumor phenotypes and poorer patient overall survival rates. Functionally, overexpression of MID1IP1 significantly promoted the migratory and invasive abilities and enhanced the sphere-forming ability and expression of cancer stemness-related genes of HCC cells, whereas its stable knockdown abrogated these effects. Perturbation of MID1IP1 led to significant tumor shrinkage and reduced pulmonary metastases in an orthotopic liver injection mouse model and reduced pulmonary metastases in a tail-vein injection model in vivo . Mechanistically, SP1 transcriptional factor was found to be an upstream driver of MID1IP1 transcription. Furthermore, transcriptomic sequencing on MID1IP1-overexpressing HCC cells identified FOS-like 1 (FRA1) as a critical downstream mediator of MID1IP1. MID1IP1 upregulated FRA1 to subsequently promote its transcriptional activity and extracellular matrix degradation activity of matrix metalloproteinase MMP9, while knockdown of FRA1 effectively abolished the MID1IP1-induced migratory and invasive abilities. CONCLUSIONS: Our study identified MID1IP1 as a regulator in promoting FRA1-mediated-MMP9 signaling and demonstrated its role in HCC metastasis. Targeting MID1IP1-mediated FRA1 pathway may serve as a potential therapeutic strategy against HCC progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Metaloproteinase 9 da Matriz/metabolismo , Metástase Neoplásica , Transdução de Sinais/genética
8.
Gut ; 72(7): 1370-1384, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36631249

RESUMO

OBJECTIVE: Growing evidence indicates that tumour cells exhibit characteristics similar to their lineage progenitor cells. We found that S100 calcium binding protein A10 (S100A10) exhibited an expression pattern similar to that of liver progenitor genes. However, the role of S100A10 in hepatocellular carcinoma (HCC) progression is unclear. Furthermore, extracellular vesicles (EVs) are critical mediators of tumourigenesis and metastasis, but the extracellular functions of S100A10, particularly those related to EVs (EV-S100A10), are unknown. DESIGN: The functions and mechanisms of S100A10 and EV-S100A10 in HCC progression were investigated in vitro and in vivo. Neutralising antibody (NA) to S100A10 was used to evaluate the significance of EV-S100A10. RESULTS: Functionally, S100A10 promoted HCC initiation, self-renewal, chemoresistance and metastasis in vitro and in vivo. Of significance, we found that S100A10 was secreted by HCC cells into EVs both in vitro and in the plasma of patients with HCC. S100A10-enriched EVs enhanced the stemness and metastatic ability of HCC cells, upregulated epidermal growth factor receptor (EGFR), AKT and ERK signalling, and promoted epithelial-mesenchymal transition. EV-S100A10 also functioned as a chemoattractant in HCC cell motility. Of significance, S100A10 governed the protein cargos in EVs and mediated the binding of MMP2, fibronectin and EGF to EV membranes through physical binding with integrin αⅤ. Importantly, blockage of EV-S100A10 with S100A10-NA significantly abrogated these enhancing effects. CONCLUSION: Altogether, our results uncovered that S100A10 promotes HCC progression significantly via its transfer in EVs and regulating the protein cargoes of EVs. EV-S100A10 may be a potential therapeutic target and biomarker for HCC progression.


Assuntos
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Comunicação Celular
9.
Med Phys ; 49(7): 4305-4321, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35504620

RESUMO

PURPOSE: This work generates multi-metastases cranial stereotactic radiosurgery/radiotherapy (SRS/SRT) plans using a novel treatment planning technique in which dynamic couch, collimator, and gantry trajectories are used with periodic binary target collimation. The performance of this planning technique is evaluated against conventional volumetric arc therapy (VMAT) planning in terms of various dose and plan quality metrics. METHODS: A 3D cost space (referred to herein as the combined optimization of dynamic axes or CODA cube) was calculated based on an overlap between targets and organs-at-risk (OARs) and uncollimated areas between targets (island blocking) for all combinations of couch, gantry, and collimator angles. Gradient descent through the cube was applied to determine dynamic trajectories. At each control point (CP), each target can either be conformally treated or blocked by the multi-leaf collimator (referred to as intra-arc binary collimation, iABC). Simulated annealing was used to optimize the collimation patterns throughout the arcs as well as the monitor units (MUs) delivered at each CP. Seven previously treated VMAT plans were selected for comparison against the CODA-iABC planning technique. Two CODA-iABC plans were developed: a single gantry arc plan and a plan with one gantry arc and two couch arcs. Plan quality comparison metrics included maximum and mean dose to OARs (brainstem, chiasm, optic nerves, eyes, and lenses), the volume of normal brain receiving 12 Gy (V12Gy), total MUs, target conformity, and dose-gradient index. RESULTS: Treatment plans generated with 1-arc CODA-iABC plans delivered an average of 21% and 30% higher maximum and mean doses to brainstem, respectively, when compared to VMAT plans. Treatment plans generated with 3-arc CODA-iABC used an average of 24% fewer MUs and resulted in an average reduction of 48% maximum dose and 50% mean dose to the OARs, when compared to VMAT. Target conformity values were worse in both CODA-iABC plans than VMAT by an average of 35% and 15%, respectively. There are no significant differences in V12Gy for all three planning techniques; however, 3-arc CODA-iABC is more effective at reducing dose to normal brain in the low-dose region (<12 Gy). CONCLUSION: CODA-iABC is a novel planning technique that has been developed to automatically generate patient-specific multi-axis trajectories for multiple metastases cranial SRS/SRT. This work has demonstrated the feasibility of planning with this novel method. The 1-arc CODA-iABC planning technique is slightly dosimetric inferior to VMAT. With an increased sampling of a three-dimensional CODA cube by using a 3-arc CODA-iABC technique, there was improved total dose sparing to all the OARs and increased MU efficiency, but with a cost in target conformity, when compared to VMAT.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Prescrições , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
10.
J Hepatol ; 77(2): 383-396, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35227773

RESUMO

BACKGROUND & AIMS: The highly proliferative nature of hepatocellular carcinoma (HCC) frequently results in a hypoxic intratumoural microenvironment, which creates a therapeutic challenge owing to a lack of mechanistic understanding of the phenomenon. We aimed to identify critical drivers of HCC development and progression in the hypoxic microenvironment. METHODS: We performed integrative analysis of multiple transcriptomic and genomic profiles specific for HCC and hypoxia and identified the Ephrin-A3/Eph receptor A2 (EphA2) axis as a clinically relevant and hypoxia-inducible signalling axis in HCC. The functional significance and mechanistic consequences of the Ephrin-A3/EphA2 axis were examined in EFNA3- and EPHA2- knockdown/overexpressing HCC cells. The potential downstream pathways were investigated by transcriptome sequencing, quantitative reverse-transcription PCR, western blotting analysis and metabolomics. RESULTS: EFNA3 was frequently upregulated in HCC and its overexpression was associated with more aggressive tumour behaviours. HIF-1α directly and positively regulated EFNA3 expression under hypoxia. EFNA3 functionally contributed to self-renewal, proliferation and migration in HCC cells. EphA2 was identified as a key functional downstream mediator of EFNA3. Functional characterisation of the Ephrin-A3/EphA2 forward-signalling axis demonstrated a promotion of self-renewal ability and tumour initiation. Mechanistically, the Ephrin-A3/EphA2 axis promoted the maturation of SREBP1 and expression of its transcriptional target, ACLY, was significantly associated with the expression of EFNA3 and hypoxia markers in clinical cohorts. The metabolic signature of EPHA2 and ACLY stable knockdown HCC cells demonstrated significant overlap in fatty acid, cholesterol and tricarboxylic acid cycle metabolite profiles. ACLY was confirmed to mediate the self-renewal function of the Ephrin-A3/EphA2 axis. CONCLUSIONS: Our findings revealed the novel role of the Ephrin-A3/EphA2 axis as a hypoxia-sensitive modulator of HCC cell metabolism and a key contributor to HCC initiation and progression. LAY SUMMARY: Hepatocellular carcinoma (HCC) is a fast-growing tumour; hence, areas of the tumour often have insufficient vasculature and become hypoxic. The presence of hypoxia within tumours has been shown to negatively impact on the survival of patients with tumours, including HCC. Herein, we identified the Ephrin-A3/EphA2 axis as a key functional driver of tumour initiation and progression in response to hypoxia. Additionally, we showed that SREBP1-ACLY-mediated metabolic rewiring was an important downstream effector that induced cancer stemness in response to Ephrin-A3/EphA2 forward-signalling.


Assuntos
Carcinoma Hepatocelular , Efrina-A3 , Neoplasias Hepáticas , Receptor EphA2 , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Efrina-A3/genética , Efrina-A3/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Hipóxia , Neoplasias Hepáticas/patologia , Receptor EphA2/genética , Receptor EphA2/metabolismo , Microambiente Tumoral
11.
Cell Biosci ; 11(1): 217, 2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34924003

RESUMO

BACKGROUND: Controversy over the benefits of antioxidants supplements in cancers persists for long. Using hepatocellular carcinoma (HCC) as a model, we investigated the effects of exogenous antioxidants N-acetylcysteine (NAC) and glutathione (GSH) on tumor formation and growth. METHODS: Multiple mouse models, including diethylnitrosamine (DEN)-induced and Trp53KO/C-MycOE-induced HCC models, mouse hepatoma cell and human HCC cell xenograft models with subcutaneous or orthotopic injection were used. In vitro assays including ROS assay, colony formation, sphere formation, proliferation, migration and invasion, apoptosis, cell cycle assays were conducted. Western blot was performed for protein expression and RNA-sequencing to identify potential gene targets. RESULTS: In these multiple different mouse and cell line models, we observed that NAC and GSH promoted HCC tumor formation and growth, accompanied with significant reduction of intracellular reactive oxygen species (ROS) levels. Moreover, NAC and GSH promoted cancer stemness, and abrogated the tumor-suppressive effects of Sorafenib both in vitro and in vivo. Exogenous supplementation of NAC or GSH reduced the expression of NRF2 and GCLC, suggesting the NRF2/GCLC-related antioxidant production pathway might be desensitized. Using transcriptomic analysis to identify potential gene targets, we found that TMBIM1 was significantly upregulated upon NAC and GSH treatment. Both TCGA and in-house RNA-sequence databases showed that TMBIM1 was overexpressed in HCC tumors. Stable knockdown of TMBIM1 increased the intracellular ROS; it also abolished the promoting effects of the antioxidants in HCC cells. On the other hand, BSO and SSA, inhibitors targeting NAC and GSH metabolism respectively, partially abrogated the pro-oncogenic effects induced by NAC and GSH in vitro and in vivo. CONCLUSIONS: Our data implicate that exogenous antioxidants NAC and GSH, by reducing the intracellular ROS levels and inducing TMBIM expression, promoted HCC formation and tumor growth, and counteracted the therapeutic effect of Sorafenib. Our study provides scientific insight regarding the use of exogenous antioxidant supplements in cancers.

12.
Sci Transl Med ; 13(583)2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658352

RESUMO

The members of the interleukin-17 (IL-17) cytokine family and their receptors were identified decades ago. Unlike IL-17 receptor A (IL-17RA), which heterodimerizes with IL-17RB, IL-17RC, and IL-17RD and mediates proinflammatory gene expression, IL-17RB plays a distinct role in promoting tumor growth and metastasis upon stimulation with IL-17B. However, the molecular basis by which IL-17RB promotes oncogenesis is unknown. Here, we report that IL-17RB forms a homodimer and recruits mixed-lineage kinase 4 (MLK4), a dual kinase, to phosphorylate it at tyrosine-447 upon treatment with IL-17B in vitro. Higher amounts of phosphorylated IL-17RB in tumor specimens obtained from patients with pancreatic cancer correlated with worse prognosis. Phosphorylated IL-17RB recruits the ubiquitin ligase tripartite motif containing 56 to add lysine-63-linked ubiquitin chains to lysine-470 of IL-17RB, which further assembles NF-κB activator 1 (ACT1) and other factors to propagate downstream oncogenic signaling. Consequentially, IL-17RB mutants with substitution at either tyrosine-447 or lysine-470 lose their oncogenic activity. Treatment with a peptide consisting of amino acids 403 to 416 of IL-17RB blocks MLK4 binding, tyrosine-477 phosphorylation, and lysine-470 ubiquitination in vivo, thereby inhibiting tumorigenesis and metastasis and prolonging the life span of mice bearing pancreatic tumors. These results establish a clear pathway of how proximal signaling of IL-17RB occurs and provides insight into how this pathway provides a therapeutic target for pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Receptores de Interleucina-17 , Animais , Carcinogênese , Humanos , Camundongos , NF-kappa B/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Transdução de Sinais
13.
Cardiol Young ; 31(2): 241-247, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33168130

RESUMO

OBJECTIVE: We aimed to apply systems engineering principles to address hospital-acquired infections in the paediatric intensive care setting. DESIGN: Mixed method approach involving four steps: perform time-motion study of cardiac intensive care unit (CICU) care processes, establish a meaningful schema to classify observations, design a web-based system to manage and analyse data, and design a prototypical computer-based training system to assist with hygiene compliance. SETTING: Paediatric CICU at the Children's Healthcare of Atlanta. PATIENTS: Paediatric patients undergoing congenital heart surgery. INTERVENTIONS: Extensive time-motion study of CICU care processes. MEASUREMENTS: Non-compliances were recorded for each care process observed during the time-motion study. RESULTS: Guided by our observations, we introduced a novel categorisation schema with action types, observation categories, severity classes, procedure classifications, and personnel categories that offer a systematic and efficient mechanism for reporting and classifying non-compliance and violations. Utilising these categories, a web-based database management system was designed that allows observers to input their data. This web analytic tool offers easy summarisation, data analysis, and visualisation of findings. A computer-based training system with modules to educate visitors in hospital-acquired infections hygiene was also created. CONCLUSION: Our study offers a checklist of non-compliance situations and potential development of a proactive surveillance system of awareness of infection-prone situations. Working with quality improvement experts and stakeholders, recommendations and actionable practice will be synthesised for implementation in clinical settings. Careful design of the implementation protocol is needed to measure and quantify the potential improvements in outcomes.


Assuntos
Unidades de Terapia Intensiva , Melhoria de Qualidade , Criança , Hospitais , Humanos , Projetos de Pesquisa , Análise de Sistemas
14.
EMBO Mol Med ; 12(1): e9386, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31782617

RESUMO

Human caspase-4 and its mouse homolog caspase-11 are receptors for cytoplasmic lipopolysaccharide. Activation of the caspase-4/11-dependent NLRP3 inflammasome is required for innate defense and endotoxic shock, but how caspase-4/11 is modulated remains unclear. Here, we show that mice lacking the oxidative stress sensor glutathione peroxidase 8 (GPx8) are more susceptible to colitis and endotoxic shock, and exhibit reduced richness and diversity of the gut microbiome. C57BL/6 mice that underwent adoptive cell transfer of GPx8-deficient macrophages displayed a similar phenotype of enhanced colitis, indicating a critical role of GPx8 in macrophages. GPx8 binds covalently to caspase-4/11 via disulfide bonding between cysteine 79 of GPx8 and cysteine 118 of caspase-4 and thus restrains caspase-4/11 activation, while GPx8 deficiency leads to caspase-4/11-induced inflammation during colitis and septic shock. Inhibition of caspase-4/11 activation with small molecules reduces the severity of colitis in GPx8-deficient mice. Notably, colonic tissues from patients with ulcerative colitis display low levels of Gpx8 and high caspase-4 expression. In conclusion, these results suggest that GPx8 protects against colitis by negatively regulating caspase-4/11 activity.


Assuntos
Caspases/metabolismo , Colite , Peroxidases/metabolismo , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colite Ulcerativa/metabolismo , Escherichia coli , Glutationa Peroxidase , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Cancer Lett ; 459: 176-185, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31195060

RESUMO

Hepatocellular carcinoma (HCC) is heterogeneous, rendering its current curative treatments ineffective. The emergence of single-cell genomics represents a powerful strategy in delineating the complex molecular landscapes of cancers. In this study, we demonstrated the feasibility and merit of using single-cell RNA sequencing to dissect the intra-tumoral heterogeneity and analyze the single-cell transcriptomic landscape to detect rare cell subpopulations of significance. Exploration of the inter-relationship among liver cancer stem cell markers showed two distinct major cell populations according to EPCAM expression, and the EPCAM+ cells had upregulated expression of multiple oncogenes. We also identified a CD24+/CD44+-enriched cell subpopulation within the EPCAM+ cells which had specific signature genes and might indicate a novel stemness-related cell subclone in HCC. Notably, knockdown of signature gene CTSE for CD24+/CD44+ cells significantly reduced self-renewal ability on HCC cells in vitro and the stemness-related role of CTSE was further confirmed by in vivo tumorigenicity assays in nude mice. In summary, single-cell genomics is a useful tool to delineate HCC intratumoral heterogeneity at better resolution. It can identify rare but important cell subpopulations, and may guide better precision medicine in the long run.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Células-Tronco Neoplásicas/patologia , Animais , Antígeno CD24/metabolismo , Carcinoma Hepatocelular/metabolismo , Molécula de Adesão da Célula Epitelial/biossíntese , Molécula de Adesão da Célula Epitelial/genética , Heterogeneidade Genética , Xenoenxertos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Receptores de Hialuronatos/metabolismo , Neoplasias Hepáticas/metabolismo , Camundongos , Células-Tronco Neoplásicas/metabolismo , Análise de Célula Única , Transcriptoma
16.
Cell Metab ; 29(6): 1334-1349.e10, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30853214

RESUMO

KRAS mutations are the earliest events found in approximately 90% of pancreatic ductal adenocarcinomas (PDACs). However, little is known as to why KRAS mutations preferentially occur in PDACs and what processes/factors generate these mutations. While abnormal carbohydrate metabolism is associated with a high risk of pancreatic cancer, it remains elusive whether a direct relationship between KRAS mutations and sugar metabolism exists. Here, we show that under high-glucose conditions, cellular O-GlcNAcylation is significantly elevated in pancreatic cells that exhibit lower phosphofructokinase (PFK) activity than other cell types. This post-translational modification specifically compromises the ribonucleotide reductase (RNR) activity, leading to deficiency in dNTP pools, genomic DNA alterations with KRAS mutations, and cellular transformation. These results establish a mechanistic link between a perturbed sugar metabolism and genomic instability that induces de novo oncogenic KRAS mutations preferentially in pancreatic cells.


Assuntos
Acetilglucosamina/metabolismo , Transformação Celular Neoplásica/induzido quimicamente , Enzimas/metabolismo , Glucose/farmacologia , Nucleotídeos/metabolismo , Pâncreas/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/genética , Acetilação/efeitos dos fármacos , Acetiltransferases/metabolismo , Adulto , Idoso , Animais , Carcinoma Ductal Pancreático/induzido quimicamente , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Dano ao DNA/genética , Relação Dose-Resposta a Droga , Enzimas/genética , Feminino , Glucose/efeitos adversos , Células HEK293 , Humanos , Recém-Nascido , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mutagênese/efeitos dos fármacos , Mutação/efeitos dos fármacos , Pâncreas/metabolismo , Neoplasias Pancreáticas/induzido quimicamente , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Adulto Jovem
17.
Am J Cancer Res ; 8(12): 2548-2563, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30662811

RESUMO

We stratified pancreatic ductal adenocarcinoma (PDAC) based on the tumorigenic properties of cancer cells, and aimed to identify clinically useful immunohistochemical (IHC) markers with mechanistic insights. The tumorigenic properties of PDACs were determined using patient-derived xenograft in NOD/SCID/IL2Rγnull mice. The success of tumor engraftment was significantly correlated to poor survival, and its predictive values were superior to clinicopathological parameters. To search IHC-based biomarkers as surrogate for high tumorigenicity with prognostic values, 11 candidates of potentially clinical useful prognostic markers were selected. Among them, 5hmC content of the cancer cells was validated. Elevated 5hmC content positively correlated with in vivo tumorigenicity and poor prognosis in both primary and validation cohorts. Enrichment of cancer-associated 5hmC in CDX2 and FOXA1 lineage-specific transcriptional factor genes further pointed out the potential role of 5hmC in modulating cellular differentiation to enhance tumor malignancy during PDAC progression. Tumor-associated 5hmC content defined a subpopulation of PDAC with high lineage plasticity and tumorigenic potential, and was a prognostic IHC marker that provided a clinical basis for future management of PDAC.

18.
EMBO Mol Med ; 9(12): 1660-1680, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28993429

RESUMO

Lymph node (LN) metastasis is commonly associated with systemic distant organ metastasis in human breast cancer and is an important prognostic predictor for survival of breast cancer patients. However, whether tumor-draining LNs (TDLNs) play a significant role in modulating the malignancy of cancer cells for distant metastasis remains controversial. Using a syngeneic mouse mammary tumor model, we found that breast tumor cells derived from TDLN have higher malignancy and removal of TDLNs significantly reduced distant metastasis. Up-regulation of oncogenic Il-17rb in cancer cells derived from TDLNs contributes to their malignancy. TGF-ß1 secreted from regulatory T cells (Tregs) in the TDLNs mediated the up-regulation of Il-17rb through downstream Smad2/3/4 signaling. These phenotypes can be abolished by TGF-ß1 neutralization or depletion of Tregs. Consistently, clinical data showed that the up-regulation of IL-17RB in cancer cells from LN metastases correlated with the increased prevalence of Tregs as well as the aggressive growth of tumors in mouse xenograft assay. Together, these results indicate that Tregs in TDLNs play an important role in modulating the malignancy of breast cancer cells for distant metastasis. Blocking IL-17RB expression could therefore be a potential approach to curb the process.


Assuntos
Neoplasias da Mama/patologia , Linfonodos/patologia , Receptores de Interleucina-17/metabolismo , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/radioterapia , Feminino , Humanos , Linfonodos/imunologia , Metástase Linfática , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , RNA Interferente Pequeno/metabolismo , Receptores de Interleucina-17/antagonistas & inibidores , Receptores de Interleucina-17/genética , Transdução de Sinais , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Transplante Homólogo , Células Tumorais Cultivadas , Regulação para Cima
19.
Proc Natl Acad Sci U S A ; 114(9): 2425-2430, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28193898

RESUMO

RTS,S is an advanced malaria vaccine candidate and confers significant protection against Plasmodium falciparum infection in humans. Little is known about the molecular mechanisms driving vaccine immunity. Here, we applied a systems biology approach to study immune responses in subjects receiving three consecutive immunizations with RTS,S (RRR), or in those receiving two immunizations of RTS,S/AS01 following a primary immunization with adenovirus 35 (Ad35) (ARR) vector expressing circumsporozoite protein. Subsequent controlled human malaria challenge (CHMI) of the vaccinees with Plasmodium-infected mosquitoes, 3 wk after the final immunization, resulted in ∼50% protection in both groups of vaccinees. Circumsporozoite protein (CSP)-specific antibody titers, prechallenge, were associated with protection in the RRR group. In contrast, ARR-induced lower antibody responses, and protection was associated with polyfunctional CD4+ T-cell responses 2 wk after priming with Ad35. Molecular signatures of B and plasma cells detected in PBMCs were highly correlated with antibody titers prechallenge and protection in the RRR cohort. In contrast, early signatures of innate immunity and dendritic cell activation were highly associated with protection in the ARR cohort. For both vaccine regimens, natural killer (NK) cell signatures negatively correlated with and predicted protection. These results suggest that protective immunity against P. falciparum can be achieved via multiple mechanisms and highlight the utility of systems approaches in defining molecular correlates of protection to vaccination.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Anticorpos Antiprotozoários/biossíntese , Imunidade Inata/efeitos dos fármacos , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/imunologia , Proteínas de Protozoários/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Adenoviridae/genética , Adenoviridae/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/imunologia , Humanos , Imunização Secundária/métodos , Imunogenicidade da Vacina , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Vacinação/métodos
20.
Pediatr Crit Care Med ; 17(10): 939-947, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27513600

RESUMO

OBJECTIVE: To determine whether a collaborative learning strategy-derived clinical practice guideline can reduce the duration of endotracheal intubation following infant heart surgery. DESIGN: Prospective and retrospective data collected from the Pediatric Heart Network in the 12 months pre- and post-clinical practice guideline implementation at the four sites participating in the collaborative (active sites) compared with data from five Pediatric Heart Network centers not participating in collaborative learning (control sites). SETTING: Ten children's hospitals. PATIENTS: Data were collected for infants following two-index operations: 1) repair of isolated coarctation of the aorta (birth to 365 d) and 2) repair of tetralogy of Fallot (29-365 d). There were 240 subjects eligible for the clinical practice guideline at active sites and 259 subjects at control sites. INTERVENTIONS: Development and application of early extubation clinical practice guideline. MEASUREMENTS AND MAIN RESULTS: After clinical practice guideline implementation, the rate of early extubation at active sites increased significantly from 11.7% to 66.9% (p < 0.001) with no increase in reintubation rate. The median duration of postoperative intubation among active sites decreased from 21.2 to 4.5 hours (p < 0.001). No statistically significant change in early extubation rates was found in the control sites 11.7% to 13.7% (p = 0.63). At active sites, clinical practice guideline implementation had no statistically significant impact on median ICU length of stay (71.9 hr pre- vs 69.2 hr postimplementation; p = 0.29) for the entire cohort. There was a trend toward shorter ICU length of stay in the tetralogy of Fallot subgroup (71.6 hr pre- vs 54.2 hr postimplementation, p = 0.068). CONCLUSIONS: A collaborative learning strategy designed clinical practice guideline significantly increased the rate of early extubation with no change in the rate of reintubation. The early extubation clinical practice guideline did not significantly change postoperative ICU length of stay.


Assuntos
Extubação/normas , Procedimentos Cirúrgicos Cardíacos , Comportamento Cooperativo , Intubação Intratraqueal , Aprendizagem , Guias de Prática Clínica como Assunto , Melhoria de Qualidade/organização & administração , Extubação/estatística & dados numéricos , Hospitais Pediátricos , Humanos , Lactente , Recém-Nascido , Unidades de Terapia Intensiva Pediátrica , Tempo de Internação/estatística & dados numéricos , Modelos Organizacionais , Estudos Prospectivos , Melhoria de Qualidade/estatística & dados numéricos , Estudos Retrospectivos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA