Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7859, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030597

RESUMO

Ligand-induced epidermal growth factor receptor (EGFR) endocytosis followed by endosomal EGFR signaling and lysosomal degradation plays important roles in controlling multiple biological processes. ADP-ribosylation factor (Arf)-like protein 4 A (Arl4A) functions at the plasma membrane to mediate cytoskeletal remodeling and cell migration, whereas its localization at endosomal compartments remains functionally unknown. Here, we report that Arl4A attenuates EGFR degradation by binding to the endosomal sorting complex required for transport (ESCRT)-II component VPS36. Arl4A plays a role in prolonging the duration of EGFR ubiquitinylation and deterring endocytosed EGFR transport from endosomes to lysosomes under EGF stimulation. Mechanistically, the Arl4A-VPS36 direct interaction stabilizes VPS36 and ESCRT-III association, affecting subsequent recruitment of deubiquitinating-enzyme USP8 by CHMP2A. Impaired Arl4A-VPS36 interaction enhances EGFR degradation and clearance of EGFR ubiquitinylation. Together, we discover that Arl4A negatively regulates EGFR degradation by binding to VPS36 and attenuating ESCRT-mediated late endosomal EGFR sorting.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Receptores ErbB , Humanos , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células HeLa , Receptores ErbB/metabolismo , Endossomos/metabolismo , Transdução de Sinais , Transporte Proteico/fisiologia
2.
J Cell Sci ; 135(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36017701

RESUMO

AMP-activated protein kinase (AMPK) is a crucial cellular nutrient and energy sensor that maintains energy homeostasis. AMPK also governs cancer cell invasion and migration by regulating gene expression and activating multiple cellular signaling pathways. ADP-ribosylation factor 6 (Arf6) can be activated via nucleotide exchange by guanine-nucleotide-exchange factors (GEFs), and its activation also regulates tumor invasion and migration. By studying GEF-mediated Arf6 activation, we have elucidated that AMPK functions as a noncanonical GEF for Arf6 in a kinase-independent manner. Moreover, by examining the physiological role of the AMPK-Arf6 axis, we have determined that AMPK activates Arf6 upon glucose starvation and 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR) treatment. We have further identified the binding motif in the C-terminal regulatory domain of AMPK that is responsible for promoting Arf6 activation and, thus, inducing cell migration and invasion. These findings reveal a noncanonical role of AMPK in which its C-terminal regulatory domain serves as a GEF for Arf6 during glucose deprivation.


Assuntos
Fator 6 de Ribosilação do ADP , Glucose , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo
3.
Mol Biol Cell ; 28(22): 3013-3028, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28855378

RESUMO

Changes in cell morphology and the physical forces that occur during migration are generated by a dynamic filamentous actin cytoskeleton. The ADP-ribosylation factor-like 4C (Arl4C) small GTPase acts as a molecular switch to regulate morphological changes and cell migration, although the mechanism by which this occurs remains unclear. Here we report that Arl4C functions with the actin regulator filamin-A (FLNa) to modulate filopodium formation and cell migration. We found that Arl4C interacted with FLNa in a GTP-dependent manner and that FLNa IgG repeat 22 is both required and sufficient for this interaction. We also show that interaction between FLNa and Arl4C is essential for Arl4C-induced filopodium formation and increases the association of FLNa with Cdc42-GEF FGD6, promoting cell division cycle 42 (Cdc42) GTPase activation. Thus our study revealed a novel mechanism, whereby filopodium formation and cell migration are regulated through the Arl4C-FLNa-mediated activation of Cdc42.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Filaminas/metabolismo , Pseudópodes/metabolismo , ADP-Ribosilação , Fatores de Ribosilação do ADP/fisiologia , Citoesqueleto de Actina/metabolismo , Actinas , Animais , Movimento Celular/fisiologia , Filaminas/fisiologia , Células HeLa , Humanos , Proteínas dos Microfilamentos/metabolismo , Metástase Neoplásica/fisiopatologia , Neoplasias/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
4.
J Cell Sci ; 127(Pt 12): 2615-20, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24706946

RESUMO

Small GTPase ADP-ribosylation factors (ARFs) are key regulators of membrane trafficking and their activities are determined by guanine-nucleotide-binding status. In Saccharomyces cerevisiae, Arl1p, an ARF-like protein, is responsible for multiple trafficking pathways at the Golgi. The GTP-hydrolysis activity of Arl1p is stimulated by its GTPase-activating protein Gcs1p, and binding with its effector Imh1p protects Arl1p from premature inactivation. However, the mechanism involved in the timing of Arl1p inactivation is unclear. Here, we demonstrate that another Arl1p effector, the lipid flippase Drs2p, is required for Gcs1p-stimulated inactivation of Arl1p. Drs2p is known to be activated by Arl1p and is involved in vesicle formation through its ability to create membrane asymmetry. We found that the flippase activity of Drs2p is required for proper membrane targeting of Gcs1p in vivo. Through modification of the membrane environment, Drs2p promotes the affinity of Gcs1p for the Golgi, where it binds to active Arl1p. Together, Imh1p and Drs2p modulate the activity of Gcs1p by timing its interaction with Arl1p, hence providing feedback regulation of Arl1p activity.


Assuntos
ATPases Transportadoras de Cálcio/fisiologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Proteínas de Transporte Vesicular/metabolismo , Membrana Celular , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Retroalimentação Fisiológica , Proteínas Ativadoras de GTPase/metabolismo , Guanosina Trifosfato , Hidrólise , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico
5.
Proc Natl Acad Sci U S A ; 110(8): E668-77, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23345439

RESUMO

ADP ribosylation factors (Arfs) are the central regulators of vesicle trafficking from the Golgi complex. Activated Arfs facilitate vesicle formation through stimulating coat assembly, activating lipid-modifying enzymes and recruiting tethers and other effectors. Lipid translocases (flippases) have been implicated in vesicle formation through the generation of membrane curvature. Although there is no evidence that Arfs directly regulate flippase activity, an Arf-guanine-nucleotide-exchange factor (GEF) Gea2p has been shown to bind to and stimulate the activity of the flippase Drs2p. Here, we provide evidence for the interaction and activation of Drs2p by Arf-like protein Arl1p in yeast. We observed that Arl1p, Drs2p and Gea2p form a complex through direct interaction with each other, and each interaction is necessary for the stability of the complex and is indispensable for flippase activity. Furthermore, we show that this Arl1p-Drs2p-Gea2p complex is specifically required for recruiting golgin Imh1p to the Golgi. Our results demonstrate that activated Arl1p can promote the spatial modulation of membrane organization at the trans-Golgi network through interacting with the effectors Gea2p and Drs2p.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Rede trans-Golgi/metabolismo , Fatores de Ribosilação do ADP/fisiologia , Membrana Celular/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Fosfatidilserinas/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
6.
Nucleic Acids Res ; 40(3): 1331-44, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21998293

RESUMO

The yeast RNA helicase Dhh1p has been shown to associate with components of mRNA decay and is involved in mRNA decapping and degradation. An RNA-binding protein, Rbp1p, is known to bind to the 3'-UTR of porin (POR1) mRNA, and induces mRNA decay by an uncharacterized mechanism. Here, we show that Dhh1p can associate with POR1 mRNA and specifically promote POR1 mRNA decay via its interaction with Rbp1p. As compared to its mammalian homolog RCK/p54/DDX6, Dhh1p has a unique and long extension at its C-terminus. Interestingly, this non-conserved C-terminal region of Dhh1p is required for interaction with Rbp1p and modulating Rbp1p-mediated POR1 mRNA decay. Notably, expression of a C-terminal 81-residue deleted Dhh1p can fully complement the growth defect of a dhh1Δ strain and retains its function in regulating the mRNA level of an RNA-binding protein Edc1p. Moreover, mammalian DDX6 became capable of interacting with Rbp1p and could confer Rbp1p-mediated POR1 mRNA decay in the dhh1Δ strain upon fusion to the C-terminal unique region of Dhh1p. Thus, we propose that the non-conserved C-terminus of Dhh1p plays a role in defining specific interactions with mRNA regulatory factors that promote distinct mRNA decay.


Assuntos
RNA Helicases DEAD-box/metabolismo , Porinas/genética , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Deleção de Genes , Porinas/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
7.
Mol Biol Cell ; 18(11): 4420-37, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17804820

RESUMO

ARL4D is a developmentally regulated member of the ADP-ribosylation factor/ARF-like protein (ARF/ARL) family of Ras-related GTPases. Although the primary structure of ARL4D is very similar to that of other ARF/ARL molecules, its function remains unclear. Cytohesin-2/ARF nucleotide-binding-site opener (ARNO) is a guanine nucleotide-exchange factor (GEF) for ARF, and, at the plasma membrane, it can activate ARF6 to regulate actin reorganization and membrane ruffling. We show here that ARL4D interacts with the C-terminal pleckstrin homology (PH) and polybasic c domains of cytohesin-2/ARNO in a GTP-dependent manner. Localization of ARL4D at the plasma membrane is GTP- and N-terminal myristoylation-dependent. ARL4D(Q80L), a putative active form of ARL4D, induced accumulation of cytohesin-2/ARNO at the plasma membrane. Consistent with a known action of cytohesin-2/ARNO, ARL4D(Q80L) increased GTP-bound ARF6 and induced disassembly of actin stress fibers. Expression of inactive cytohesin-2/ARNO(E156K) or small interfering RNA knockdown of cytohesin-2/ARNO blocked ARL4D-mediated disassembly of actin stress fibers. Similar to the results with cytohesin-2/ARNO or ARF6, reduction of ARL4D suppressed cell migration activity. Furthermore, ARL4D-induced translocation of cytohesin-2/ARNO did not require phosphoinositide 3-kinase activation. Together, these data demonstrate that ARL4D acts as a novel upstream regulator of cytohesin-2/ARNO to promote ARF6 activation and modulate actin remodeling.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Actinas/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Ribosilação do ADP/genética , Animais , Catálise , Linhagem Celular , Membrana Celular/metabolismo , Movimento Celular , Chlorocebus aethiops , Guanosina Trifosfato/metabolismo , Humanos , Proteínas de Membrana/genética , Mutação/genética , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
8.
J Cell Sci ; 119(Pt 18): 3845-55, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16926193

RESUMO

The molecular mechanisms involved in the transport of GPI-anchored proteins from the trans-Golgi network (TGN) to the cell periphery have not been established. Arl1p is a member of the Arf-like protein (Arl) subfamily of small GTPases and is localized in the late Golgi. Although Arl1p is implicated in regulation of Golgi structure and function, no endogenous cargo protein that is regulated by Arl1p has been identified in yeast. In this study, we demonstrate that Arl1p is involved in the anterograde transport from the Golgi to the cell surface of the glycosylphosphatidylinositol (GPI)-anchored plasma-membrane-resident protein Gas1p, but not the cell-wall-localized GPI-anchored proteins Crh1p, Crh2p and Cwp1p, or non-GPI-anchored plasma membrane-protein Gap1p. We also show that regulators of Arl1p (Sys1p, Arl3p and Gcs1p) and an effector (Imh1p) all participate in the transport of Gas1p. Thus, we infer that the signaling cascade Sys1p-Arl3p-Arl1p-Imh1p specifically participates in the transport of a GPI-anchored protein from the late Golgi to the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Complexo de Golgi/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Parede Celular/metabolismo , Vermelho Congo , Deleção de Genes , Proteínas de Membrana/metabolismo , Transporte Proteico , Proteínas R-SNARE/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Vacúolos/metabolismo
9.
FEBS Lett ; 565(1-3): 111-6, 2004 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-15135062

RESUMO

The open reading frame 3 of the severe acute respiratory syndrome coronavirus (SARS-CoV) genome encodes a predicted protein 3a, consisting of 274 amino acids, that lacks any significant similarities to any known protein. We generated specific antibodies against SARS protein 3a by using a synthetic peptide (P2) corresponding to amino acids 261-274 of the putative protein. Anti-P2 antibodies and the sera from SARS patients could specifically detect the recombinant SARS protein 3a expressed in Escherichia coli and in Vero E6 cells. Expression of SARS protein 3a was detected at 8-12 h after infection and reached a higher level after approximately 24 h in SARS-CoV-infected Vero E6 cells. Protein 3a was also detected in the alveolar lining pneumocytes and some intra-alveolar cells of a SARS-CoV-infected patient's lung specimen. Recombinant protein 3a expressed in Vero E6 cells and protein 3a in the SARS-CoV-infected cells was distributed over the cytoplasm in a fine punctate pattern with partly concentrated staining in the Golgi apparatus. Our study demonstrates that SARS-CoV indeed expresses a novel protein 3a, which is present only in SARS-CoV and not in other known CoVs.


Assuntos
Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Proteínas Virais/química , Animais , Anticorpos/química , Chlorocebus aethiops , Clonagem Molecular , Grupo dos Citocromos b/química , Citoplasma/metabolismo , DNA Complementar/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Complexo de Golgi/metabolismo , Humanos , Imuno-Histoquímica , Pulmão/virologia , Microscopia de Fluorescência , Nucleocapsídeo/metabolismo , Fases de Leitura Aberta , Peptídeos/química , Estrutura Terciária de Proteína , Alvéolos Pulmonares/virologia , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Frações Subcelulares/metabolismo , Fatores de Tempo , Células Vero , Proteínas do Envelope Viral , Proteínas Viroporinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA