Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Reprod ; 109(2): 215-226, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37255320

RESUMO

The present study aimed to investigate the regulation of placentas and uterus remodeling and involvement of estradiol in gestational diabetes mellitus. To achieve this, we established in vitro and in vivo models for gestational diabetes mellitus placentas by culturing human placental choriocarcinoma cells (BeWo) under hyperglycemic concentration and treating pregnant rats with streptozotocin. We evaluated the expression of angiogenesis-related proteins. The expression of the anti-angiogenic factor, excess placental soluble fms-like tyrosine kinase 1 was increased in our in vitro gestational diabetes mellitus model compared with the control. Moreover, the expressions of placental soluble fms-like tyrosine kinase 1 and the von Willebrand factor were also significantly elevated in the placenta of streptozotocin-treated rats. These data indicate the disruption of angiogenesis in the gestational diabetes mellitus placentas. The expression levels of connexin 43, a component of the gap junction and collagen type I alpha 2 chain, a component of the extracellular matrix, were decreased in the gestational diabetes mellitus uterus. These results suggest that uterus decidualization and placental angiogenesis are inhibited in gestational diabetes mellitus rats. Our results also showed upregulation of the expression of genes regulating estradiol synthesis as well as estrogen receptors in vivo models. Accordingly, the concentration of estradiol measured in the culture medium under hyperglycemic conditions, as well as in the serum and placenta of the streptozotocin-treated rats, was significantly elevated compared with the control groups. These results suggest that the dysregulated remodeling of the placenta and uterus may result in the elevation of estradiol and its signaling pathway in the gestational diabetes mellitus animal model to maintain pregnancy.


Assuntos
Diabetes Gestacional , Placenta , Gravidez , Feminino , Ratos , Animais , Humanos , Placenta/metabolismo , Diabetes Gestacional/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Estreptozocina/metabolismo , Útero/metabolismo , Estradiol/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
J Ginseng Res ; 47(2): 193-198, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36926605

RESUMO

Several chemicals have been developed owing to the progression of industrialization, among which endocrine-disrupting chemicals (EDCs; essential for plastic production) are used as plasticizers and flame retardants. Plastics have become an essential element in modern life because they provide convenience, thus increasing EDCs exposure to humans. EDCs cause adverse effects such as deterioration of reproductive function, cancer, and neurological abnormalities by disrupting the endocrine system and hence are classified as "dangerous substances." Additionally, they are toxic to various organs but continue to be used. Therefore, it is necessary to review the contamination status of EDCs, select potentially hazardous substances for management, and monitor the safety standards. In addition, it is necessary to discover substances that can protect against EDC toxicity and conduct active research on the protective effects of these substances. According to recent research, Korean Red Ginseng (KRG) exhibits protective effects against several toxicities caused by EDCs to humans. In this review, the effects of EDCs on the human body and the role of KRG in protection against EDC toxicity are discussed.

3.
Sci Rep ; 12(1): 22484, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36577816

RESUMO

Dysregulation of inflammasome activation induces chronic and excess inflammation resulting in several disorders, such as metabolic disorders and cancers. Thus, screening for its regulator derived from natural materials has been conducted progressively. JC2-11 (JC) was designed to enhance the antioxidant activity based on a chalcone, which is abundant in edible plants and a precursor of flavonoids. This study examined the effects of JC on inflammasome activation in human and murine macrophages. JC inhibited the secretion of interleukin (IL)-1ß and lactate dehydrogenases, and the cleavage of caspase-1 and gasdermin D in response to the tested activators (i.e., NLRP3, NLRC4, AIM2, and non-canonical inflammasome triggers). In addition, JC attenuated IL-1ß secretion from lipopolysaccharide (LPS)-injected mice, an inflammasome-mediating disease model. Mechanistically, JC blocked the expression of the inflammasome components during the priming step of the inflammasome, and interrupted the production of mitochondrial reactive oxygen species. In addition, JC inhibited the activity of caspase-1. In conclusion, JC may be a candidate pan-inflammasome inhibitor.


Assuntos
Chalcona , Inflamassomos , Humanos , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Chalcona/farmacologia , Macrófagos/metabolismo , Caspase 1/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo
4.
J Immunol ; 207(10): 2456-2464, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34615735

RESUMO

Lactoferrin (LF) is known to possess anti-inflammatory activity, although its mechanisms of action are not well-understood. The present study asked whether LF affects the commitment of inducible regulatory T cells (Tregs). LF substantially promoted Foxp3 expression by mouse activated CD4+T cells, and this activity was further enhanced by TGF-ß1. Interestingly, blocking TGF-ß with anti-TGF-ß Ab completely abolished LF-induced Foxp3 expression. However, no significant amount of soluble TGF-ß was released by LF-stimulated T cells, suggesting that membrane TGF-ß (mTGF-ß) is associated. Subsequently, it was found that LF binds to TGF-ß receptor III, which induces reactive oxygen species production and diminishes the expression of mTGF-ß-bound latency-associated peptide, leading to the activation of mTGF-ß. It was followed by phosphorylation of Smad3 and enhanced Foxp3 expression. These results suggest that LF induces Foxp3+ Tregs through TGF-ß receptor III/reactive oxygen species-mediated mTGF-ß activation, triggering canonical Smad3-dependent signaling. Finally, we found that the suppressive activity of LF-induced Tregs is facilitated mainly by CD39/CD73-induced adenosine generation and that this suppressor activity alleviates inflammatory bowel disease.


Assuntos
Lactoferrina/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/imunologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/imunologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Colite/imunologia , Colite/metabolismo , Lactoferrina/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos Endogâmicos BALB C , Receptores de Fatores de Crescimento Transformadores beta/efeitos dos fármacos , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
5.
Int Immunopharmacol ; 101(Pt A): 108196, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34601332

RESUMO

Parabens are synthetic chemicals widely used as preservatives in cosmetics, pharmaceuticals, and foods. Although parabens, i.e., ethyl- and methyl-parabens, are considered relatively safe, study of possible health hazards has been undertaken due to the frequent exposure to parabens and their accumulation in the body. In this study, we elucidated the effect of parabens on inflammasome induction of inflammatory responses in innate immunity, such as interleukin (IL)-1ß maturation and gasdermin D (GSDMD)-mediating pyroptosis. Parabens attenuated the inflammatory responses to intracellular lipopolysaccharide (LPS) triggering of non-canonical (NC) inflammasome activation, but did not alter canonical inflammasome (i.e., NLRP3, NLRC4 and AIM2) responses. The NC inflammasome is assembled by the interaction of murine caspase (Casp)-11 (Casp4/5 in human) with cytosolic LPS, inducing endotoxin sepsis. Parabens selectively inhibited NC inflammasome activation in both human and murine macrophages and diminished the peritoneal IL-1ß production in LPS-injected mice. Parabens blocked the cleavage of GSDMD, Casp1, and Casp4, but did not change the expression of Casp11 or the activity of Casp1. Taken together, the results indicate that parabens could disrupt Gram-negative pathogen infection through the inhibition of NC inflammasome activation.


Assuntos
Inflamassomos/efeitos dos fármacos , Parabenos/farmacologia , Animais , Western Blotting , Feminino , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Cells ; 10(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34359830

RESUMO

Lipocalin-2 (LCN2), a small secretory glycoprotein, is upregulated by toll-like receptor (TLR) signaling in various cells and tissues. LCN2 inhibits bacterial growth by iron sequestration and regulates the innate immune system. Inflammasome activates the inflammatory caspases leading to pyroptosis and cytokine maturation. This study examined the effects of inflammasome activation on LCN2 secretion in response to TLR signaling. The triggers of NLRP3 inflammasome activation attenuated LCN2 secretion while it induced interleukin-1ß in mouse macrophages. In mice, NLRP3 inflammasome activation inhibited TLR-mediated LCN2 secretion. The inhibition of NLRP3 triggers on LCN2 secretion was caused by the inhibited transcription and translation of LCN2. At the same time, no changes in the other cytokines and IκBζ, a well-known transcriptional factor of Lcn2 transcription, were observed. Overall, NLRP3 triggers are a regulator of LCN2 expression suggesting a new linkage of inflammasome activation and LCN2 secretion in the innate immunity.


Assuntos
Inflamassomos/imunologia , Interleucina-1beta/imunologia , Lipocalina-2/imunologia , Macrófagos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Trifosfato de Adenosina/farmacologia , Animais , Feminino , Fêmur/citologia , Fêmur/imunologia , Regulação da Expressão Gênica , Imunidade Inata , Inflamassomos/efeitos dos fármacos , Inflamassomos/genética , Interleucina-1beta/genética , Lipocalina-2/genética , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Nigericina/farmacologia , Cultura Primária de Células , Células RAW 264.7 , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/imunologia , Tíbia/citologia , Tíbia/imunologia , Transcrição Gênica
7.
Cells ; 10(8)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34440688

RESUMO

Gout is a recurrent and chronic form of arthritis caused by the deposition of monosodium urate (MSU) crystals in the joints. Macrophages intake MSU crystals, the trigger for NLRP3 inflammasome activation, which leads to the release of interleukin (IL)-1ß and results in the flaring of gout. The effects of temperature, an environmental factor for MSU crystallization, on IL-1ß secretion have not been well studied. This study examined the effects of temperature on inflammasome activation. Specific triggers activated canonical inflammasomes (NLRP3, NLRC4, and AIM2) in murine macrophages at various temperatures (25, 33, 37, 39, and 42 °C). The maturation of IL-1ß and caspase-1 was measured as an indicator for inflammasome activation. As expected, the optimal temperature of inflammasome activation was 37 °C. The MSU crystal-mediated activation of inflammasome increased at temperatures lower than 37 °C and decreased at higher temperatures. MSU crystals at lower temperatures enhanced IL-1ß secretion via the NLRP3 inflammasome pathway. A lower temperature promoted the formation of MSU crystals without changing phagocytosis. Overall, lower temperatures form more MSU crystals and enhance NLRP3 inflammasome activation. In light of these findings, it is possible that hyperthermia therapy may reduce gout flaring.


Assuntos
Gota/metabolismo , Inflamassomos/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Temperatura , Ácido Úrico/química , Animais , Caspase 1/metabolismo , Cristalização , Interleucina-1beta/metabolismo , Macrófagos/imunologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia
8.
Cancers (Basel) ; 13(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069911

RESUMO

Pgrmc1 is a non-canonical progesterone receptor related to the lethality of various types of cancer. PGRMC1 has been reported to exist in co-precipitated protein complexes with epidermal growth factor receptor (EGFR), which is considered a useful therapeutic target in hepatocellular carcinoma (HCC). Here, we investigated whether Pgrmc1 is involved in HCC progression. In clinical datasets, PGRMC1 transcription level was positively correlated with EGFR levels; importantly, PGRMC1 level was inversely correlated with the survival duration of HCC patients. In a diethylnitrosamine (DEN)-induced murine model of HCC, the global ablation of Pgrmc1 suppressed the development of HCC and prolonged the survival of HCC-bearing mice. We further found that increases in hepatocyte death and suppression of compensatory proliferation in the livers of DEN-injured Pgrmc1-null mice were concomitant with decreases in nuclear factor κB (NF-κB)-dependent production of interleukin-6 (IL-6). Indeed, silencing of Pgrmc1 in murine macrophages led to reductions in NF-κB activity and IL-6 production. We found that the anti-proinflammatory effect of Pgrmc1 loss was mediated by reductions in EGFR level and its effect was not observed after exposure of the EGFR inhibitor erlotinib. This study reveals a novel cooperative role of Pgrmc1 in supporting the EGFR-mediated development of hepatocellular carcinoma, implying that pharmacological suppression of Pgrmc1 may be a useful strategy in HCC treatment.

9.
Cell Commun Signal ; 19(1): 42, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33832499

RESUMO

BACKGROUND: Progesterone receptor membrane component 1 (Pgrmc1) is a non-classical progesterone receptor associated with the development of the mammary gland and xenograft-induced breast cancer. Importantly, Pgrmc1 is associated with the expression of estrogen receptor alpha and can be used for predicting the prognosis of breast cancer. Whether the genetic deletion of Pgrmc1 affects the progression of breast cancer is still unclear. METHODS: We used MMTV-PyMT transgenic mice that spontaneously develop breast tumors. In backcrossed FVB Pgrmc1 knockout (KO) mice, we monitored the development of the primary tumor and lung metastasis. In MCF-7 and MDA-MB-231 tumor cell lines, the migratory activity was evaluated after Pgrmc1 knockdown. RESULTS: There was no significant difference in the development of breast cancer in terms of tumor size at 13 weeks of age between WT and Pgrmc1 KO mice. However, Pgrmc1 KO mice had a significantly longer survival duration compared with WT mice. Furthermore, Pgrmc1 KO mice exhibited a significantly lower degree of lung metastasis. Compared with those of WT mice, the tumors of Pgrmc1 KO mice had a low expression of focal adhesion kinase and epithelial-mesenchymal transition markers. PGRMC1 knockdown resulted in a significantly reduced migration rate in breast cancer cell lines. CONCLUSIONS: Pgrmc1 KO mice with breast cancer had a prolonged survival, which was accompanied by a low degree of lung metastasis. PGRMC1 showed a significant role in the migration of breast cancer cells, and may serve as a potential therapeutic target in breast cancer. Video Abstract.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular , Proteínas de Membrana/deficiência , Receptores de Progesterona/deficiência , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Feminino , Deleção de Genes , Humanos , Neoplasias Pulmonares/secundário , Masculino , Proteínas de Membrana/metabolismo , Camundongos Knockout , Metástase Neoplásica , Receptores de Progesterona/metabolismo
10.
Theriogenology ; 165: 37-43, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33639366

RESUMO

The objective of this study was to evaluate the effects of reducing the sodium chloride content in in vitro growth (IVG) medium to 61.6 mM on in vitro maturation (IVM) and embryonic development of pig oocytes derived from small antral follicles (SAF) less than 3 mm in diameter. SAF oocytes were cultured for 2 days to induce IVG in alpha-minimal essential medium with 108 mM NaCl (αMEM-108) or porcine zygote medium (PZM) containing 61.6 mM (PZM-61.6) or 108 mM (PZM-108) NaCl. These media were further supplemented with 1 mM dibutyryl cyclic adenosine monophosphate (dbcAMP) and 10% (v/v) fetal bovine serum. After IVG culture, oocytes were matured for 44 h in our standard IVM medium. The IVG culture in PZM-61.6 significantly increased nuclear maturation (88.0 ±â€¯2.2%) of SAF oocytes compared to that in PZM-108 (77.3 ±â€¯3.9%) or αMEM-108 (75.9 ±â€¯3.8%). After parthenogenesis (PA), the proportions of blastocysts, based on the number of metaphase II (MII) oocytes, induced for PA were not different among IVG oocytes cultured in PZM-61.6 (50.2 ±â€¯3.0%), PZM-108 (46.8 ±â€¯2.9%), or αMEM-108 (45.6 ±â€¯2.9%). The IVM oocytes derived from IVG in PZM-61.6 showed increased perivitelline space (PVS) (12.1 ±â€¯0.6 µm) and intra-oocyte glutathione (GSH) content (1.19 ±â€¯0.04 pixels/oocyte) compared to PVS (8.0 ±â€¯0.5 and 7.4 ±â€¯0.4 µm) and GSH (1.03 ±â€¯0.04 and 1.00 ±â€¯0.04 pixels/oocyte) of oocytes derived from PZM-108 and αMEM-108, respectively. The IVG culture in PZM-61.6 stimulated meiotic resumption after IVG and faster nuclear progression after IVM than that in αMEM-108. After somatic cell nuclear transfer (SCNT), the blastocyst formation of SAF oocytes grown in PZM-61.6 (17.8 ±â€¯3.3%) was higher than that of oocytes grown in PZM-108 (7.5 ±â€¯2.7%) but not different from that of oocytes in αMEM-108 (11.4 ±â€¯3.4%). Regardless of the different osmotic pressures, nuclear maturation was significantly increased by IVG culture in PZM with reduced NaCl (86.8 ±â€¯2.3 and 84.9 ±â€¯4.2% in PZM-61.6 and PZM-61.6 with sorbitol, respectively) than in PZM-108 (70.5 ±â€¯3.4%). Blastocyst formation was not affected by the differences in NaCl content and osmotic pressure of the IVG medium, whereas the mean number of cells in blastocysts was significantly higher following IVG culture in PZM-61.6 than in the other groups. In conclusion, the results demonstrate that, following SCNT in pigs, IVG culture of SAF oocytes in a medium with a reduced NaCl concentration stimulates oocyte maturation and improves subsequent embryonic development.


Assuntos
Cloretos , Cloreto de Sódio , Animais , Blastocisto , Feminino , Técnicas de Maturação in Vitro de Oócitos/veterinária , Oócitos , Folículo Ovariano , Partenogênese , Gravidez , Suínos
11.
Mol Med Rep ; 23(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33537808

RESUMO

Preeclampsia (PE) is a complication of pregnancy and is characterized by hypertension and proteinuria, threatening both the mother and the fetus. However, the etiology of PE has not yet been fully understood. Since the imbalance of steroid hormones is associated with the pathogenesis of PE, investigating steroidogenic mechanisms under various PE conditions is essential to understand the entire spectrum of pregnancy disorders. Therefore, the current study established three PE in vitro and in vivo models, and compared the levels of steroid hormones and steroidogenic enzymes within them. In cellular PE models induced by hypoxia, N­nitro­L­arginine methyl ester hydrocholride (L­NAME) and catechol­o­methyltransferase inhibitor, the levels of steroid hormones, including pregnenolone (P5), progesterone (P4), dehydroepiandrosterone (DHEA) and testosterone tended to decrease during steroidogenesis. Injection of L­NAME in pregnant rats led to a reduction in the levels of estradiol and P4 through regulation of cholesterol side­chain cleavage enzyme (CYP11A1) and 3ß­hydroxysteroid dehydrogenase/δ5 4­isomerase type 1 (HSD3B1), whereas rats treated with COMT­I exhibited elevated levels of P5 and DHEA by regulation of the CYP11A1 and aromatase cytochrome P450 (CYP19A1) in the placenta and plasma. The reduced uterine perfusion pressure operation decreased CYP11A1 and increased CYP19A1 expression in placental tissues, whereas steroid hormone levels were not altered. In conclusion, the results of the present study suggest that the induction of PE conditions dysregulates the steroid hormones via regulation of steroidogenic enzymes, depending on specific PE symptoms. These findings can contribute to the development of novel diagnostic and therapeutic modalities for PE, by monitoring and supplying appropriate levels of steroid hormones.


Assuntos
Hormônios/metabolismo , Modelos Biológicos , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Esteroides/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Pré-Eclâmpsia/patologia , Gravidez
12.
J Immunol ; 206(3): 481-493, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33380497

RESUMO

B cells in the germinal center (GC) are programmed to form plasma cells (PCs) or memory B cells according to signals received by receptors that are translated to carry out appropriate activities of transcription factors. However, the precise mechanism underlying this process to complete the GC reaction is unclear. In this study, we show that both genetic ablation and pharmacological inhibition of glycogen synthase kinase 3 (GSK3) in GC B cells of mice facilitate the cell fate decision toward PC formation, accompanied by acquisition of dark zone B cell properties. Mechanistically, under stimulation with CD40L and IL-21, GSK3 inactivation synergistically induced the transcription factors Foxo1 and c-Myc, leading to increased levels of key transcription factors required for PC differentiation, including IRF4. This GSK3-mediated alteration of transcriptional factors in turn facilitated the dark zone transition and consequent PC fate commitment. Our study thus reveals the upstream master regulator responsible for interpreting external cues in GC B cells to form PCs mediated by key transcription factors.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Quinase 3 da Glicogênio Sintase/metabolismo , Plasmócitos/imunologia , Animais , Ligante de CD40/metabolismo , Diferenciação Celular , Células Cultivadas , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/genética , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Interleucinas/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo
13.
Cells ; 9(6)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604872

RESUMO

The effector function of tumor-infiltrated CD4+ T cells is readily suppressed by many types of immune regulators in the tumor microenvironment, which is one of the major mechanisms of immune tolerance against cancer. Cathelicidin-related antimicrobial peptide (CRAMP), the mouse analog of LL-37 peptide in humans, is a cationic antimicrobial peptide belonging to the cathelicidin family; however, its secretion by cancer cells and role in the tumor microenvironment (TME) remain unclear. In this study, we explored the possibility of an interaction between effector CD4+ T cells and CRAMP using in vitro-generated mouse Th17 cells. We found that CRAMP stimulates Th17 cells to express the ectonucleotidase CD73, while simultaneously inducing cell death. This finding suggested that CD73-expressing Th17 cells may function as immune suppressor cells instead of effector cells. In addition, treatment of pharmacological inhibitors of the transforming growth factor-beta (TGF-ß) signaling pathway showed that induction of CD73 expression is mediated by the p38 signaling pathway. Overall, our findings suggest that tumor-derived LL-37 likely functions as an immune suppressor that induces immune tolerance against tumors through shaping effector Th17 cells into suppressor Th17 cells, suggesting a new intervention target to improve cancer immunotherapy.


Assuntos
Antígenos de Neoplasias/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Tetraspaninas/metabolismo , Células Th17/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Feminino , Humanos , Camundongos
14.
Vet Res Commun ; 44(2): 51-59, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32297137

RESUMO

Inflammasome, a cytosolic multi-protein complex, assembly is a response to sensing intracellular pathogenic and endogenic danger signals followed by caspase-1 activation, which maturates precursor cytokines such as interleukin (IL)-1ß. Most inflammasome research has been undertaken in humans and rodents, and inflammasomes in veterinary species have not been well-characterized. In this study, we observed the effects of well-known inflammasome activators on equine peripheral blood monocytes (PBMCs). The NLRP3 inflammasome triggers include ATP, nigericin, aluminum crystals, and monosodium urate crystals, and NLRP3 activation induces IL-1ß secretion in a dose-dependent manner. Activators of NLRC4 and AIM2 inflammasomes include cytosolic flagellin and dsDNA, and their activation induces IL-1ß secretion. The bacterial inflammasome triggers Salmonella Typhimurium and Listeria monocytogenes also induce IL-ß releases. To elucidate the role of potassium efflux as an upstream signal of NLRP3 inflammasome activation, equine PBMCs were treated with blockers of potassium efflux in the presence of NLRP3 triggers. As a result, the IL-1ß secretion stemming from equine NLRP3 inflammasome activation was not completely attenuated by the inhibition of potassium efflux. Taken together, the results indicate that equine PBMCs normally secrete IL-1ß in response to well-known inflammasome activators, although equine NLRP3 inflammasome activation might not be dependent on potassium efflux.


Assuntos
Cavalos/imunologia , Inflamassomos/imunologia , Monócitos/imunologia , Trifosfato de Adenosina/farmacologia , Alumínio/farmacologia , Animais , DNA/farmacologia , Flagelina/farmacologia , Inflamassomos/efeitos dos fármacos , Interleucina-1beta/imunologia , Listeria monocytogenes/imunologia , Nigericina/farmacologia , Salmonella typhimurium/imunologia , Ácido Úrico/farmacologia
15.
Reprod Sci ; 27(7): 1513-1521, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31997259

RESUMO

The steroid hormones act by binding to their receptors and subsequently interacting with coactivators. Several classes of coactivators have been identified and shown to be essential in estradiol (E2) responsiveness. The major coregulators are the p160 steroid receptor coactivator (SRC) family. Although the function of SRCs in other organs has been well studied, it has not been thoroughly studied in the placenta. In addition, the correlation between preeclampsia (PE) and SRCs has not been examined previously. Therefore, we compared the expression patterns of SRCs in normal and PE placentas. In human PE placental tissues, SRC-1 mRNA, and protein levels were downregulated in the PE group. In addition, to assess the expression of SRCs in a PE environment, we used Reduced Uterine Perfusion Pressure (RUPP) model and placental cells were cultured in hypoxia condition. SRC-1 proteins were reduced in the placenta of PE-like rat RUPP model. Furthermore, SRCs proteins were significantly downregulated in hypoxia-grown placental cells. To examine the interaction between estrogen receptors (ERs) and SRC-1 protein, we performed co-immunoprecipitation. The interaction of SRC-1 with ERα was significantly stronger than that with ERß. In PE placenta, the interaction of both ERα and ERß with SRC-1 was stronger than that in normal placenta. In summary, our results demonstrate that expression levels of SRC-1, not SRC-2 and SRC-3, were decreased in hypoxia-induced PE placenta, which may further reduce the signaling of sex steroid hormones such as E2. The dysregulated signaling of E2 by SRC-1 expression could be associated with the PE placental symptoms of patients.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Coativador 1 de Receptor Nuclear/biossíntese , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Adulto , Animais , Feminino , Humanos , Coativador 1 de Receptor Nuclear/genética , Placenta/patologia , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Gravidez , Ratos , Ratos Sprague-Dawley
16.
Cytokine ; 127: 154983, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31918161

RESUMO

Inflammasome activation induces the maturation and secretion of interleukin (IL)-1ß and -18, and is dependent on NF-κB signaling to induce the transcription of the inflammasome components, called the priming step. This study elucidated the role of IκBζ, an atypical IκBs (inhibitor of κB) and a coactivator of NF-κB target genes, on the activation of inflammasome. Bone marrow-derived macrophages (BMDMs) that originated from IκBζ-encoding Nfkbiz gene depletion mice presented a defect in NLRP3 inflammasome activation. In addition, the Nfkbiz+/- and Nfkbiz-/- mice significantly attenuated serum IL-1ß secretion in response to a monosodium urate injection, a NLRP3 trigger, when compared with Nfkbiz-+/+ mice. The lack of IκBζ in BMDMs produced a disability in the expression of Nlrp3 and pro-Il1ß mRNAs during the priming step. In addition, ectopic IκBζ expression enhanced the Nlrp3 promoter activity, and Nlrp3 and pro-Il1ß transcription. Overall, IκBζ controlled the activation of NLRP3 inflammasome by upregulating the Nlrp3 gene during the priming step.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Inflamassomos/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Regulação para Cima/genética , Animais , Células Cultivadas , Macrófagos/metabolismo , Camundongos , Regiões Promotoras Genéticas/genética , Células RAW 264.7 , RNA Mensageiro/genética , Transdução de Sinais/genética , Transcrição Gênica/genética
17.
Phytomedicine ; 63: 153019, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31302317

RESUMO

BACKGROUND: Obovatol, a biphenolic chemical originating from Magnolia obovata, has been utilized as a traditional medicine for the treatment of inflammatory diseases. Inflammasome induces maturation of inflammatory cytokines in response to intracellular danger signals, and its dysregulation induces inflammatory diseases. PURPOSE: The effect of obovatol on inflammasome activation has not been reported, although its anti-inflammatory properties have been studied. STUDY DESIGN/METHODS: Obovatol was treated to macrophages with inflammasome triggers, and secretions of interleukin (IL)-1ß, IL-18, and caspase-1 were measured as readouts of inflammasome activation. In addition, Asc pyroptosome formation, caspase-1 activity, and mitochondrial reactive oxygen species (ROS) production were analyzed in mechanical studies. Anti-inflammasome properties of obovatol were confirmed in an animal model. RESULTS: Obovatol inhibited NLRP3, AIM2, and non-canonical inflammasomes through inhibition of Asc pyroptosome formation and mitochondrial ROS generation. In addition, obovatol disrupted the priming step of inflammasome activation and inhibited transcription of inflammatory cytokines. In mice, obovatol attenuated serum IL-1ß elevation in response to monosodium urate crystals. CONCLUSION: Obovatol is suggested as an inhibitor of NLRP3, AIM2, and non-canonical inflammasomes.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Compostos de Bifenilo/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Inflamassomos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Éteres Fenílicos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Compostos de Bifenilo/química , Caspase 1/metabolismo , Citocinas/genética , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Peritonite/tratamento farmacológico , Éteres Fenílicos/química , Espécies Reativas de Oxigênio/metabolismo , Ácido Úrico/farmacologia
18.
Reprod Domest Anim ; 54(9): 1258-1264, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31283039

RESUMO

Spermatogonial stem cells (SSC) are promising resources for genetic preservation and restoration of male germ cells in humans and animals. However, no studies have used SSC as donor nuclei in pig somatic cell nuclear transfer (SCNT). This study investigated the potential for use of porcine SSC as a nuclei donor for SCNT and developmental competence of SSC-derived cloned embryos. In addition, demecolcine was investigated to determine whether it could prevent rupture of SSC during SCNT. When the potential of SSC to support embryonic development after SCNT was compared with that of foetal fibroblasts (FF), SSC-derived SCNT embryos showed a higher (p < .05) developmental competence to the blastocyst stage (47.8%) than FF-derived embryos (25.6%). However, when SSC were used as donor nuclei in the SCNT process, cell fusion rates were lower (p < .05) than when FF were used (61.9% vs. 75.8%). Treatment of SSC with demecolcine significantly (p < .05) decreased rupture of SSC during the SCNT procedure (7.5% vs. 18.8%) and increased fusion of cell-oocyte couplets compared with no treatment (74.6% vs. 61.6%). In addition, SSC-derived SCNT embryos showed higher blastocyst formation (48.4%) than FF-derived embryos without (28.4%) and with demecolcine treatment (17.4%), even after demecolcine treatment. Our results demonstrate that porcine SSC are a desirable donor cell type for production of SCNT pig embryos and that demecolcine increases production efficiency of cloned embryos by inhibiting rupture of nuclei donor SSC during SCNT.


Assuntos
Células-Tronco Germinativas Adultas , Clonagem de Organismos/veterinária , Técnicas de Transferência Nuclear/veterinária , Suínos/embriologia , Animais , Clonagem de Organismos/métodos , Demecolcina/farmacologia , Técnicas de Cultura Embrionária/veterinária , Desenvolvimento Embrionário , Feto/citologia , Fibroblastos/citologia , Moduladores de Tubulina/farmacologia
19.
Carcinogenesis ; 40(8): 1031-1041, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31168625

RESUMO

It is generally accepted that androgen receptors increase the risk of hepatocellular carcinoma (HCC), and that estrogen reduces risk of HCC. Many studies regarding this have involved males. We, therefore, have focused our attention on females, especially postmenopausal females, who typically have limited supplies of estrogen. By using sex hormone-binding globulin (SHBG) transgenic mice, we produced a humanoid environment, and facilitated deposition and modulation of sex hormones. After exposure to diethylnitrosamine to induce HCC and upon reaching the age of 40 weeks, mice were fed the fat-rich diet for 5 months. Fat-rich diet fed or ovariectomized (OVX) wild-type mice aged 62 weeks showed HCC progression, whereas fat-rich diet fed SHBG mice or OVX SHBG mice displayed fewer tumors. In the liver of fat-rich diet fed SHBG mice, estrogenic conditions including high levels of 17ß-estradiol and estrogen receptor alpha led to the induction of the lipogenesis inhibitor, phosphorylated acetyl-CoA carboxylase, and consequently suppressed fatty liver. The presence of plasma SHBG in HCC bearing mice suppressed the levels of steatosis and inflammation in a process mediated by estrogens and estrogen receptor alpha. Conversely, in the liver of OVX SHBG mice, lipogenic inhibition was also observed under conditions where the supply of estrogens is limited. Through in vitro experiment, it was confirmed SHBG suppresses lipogenesis via inhibition of acetyl-CoA carboxylase level. In conclusion, our results show that plasma SHBG might have a clinical impact on lipid-mediated hepatic diseases.


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Hepatopatia Gordurosa não Alcoólica/genética , Globulina de Ligação a Hormônio Sexual/genética , Acetil-CoA Carboxilase/genética , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Dieta Hiperlipídica , Dietilnitrosamina/toxicidade , Modelos Animais de Doenças , Estradiol/metabolismo , Receptor alfa de Estrogênio/genética , Estrogênios/metabolismo , Feminino , Humanos , Lipogênese/genética , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Menopausa/genética , Menopausa/metabolismo , Camundongos , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores Androgênicos/genética
20.
BMC Cancer ; 19(1): 6, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606143

RESUMO

BACKGROUND: Women have a lower risk of hepatocellular carcinoma (HCC) than men, and the decreased possibility of HCC in women is thought to depend on estrogen levels. As a soybean-isoflavone product, genistein has estrogenic activity in various reproductive tissues, because it mimics 17ß-estradiol and binds the estrogen receptor. Though genistein is a known liver cancer suppressor, its effects have not been studies in long-term experiment, where genistein is fed to a female animal model of HCC. METHODS: Mice were treated with diethylnitrosamine (DEN) to induce HCC at 2 weeks of age and fed with supplemental genistein for 5 months, from 40 to 62 weeks of age. RESULTS: The dietary intake of genistein decreased the incidence of HCC and suppressed HCC development. Genistein induced phospho-AMPK in total liver extracts, Hep3B cells, and Raw 264.7 cells, and phospho-AMPK promoted apoptosis in liver and Hep3B cells. Moreover, phospho-AMPK down-regulated pro-inflammatory responses and ameliorated liver damage. A suppressed pro-inflammatory response with increased mitochondrial respiration was concomitantly observed after genistein treatment. CONCLUSIONS: Genistein-mediated AMPK activation increases hepatocyte apoptosis through energy-dependent caspase pathways, suppresses the inflammatory response in resident liver macrophages by increased cellular respiration, and consequently inhibits the initiation and progression of HCC.


Assuntos
Carcinoma Hepatocelular/dietoterapia , Genisteína/administração & dosagem , Neoplasias Hepáticas/dietoterapia , Proteínas Quinases/genética , Quinases Proteína-Quinases Ativadas por AMP , Animais , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA