Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 7353, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191758

RESUMO

G-quadruplex (G4) structures are found in eukaryotic cell replication origins, but their role in origin function remains unclear. In this study G4 motifs are found in the lytic DNA replication origin (oriLyt) of human cytomegalovirus (HCMV) and recombinant viruses show that a G4 motif in oriLyt essential region I (ER-I) is necessary for viral growth. Replication assays of oriLyt-containing plasmids and biochemical/biophysical analyses show that G4 formation in ER-I is crucial for viral DNA replication. G4 pull-down analysis identifies viral DNA replication factors, such as IE2, UL84, and UL44, as G4-binding proteins. In enzyme-linked immunosorbent assays, specific G4-binding ligands inhibit G4 binding by the viral proteins. The Epstein-Barr virus oriLyt core element also forms a stable G4 that could substitute for the oriLyt ER-I G4 in HCMV. These results demonstrate that viral G4s in replication origins represent an essential structural element in recruiting replication factors and might be a therapeutic target against viral infections.


Assuntos
Citomegalovirus , Replicação do DNA , DNA Viral , Quadruplex G , Proteínas Imediatamente Precoces , Origem de Replicação , Proteínas Virais , Replicação Viral , Citomegalovirus/genética , Citomegalovirus/fisiologia , Humanos , Replicação Viral/genética , Origem de Replicação/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/genética , DNA Viral/genética , DNA Viral/metabolismo , Transativadores/metabolismo , Transativadores/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiologia , Ligação Proteica
2.
PLoS Pathog ; 19(1): e1011095, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36630443

RESUMO

G-quadruplex (G4) formed by repetitive guanosine-rich sequences plays important roles in diverse cellular processes; however, its roles in viral infection are not fully understood. In this study, we investigated the genome-wide distribution of G4-forming sequences (G4 motifs) in Varicella-Zoster virus (VZV) and found that G4 motifs are enriched in the internal repeat short and the terminal repeat short regions flanking the unique short region and also in some reiteration (R) sequence regions. A high density of G4 motifs in the R2 region was found on the template strand of ORF14, which encodes glycoprotein C (gC), a virulent factor for viral growth in skin. Analyses such as circular dichroism spectroscopy, thermal difference spectra, and native polyacrylamide gel electrophoresis with oligodeoxynucleotides demonstrated that several G4 motifs in ORF14 form stable G4 structures. In transfection assays, gC expression from the G4-disrupted ORF14 gene was increased at the transcriptional level and became more resistant to suppression by G4-ligand treatment. The recombinant virus containing the G4-disrupted ORF14 gene expressed a higher level of gC mRNA, while it showed a slightly reduced growth. This G4-disrupted ORF14 virus produced smaller plaques than the wild-type virus. Our results demonstrate that G4 formation via reiteration sequences suppresses gC expression during VZV infection and regulates viral cell-to-cell spread.


Assuntos
Quadruplex G , Herpesvirus Humano 3/genética , Proteínas do Envelope Viral/genética , Genoma , Dicroísmo Circular
3.
J Microbiol ; 56(6): 441-448, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29858833

RESUMO

Live attenuated vaccine strains have been developed for Varicella-Zoster virus (VZV). Compared to clinically isolated strains, the vaccine strains contain several non-synonymous mutations in open reading frames (ORFs) 0, 6, 31, 39, 55, 62, and 64. In particular, ORF62, encoding an immediate-early (IE) 62 protein that acts as a transactivator for viral gene expression, contains six non-synonymous mutations, but whether these mutations affect transactivation activity of IE62 is not understood. In this study, we investigated the role of non-synonymous vaccine-type mutations (M99T, S628G, R958G, V1197A, I1260V, and L1275S) of IE62 in Suduvax, a vaccine strain isolated in Korea, for transactivation activity. In reporter assays, Suduvax IE62 showed 2- to 4-fold lower transactivation activity toward ORF4, ORF28, ORF29, and ORF68 promoters than wild-type IE62. Introduction of individual M99T, S628G, R958G, or V1197A/I1260V/L1275S mutations into wild-type IE62 did not affect transactivation activity. However, the combination of M99T within the N-terminal Sp transcription factor binding region and V1197A/I1260V/L1275S within the C-terminal serine-enriched acidic domain (SEAD) significantly reduced the transactivation activity of IE62. The M99T/V1197A/I1260V/L1275S mutant IE62 did not show considerable alterations in intracellular distribution and Sp3 binding compared to wild-type IE62, suggesting that other alteration(s) may be responsible for the reduced transactivation activity. Collectively, our results suggest that acquisition of mutations in both Met 99 and the SEAD of IE62 is responsible for the reduced transactivation activity found in IE62 of the VZV vaccine strains and contributes to attenuation of the virus.


Assuntos
Herpesvirus Humano 3/genética , Vacinas contra Herpesvirus/genética , Vacinas contra Herpesvirus/metabolismo , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Mutação/genética , Transativadores/genética , Transativadores/metabolismo , Ativação Transcricional , Vacinas Atenuadas/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular Tumoral , DNA Viral , Regulação Viral da Expressão Gênica , Genes Virais , Células HEK293 , Humanos , Fases de Leitura Aberta/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , República da Coreia , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA