Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
PLoS One ; 19(4): e0301989, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683764

RESUMO

Somatic Y chromosome loss in hematopoietic cells is associated with higher mortality in men. However, the status of the Y chromosome in cancer tissue is not fully known due to technical limitations, such as difficulties in labelling and sequencing DNA from the Y chromosome. We have developed a system to quantify Y chromosome gain or loss in patient-derived prostate cancer organoids. Using our system, we observed Y chromosome loss in 4 of the 13 (31%) patient-derived metastatic castration-resistant prostate cancer (mCRPC) organoids; interestingly, loss of Yq (long arm of the Y chromosome) was seen in 38% of patient-derived organoids. Additionally, potential associations were observed between mCRPC and Y chromosome nullisomy. The prevalence of Y chromosome loss was similar in primary and metastatic tissue, suggesting that Y chromosome loss is an early event in prostate cancer evolution and may not a result of drug resistance or organoid derivation. This study reports quantification of Y chromosome loss and gain in primary and metastatic prostate cancer tissue and lays the groundwork for further studies investigating the clinical relevance of Y chromosome loss or gain in mCRPC.


Assuntos
Coloração Cromossômica , Cromossomos Humanos Y , Metástase Neoplásica , Masculino , Humanos , Cromossomos Humanos Y/genética , Metástase Neoplásica/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Organoides/patologia , Deleção Cromossômica
2.
Cancer Immunol Res ; 11(8): 1114-1124, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37279009

RESUMO

Renal cell carcinoma (RCC) of variant histology comprises approximately 20% of kidney cancer diagnoses, yet the optimal therapy for these patients and the factors that impact immunotherapy response remain largely unknown. To better understand the determinants of immunotherapy response in this population, we characterized blood- and tissue-based immune markers for patients with variant histology RCC, or any RCC histology with sarcomatoid differentiation, enrolled in a phase II clinical trial of atezolizumab and bevacizumab. Baseline circulating (plasma) inflammatory cytokines were highly correlated with one another, forming an "inflammatory module" that was increased in International Metastatic RCC Database Consortium poor-risk patients and was associated with worse progression-free survival (PFS; P = 0.028). At baseline, an elevated circulating vascular endothelial growth factor A (VEGF-A) level was associated with a lack of response (P = 0.03) and worse PFS (P = 0.021). However, a larger increase in on-treatment levels of circulating VEGF-A was associated with clinical benefit (P = 0.01) and improved overall survival (P = 0.0058). Among peripheral immune cell populations, an on-treatment decrease in circulating PD-L1+ T cells was associated with improved outcomes, with a reduction in CD4+PD-L1+ [HR, 0.62; 95% confidence interval (CI), 0.49-0.91; P = 0.016] and CD8+PD-L1+ T cells (HR, 0.59; 95% CI, 0.39-0.87; P = 0.009) correlated with improved PFS. Within the tumor itself, a higher percentage of terminally exhausted (PD-1+ and either TIM-3+ or LAG-3+) CD8+ T cells was associated with worse PFS (P = 0.028). Overall, these findings support the value of tumor and blood-based immune assessments in determining therapeutic benefit for patients with RCC receiving atezolizumab plus bevacizumab and provide a foundation for future biomarker studies for patients with variant histology RCC receiving immunotherapy-based combinations.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Bevacizumab/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Antígeno B7-H1 , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia
3.
Mol Oncol ; 16(22): 3994-4010, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36087093

RESUMO

Loss of the histone demethylase KDM5D (lysine-specific demethylase 5D) leads to in vitro resistance of prostate cancer cells to androgen deprivation therapy (ADT) with and without docetaxel. We aimed to define downstream drivers of the KDM5D effect. Using chromatin immunoprecipitation sequencing (ChIP-seq) of the LNCaP cell line (androgen-sensitive human prostate adenocarcinoma) with and without silenced KDM5D, MYBL2-binding sites were analyzed. Associations between MYBL2 mRNA expression and clinical outcomes were assessed in cohorts of men with localized and metastatic hormone-sensitive prostate cancer. In vitro assays with silencing and overexpression of MYBL2 and KDM5D in androgen receptor (AR)-positive hormone-sensitive prostate cancer cell lines, LNCaP and LAPC4, were used to assess their influence on cellular proliferation, apoptosis, and cell cycle distribution, as well as sensitivity to androgen deprivation, docetaxel, and cabazitaxel. We found that silencing KDM5D increased histone H3 lysine K4 (H3K4) trimethylation and increased MYBL2 expression. KDM5D and MYBL2 were negatively correlated with some but not all clinical samples. Higher MYBL2 expression was associated with a higher rate of relapse in localized disease and poorer overall survival in men with metastatic disease in the CHAARTED trial. Lower MYBL2 levels enhanced LNCaP and LAPC4 sensitivity to androgen deprivation and taxanes. In vitro, modifications of KDM5D and MYBL2 altered cell cycle distribution and apoptosis in a cell line-specific manner. These results show that the transcription factor MYBL2 impacts in vitro hormone-sensitive prostate cancer sensitivity to androgen deprivation and taxanes, and lower levels are associated with better clinical outcomes in men with hormone-sensitive prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Docetaxel/farmacologia , Antagonistas de Androgênios/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Androgênios , Lisina , Taxoides/uso terapêutico , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/uso terapêutico , Histona Desmetilases , Transativadores , Proteínas de Ciclo Celular
4.
Clin Cancer Res ; 28(16): 3603-3617, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35670774

RESUMO

PURPOSE: Oncogenic alterations of the PI3K/AKT pathway occur in >40% of patients with metastatic castration-resistant prostate cancer, predominantly via PTEN loss. The significance of other PI3K pathway components in prostate cancer is largely unknown. EXPERIMENTAL DESIGN: Patients in this study underwent tumor sequencing using the MSK-IMPACT clinical assay to capture single-nucleotide variants, insertions, and deletions; copy-number alterations; and structural rearrangements, or were profiled through The Cancer Genome Atlas. The association between PIK3R1 alteration/expression and survival was evaluated using univariable and multivariable Cox proportional-hazards regression models. We used the siRNA-based knockdown of PIK3R1 for functional studies. FDG-PET/CT examinations were performed with a hybrid positron emission tomography (PET)/CT scanner for some prostate cancer patients in the MSK-IMPACT cohort. RESULTS: Analyzing 1,417 human prostate cancers, we found a significant enrichment of PIK3R1 alterations in metastatic cancers compared with primary cancers. PIK3R1 alterations or reduced mRNA expression tended to be associated with worse clinical outcomes in prostate cancer, particularly in primary disease, as well as in breast, gastric, and several other cancers. In prostate cancer cell lines, PIK3R1 knockdown resulted in increased cell proliferation and AKT activity, including insulin-stimulated AKT activity. In cell lines and organoids, PIK3R1 loss/mutation was associated with increased sensitivity to AKT inhibitors. PIK3R1-altered patient prostate tumors had increased uptake of the glucose analogue 18F-fluorodeoxyglucose in PET imaging, suggesting increased glycolysis. CONCLUSIONS: Our findings describe a novel genomic feature in metastatic prostate cancer and suggest that PIK3R1 alteration may be a key event for insulin-PI3K-glycolytic pathway regulation in prostate cancer.


Assuntos
Fosfatidilinositol 3-Quinases , Neoplasias da Próstata , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Glicólise , Humanos , Insulina/genética , Insulina/metabolismo , Masculino , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Mol Oncol ; 16(13): 2451-2469, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34792282

RESUMO

Prostate cancer is a highly heterogeneous disease, understanding the crosstalk between complex genomic and epigenomic alterations will aid in developing targeted therapeutics. We demonstrate that, even though snail family transcriptional repressor 2 (SNAI2) is frequently amplified in prostate cancer, it is epigenetically silenced in this disease, with dynamic changes in SNAI2 levels showing distinct clinical relevance. Integrative clinical data from 18 prostate cancer cohorts and experimental evidence showed that gene fusion between transmembrane serine protease 2 (TMPRSS2) and ETS transcription factor ERG (ERG) (TMPRSS2-ERG fusion) is involved in the silencing of SNAI2. We created a silencer score to evaluate epigenetic repression of SNAI2, which can be reversed by treatment with DNA methyltransferase inhibitors and histone deacetylase inhibitors. Silencing of SNAI2 facilitated tumor cell proliferation and luminal differentiation. Furthermore, SNAI2 has a major influence on the tumor microenvironment by reactivating tumor stroma and creating an immunosuppressive microenvironment in prostate cancer. Importantly, SNAI2 expression levels in part determine sensitivity to the cancer drugs dasatinib and panobinostat. For the first time, we defined the distinct clinical relevance of SNAI2 expression at different disease stages. We elucidated how epigenetic silencing of SNAI2 controls the dynamic changes of SNAI2 expression that are essential for tumor initiation and progression and discovered that restoring SNAI2 expression by treatment with panobinostat enhances dasatinib sensitivity, indicating a new therapeutic strategy for prostate cancer.


Assuntos
Proteínas de Fusão Oncogênica , Neoplasias da Próstata , Fatores de Transcrição da Família Snail , Linhagem Celular Tumoral , Dasatinibe/uso terapêutico , Humanos , Masculino , Proteínas de Fusão Oncogênica/genética , Panobinostat/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Fatores de Transcrição da Família Snail/genética , Microambiente Tumoral
6.
Oncogene ; 41(5): 671-682, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34802033

RESUMO

Chromosome 8q gain is associated with poor clinical outcomes in prostate cancer, but the underlying biological mechanisms remain to be clarified. CSN5, a putative androgen receptor (AR) partner that is located on chromosome 8q, is the key subunit of the COP9 signalosome, which deactivates ubiquitin ligases. Deregulation of CSN5 could affect diverse cellular functions that contribute to tumor development, but there has been no comprehensive study of its function in prostate cancer. The clinical significance of CSN5 amplification/overexpression was evaluated in 16 prostate cancer clinical cohorts. Its oncogenic activity was assessed by genetic and pharmacologic perturbations of CSN5 activity in prostate cancer cell lines. The molecular mechanisms of CSN5 function were assessed, as was the efficacy of the CSN5 inhibitor CSN5i-3 in vitro and in vivo. Finally, the transcription cofactor activity of CSN5 in prostate cancer cells was determined. The prognostic significance of CSN5 amplification and overexpression in prostate cancer was independent of MYC amplification. Inhibition of CSN5 inhibited its oncogenic function by targeting AR signaling, DNA repair, multiple oncogenic pathways, and spliceosome regulation. Furthermore, inhibition of CSN5 repressed metabolic pathways, including oxidative phosphorylation and glycolysis in AR-negative prostate cancer cells. Targeting CSN5 with CSN5i-3 showed potent antitumor activity in vitro and in vivo. Importantly, CSN5i-3 synergizes with PARP inhibitors to inhibit prostate cancer cell growth. CSN5 functions as a transcription cofactor to cooperate with multiple transcription factors in prostate cancer. Inhibiting CSN5 strongly attenuates prostate cancer progression and could enhance PARP inhibition efficacy in the treatment of prostate cancer.


Assuntos
Complexo do Signalossomo COP9
7.
Eur Urol ; 80(3): 295-303, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33888356

RESUMO

BACKGROUND: Intense neoadjuvant androgen deprivation therapy (ADT) before radical prostatectomy (RP) is an investigational approach to reduce recurrence rates in men with high-risk localized prostate cancer (PCa). The impact of germline DNA damage repair (gDDR) gene alterations on response to intense neoadjuvant ADT is not known. OBJECTIVE: To evaluate the prevalence of gDDR alterations among men with localized PCa at high risk of recurrence and evaluate their impact on response to intense neoadjuvant ADT. DESIGN, SETTING, AND PARTICIPANTS: We performed germline panel sequencing for 201 men with intermediate- and high-risk localized PCa from five randomized multicenter clinical trials of intense neoadjuvant ADT before RP. INTERVENTION: Intense neoadjuvant ADT followed by RP. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The prevalence of pathogenic gDDR alterations and their association with exceptional pathologic response (complete response or minimal residual disease, defined as residual tumor with the largest cross-section dimension ≤5 mm) to intense neoadjuvant ADT and rates of post-RP biochemical recurrence. RESULTS AND LIMITATIONS: Pathogenic gDDR alterations were detected in 19 (9.5%) of the 201 PCa patients. The most frequently altered genes were BRCA2 (n = 6; 3.0%) and ATM (n = 4; 2.0%). Patients with gDDR alterations exhibited similar rates of exceptional pathologic response (26% vs 22%), pT3 disease (42% vs 53%), lymph node involvement (5.3% vs 10%), extraprostatic extension (35% vs 54%), and positive margins (5.3% vs 13%) to patients without gDDR alterations (all p > 0.05). The 3-yr biochemical recurrence-free survival was also similar at 45% (95% confidence interval 7.9-78%) for men with gDDR alterations and 55% (95% confidence interval 44-64%) for men without gDDR alterations. CONCLUSIONS: gDDR alterations are common among men with intermediate- and high-risk localized PCa. Men with gDDR alterations appear to have a comparable response to intense neoadjuvant ADT to that among men without gDDR alterations and should not be excluded from consideration for this treatment approach. PATIENT SUMMARY: Intense therapy to inhibit the production of androgen hormones (eg, testosterone) before surgery may minimize the risk of cancer recurrence for men with high-risk localized prostate cancer. Inherited mutations in certain DNA repair genes are associated with particularly high rates of recurrence. We found that men with these mutations respond equally well to this intense androgen inhibition before surgery as men without the mutations.


Assuntos
Antagonistas de Androgênios , Dano ao DNA , Reparo do DNA , Neoplasias da Próstata , Idoso , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Genes BRCA2 , Células Germinativas/efeitos dos fármacos , Mutação em Linhagem Germinativa , Humanos , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Prostatectomia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Análise de Sequência de DNA
8.
Nat Commun ; 12(1): 808, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547292

RESUMO

Sarcomatoid and rhabdoid (S/R) renal cell carcinoma (RCC) are highly aggressive tumors with limited molecular and clinical characterization. Emerging evidence suggests immune checkpoint inhibitors (ICI) are particularly effective for these tumors, although the biological basis for this property is largely unknown. Here, we evaluate multiple clinical trial and real-world cohorts of S/R RCC to characterize their molecular features, clinical outcomes, and immunologic characteristics. We find that S/R RCC tumors harbor distinctive molecular features that may account for their aggressive behavior, including BAP1 mutations, CDKN2A deletions, and increased expression of MYC transcriptional programs. We show that these tumors are highly responsive to ICI and that they exhibit an immune-inflamed phenotype characterized by immune activation, increased cytotoxic immune infiltration, upregulation of antigen presentation machinery genes, and PD-L1 expression. Our findings build on prior work and shed light on the molecular drivers of aggressivity and responsiveness to ICI of S/R RCC.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Carcinoma de Células Renais/imunologia , Regulação Neoplásica da Expressão Gênica , Inibidores de Checkpoint Imunológico/uso terapêutico , Proteínas de Checkpoint Imunológico/imunologia , Neoplasias Renais/imunologia , Tumor Rabdoide/imunologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/genética , Antígeno CTLA-4/imunologia , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/mortalidade , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/imunologia , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteínas de Checkpoint Imunológico/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/mortalidade , Mutação , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/imunologia , Estudos Retrospectivos , Tumor Rabdoide/tratamento farmacológico , Tumor Rabdoide/genética , Tumor Rabdoide/mortalidade , Transdução de Sinais , Análise de Sobrevida , Transcrição Gênica , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/imunologia , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/imunologia
9.
Clin Cancer Res ; 27(7): 2087-2099, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33495313

RESUMO

PURPOSE: Abiraterone acetate (AA), an inhibitor of cytochrome P450 17alpha-hydroxylase/17, 20 lyase, is an FDA-approved drug for advanced prostate cancer. However, not all patients respond to AA, and AA resistance ultimately develops in patients who initially respond. We aimed to identify AA resistance mechanisms in prostate cancer cells. EXPERIMENTAL DESIGN: We established several AA-resistant cell lines and performed a comprehensive study on mechanisms involved in AA resistance development. RNA sequencing and phospho-kinase array screenings were performed to discover that the cAMP-response element CRE binding protein 1 (CREB1) was a critical molecule in AA resistance development. RESULTS: The drug-resistant cell lines are phenotypically stable without drug selection, and exhibit permanent global gene expression changes. The phosphorylated CREB1 (pCREB1) is increased in AA-resistant cell lines and is critical in controlling global gene expression. Upregulation of pCREB1 desensitized prostate cancer cells to AA, while blocking CREB1 phosphorylation resensitized AA-resistant cells to AA. AA treatment increases intracellular cyclic AMP (cAMP) levels, induces kinases activity, and leads to the phosphorylation of CREB1, which may subsequently augment the essential role of the CBP/p300 complex in AA-resistant cells because AA-resistant cells exhibit a relatively higher sensitivity to CBP/p300 inhibitors. Further pharmacokinetics studies demonstrated that AA significantly synergizes with CBP/p300 inhibitors in limiting the growth of prostate cancer cells. CONCLUSIONS: Our studies suggest that AA treatment upregulates pCREB1, which enhances CBP/p300 activity, leading to global gene expression alterations, subsequently resulting in drug resistance development. Combining AA with therapies targeting resistance mechanisms may provide a more effective treatment strategy.


Assuntos
Acetato de Abiraterona/uso terapêutico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Fatores de Transcrição de p300-CBP/fisiologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Fosforilação , Neoplasias da Próstata/patologia
10.
Clin Cancer Res ; 27(6): 1792-1806, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33334906

RESUMO

PURPOSE: Alterations in DNA damage repair (DDR) pathway genes occur in 20%-25% of men with metastatic castration-resistant prostate cancer (mCRPC). Although PARP inhibitors (PARPis) have been shown to benefit men with mCRPC harboring DDR defects due to mutations in BRCA1/2 and ATM, additional treatments are necessary because the effects are not durable. EXPERIMENTAL DESIGN: We performed transcriptomic analysis of publicly available mCRPC cases, comparing BRCA2 null with BRCA2 wild-type. We generated BRCA2-null prostate cancer cells using CRISPR/Cas9 and treated these cells with PARPis and SRC inhibitors. We also assessed the antiproliferative effects of combination treatment in 3D prostate cancer organoids. RESULTS: We observed significant enrichment of the SRC signaling pathway in BRCA2-altered mCRPC. BRCA2-null prostate cancer cell lines had increased SRC phosphorylation and higher sensitivity to SRC inhibitors (e.g., dasatinib, bosutinib, and saracatinib) relative to wild-type cells. Combination treatment with PARPis and SRC inhibitors was antiproliferative and had a synergistic effect in BRCA2-null prostate cancer cells, mCRPC organoids, and Trp53/Rb1-null prostate cancer cells. Inhibition of SRC signaling by dasatinib augmented DNA damage in BRCA2-null prostate cancer cells. Moreover, SRC knockdown increased PARPi sensitivity in BRCA2-null prostate cancer cells. CONCLUSIONS: This work suggests that SRC activation may be a potential mechanism of PARPi resistance and that treatment with SRC inhibitors may overcome this resistance. Our preclinical study demonstrates that combining PARPis and SRC inhibitors may be a promising therapeutic strategy for patients with BRCA2-null mCRPC.


Assuntos
Antineoplásicos/farmacologia , Proteína BRCA2/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Mutações Sintéticas Letais , Quinases da Família src/antagonistas & inibidores , Animais , Apoptose , Proliferação de Células , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Masculino , Camundongos , Camundongos Nus , Prognóstico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Nat Genet ; 52(8): 790-799, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32690948

RESUMO

Epigenetic processes govern prostate cancer (PCa) biology, as evidenced by the dependency of PCa cells on the androgen receptor (AR), a prostate master transcription factor. We generated 268 epigenomic datasets spanning two state transitions-from normal prostate epithelium to localized PCa to metastases-in specimens derived from human tissue. We discovered that reprogrammed AR sites in metastatic PCa are not created de novo; rather, they are prepopulated by the transcription factors FOXA1 and HOXB13 in normal prostate epithelium. Reprogrammed regulatory elements commissioned in metastatic disease hijack latent developmental programs, accessing sites that are implicated in prostate organogenesis. Analysis of reactivated regulatory elements enabled the identification and functional validation of previously unknown metastasis-specific enhancers at HOXB13, FOXA1 and NKX3-1. Finally, we observed that prostate lineage-specific regulatory elements were strongly associated with PCa risk heritability and somatic mutation density. Examining prostate biology through an epigenomic lens is fundamental for understanding the mechanisms underlying tumor progression.


Assuntos
Neoplasias da Próstata/genética , Linhagem Celular , Linhagem Celular Tumoral , Progressão da Doença , Epigenômica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Masculino , Próstata/patologia , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Sequências Reguladoras de Ácido Nucleico/genética
13.
Nat Med ; 26(7): 1041-1043, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32572266

RESUMO

Improving early cancer detection has the potential to substantially reduce cancer-related mortality. Cell-free methylated DNA immunoprecipitation and high-throughput sequencing (cfMeDIP-seq) is a highly sensitive assay capable of detecting early-stage tumors. We report accurate classification of patients across all stages of renal cell carcinoma (RCC) in plasma (area under the receiver operating characteristic (AUROC) curve of 0.99) and demonstrate the validity of this assay to identify patients with RCC using urine cell-free DNA (cfDNA; AUROC of 0.86).


Assuntos
Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Metilação de DNA/genética , Detecção Precoce de Câncer , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/sangue , Carcinoma de Células Renais/urina , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/urina , Epigenoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
14.
Mol Oncol ; 14(8): 1881-1897, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385899

RESUMO

Although there are molecularly distinct subtypes of prostate cancer, no molecular classification system is used clinically. The ribonucleotide reductase small subunit M2 (RRM2) gene plays an oncogenic role in many cancers. Our previous study elucidated comprehensive molecular mechanisms of RRM2 in prostate cancer (PC). Given the potent functions of RRM2, we set out to determine whether the RRM2 signature can be used to identify aggressive subtypes of PC. We applied gene ontology and pathway analysis in RNA-seq datasets from PC cells overexpressing RRM2. We refined the RRM2 signature by integrating it with two molecular classification systems (PCS and PAM50 subtypes) that define aggressive PC subtypes (PCS1 and luminal B) and correlated signatures with clinical outcomes in six published cohorts comprising 4000 cases of PC. Increased expression of genes in the RRM2 signature was significantly correlated with recurrence, high Gleason score, and lethality of PC. Patients with high RRM2 levels showed higher PCS1 score, suggesting the aggressive PC feature. Consistently, RRM2-regulated genes were highly enriched in the PCS1 signature from multiple PC cohorts. A simplified RRM2 signature (12 genes) was identified by intersecting the RRM2 signature, PCS1 signature, and the PAM50 classifier. Intriguingly, inhibition of RRM2 specifically targets PCS1 and luminal B genes. Furthermore, 11 genes in the RRM2 signature were correlated with enzalutamide resistance by using a single-cell RNA-seq dataset from PC circulating tumor cells. Finally, high expression of RRM2 was associated with an immunosuppressive tumor-immune microenvironment in both primary prostate cancer and metastatic prostate cancer using CIBERSORT analysis and LM22, a validated leukocyte gene signature matrix. These data demonstrate that RRM2 is a driver of aggressive prostate cancer subtypes and contributes to immune escape, suggesting that RRM2 inhibition may be of clinical benefit for patients with PC.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/genética , Recidiva Local de Neoplasia/metabolismo , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/metabolismo , Ribonucleosídeo Difosfato Redutase/metabolismo , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Estudos de Coortes , Biologia Computacional , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Ontologia Genética , Inativação Gênica , Humanos , Masculino , Gradação de Tumores , Recidiva Local de Neoplasia/genética , Estadiamento de Neoplasias , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Interferência de RNA , RNA-Seq , Ribonucleosídeo Difosfato Redutase/antagonistas & inibidores , Ribonucleosídeo Difosfato Redutase/genética , Análise de Célula Única , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Regulação para Cima
15.
Genet Med ; 22(8): 1366-1373, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32341571

RESUMO

PURPOSE: Plasma cell-free DNA (cfDNA) variant analysis is commonly used in many cancer subtypes. Cell-free methylated DNA immunoprecipitation sequencing (cfMeDIP-seq) has shown high sensitivity for cancer detection. To date, studies have not compared the sensitivity of both methods in a single cancer subtype. METHODS: cfDNA from 40 metastatic RCC (mRCC) patients was subjected to targeted panel variant analysis. For 34 of 40, cfMeDIP-seq was also performed. A separate cohort of 38 mRCC patients were used in cfMeDIP-seq analysis to train an RCC classifier. RESULTS: cfDNA variant analysis detected 21 candidate variants in 11 of 40 mRCC patients (28%), after exclusion of 2 germline variants and 6 variants reflecting clonal hematopoiesis. Among 23 patients with parallel tumor sequencing, cfDNA analysis alone identified variants in 9 patients (39%), while cfDNA analysis focused on tumor sequencing variant findings improved the sensitivity to 52%. In 34 mRCC patients undergoing cfMeDIP-seq, cfDNA variant analysis identified variants in 7 (21%), while cfMeDIP-seq detected all mRCC cases (100% sensitivity) with 88% specificity in 34 control subjects. In 5 patients with cfDNA variants and serial samples, variant frequency correlated with response to therapy. CONCLUSION: cfMeDIP-seq is significantly more sensitive for mRCC detection than cfDNA variant analysis. However, cfDNA variant analysis may be useful for monitoring response to therapy.


Assuntos
Carcinoma de Células Renais , Ácidos Nucleicos Livres , Neoplasias Renais , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Ácidos Nucleicos Livres/genética , DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , Plasma
16.
Clin Cancer Res ; 26(8): 2047-2064, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31796516

RESUMO

PURPOSE: Previous sequencing studies revealed that alterations of genes associated with DNA damage response (DDR) are enriched in men with metastatic castration-resistant prostate cancer (mCRPC). BRCA2, a DDR and cancer susceptibility gene, is frequently deleted (homozygous and heterozygous) in men with aggressive prostate cancer. Here we show that patients with prostate cancer who have lost a copy of BRCA2 frequently lose a copy of tumor suppressor gene RB1; importantly, for the first time, we demonstrate that co-loss of both genes in early prostate cancer is sufficient to induce a distinct biology that is likely associated with worse prognosis. EXPERIMENTAL DESIGN: We prospectively investigated underlying molecular mechanisms and genomic consequences of co-loss of BRCA2 and RB1 in prostate cancer. We used CRISPR-Cas9 and RNAi-based methods to eliminate these two genes in prostate cancer cell lines and subjected them to in vitro studies and transcriptomic analyses. We developed a 3-color FISH assay to detect genomic deletions of BRCA2 and RB1 in prostate cancer cells and patient-derived mCRPC organoids. RESULTS: In human prostate cancer cell lines (LNCaP and LAPC4), loss of BRCA2 leads to the castration-resistant phenotype. Co-loss of BRCA2-RB1 in human prostate cancer cells induces an epithelial-to-mesenchymal transition, which is associated with invasiveness and a more aggressive disease phenotype. Importantly, PARP inhibitors attenuate cell growth in human mCRPC-derived organoids and human CRPC cells harboring single-copy loss of both genes. CONCLUSIONS: Our findings suggest that early identification of this aggressive form of prostate cancer offers potential for improved outcomes with early introduction of PARP inhibitor-based therapy.See related commentary by Mandigo and Knudsen, p. 1784.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Proteína BRCA2 , Biomarcadores Tumorais , Genes BRCA2 , Humanos , Masculino , Fenótipo , Neoplasias de Próstata Resistentes à Castração/genética
17.
Mol Oncol ; 13(9): 1944-1958, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31225930

RESUMO

Epigenetic silencing of miRNA is a primary mechanism of aberrant miRNA expression in cancer, and hypermethylation of miRNA promoters has been reported to contribute to prostate cancer initiation and progression. Recent data have shown that the miR-193b promoter is hypermethylated in prostate cancer compared with normal tissue, but studies assessing its functional significance have not been performed. We aimed to elucidate the function of miR-193b and identify its critical targets in prostate cancer. We observed an inverse correlation between miR-193b level and methylation of its promoter in The Cancer Genome Atlas (TCGA) cohort. Overexpression of miR-193b in prostate cancer cell lines inhibited invasion and induced apoptosis. We found that a majority of the top 150 genes downregulated when miR-193b was overexpressed in liposarcoma are overexpressed in metastatic prostate cancer and that 41 miR-193b target genes overlapped with the 86 genes in the aggressive prostate cancer subtype 1 (PCS1) signature. Overexpression of miR-193b led to the inhibition of the majority of the 41 genes in prostate cancer cell lines. High expression of the 41 genes was correlated with recurrence of prostate cancer. Knockdown of miR-193b targets FOXM1 and RRM2 in prostate cancer cells phenocopied overexpression of miR-193b. Dual treatment with DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors decreased miR-193b promoter methylation and restored inhibition of FOXM1 and RRM2. Our data suggest that silencing of miR-193b through promoter methylation may release the inhibition of PCS1 genes, contributing to prostate cancer progression and suggesting a possible therapeutic strategy for aggressive prostate cancer.


Assuntos
Metilação de DNA , DNA de Neoplasias/metabolismo , Inativação Gênica , MicroRNAs/metabolismo , Regiões Promotoras Genéticas , Neoplasias da Próstata/metabolismo , RNA Neoplásico/metabolismo , DNA de Neoplasias/genética , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Humanos , Masculino , MicroRNAs/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Células PC-3 , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Neoplásico/genética , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/metabolismo
18.
Clin Cancer Res ; 25(14): 4480-4492, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30996073

RESUMO

PURPOSE: Defects in genes in the DNA repair pathways significantly contribute to prostate cancer progression. We hypothesize that overexpression of DNA repair genes may also drive poorer outcomes in prostate cancer. The ribonucleotide reductase small subunit M2 (RRM2) is essential for DNA synthesis and DNA repair by producing dNTPs. It is frequently overexpressed in cancers, but very little is known about its function in prostate cancer. EXPERIMENTAL DESIGN: The oncogenic activity of RRM2 in prostate cancer cells was assessed by inhibiting or overexpressing RRM2. The molecular mechanisms of RRM2 function were determined. The clinical significance of RRM2 overexpression was evaluated in 11 prostate cancer clinical cohorts. The efficacy of an RRM2 inhibitor (COH29) was assessed in vitro and in vivo. Finally, the mechanism underlying the transcriptional activation of RRM2 in prostate cancer tissue and cells was determined. RESULTS: Knockdown of RRM2 inhibited its oncogenic function, whereas overexpression of RRM2 promoted epithelial mesenchymal transition in prostate cancer cells. The prognostic value of RRM2 RNA levels in prostate cancer was confirmed in 11 clinical cohorts. Integrating the transcriptomic and phosphoproteomic changes induced by RRM2 unraveled multiple oncogenic pathways downstream of RRM2. Targeting RRM2 with COH29 showed excellent efficacy. Thirteen putative RRM2-targeting transcription factors were bioinformatically identified, and FOXM1 was validated to transcriptionally activate RRM2 in prostate cancer. CONCLUSIONS: We propose that increased expression of RRM2 is a mechanism driving poor patient outcomes in prostate cancer and that its inhibition may be of significant therapeutic value.


Assuntos
Biomarcadores Tumorais/metabolismo , Proliferação de Células , Reparo do DNA , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/patologia , Ribonucleosídeo Difosfato Redutase/metabolismo , Animais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Células Cultivadas , Estudos de Coortes , Proteína Forkhead Box M1/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Ribonucleosídeo Difosfato Redutase/genética , Taxa de Sobrevida , Ativação Transcricional , Transcriptoma , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cancer Epidemiol Biomarkers Prev ; 28(4): 707-714, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30602500

RESUMO

BACKGROUND: 4%-9% of prostate cancers harbor homozygous deletions of the androgen-induced tumor suppressor gene, promyelocytic leukemia zinc finger (PLZF, ZBTB16). PLZF loss induces an in vitro phenotype of castration resistance and enzalutamide resistance. The association of low expression of PLZF and clinical outcomes is unclear. METHODS: We assessed PLZF mRNA expression in patients diagnosed with primary prostate cancer during prospective follow-up of the Health Professionals Follow-up Study (HPFS; n = 254) and the Physicians' Health Study (PHS; n = 150), as well as in The Cancer Genome Atlas (n = 333). We measured PTEN status (using copy numbers and IHC) and transcriptional activation of the MAPK pathway. Patients from HPFS and PHS were followed for metastases and prostate cancer-specific mortality (median, 15.3 years; 113 lethal events). RESULTS: PLZF mRNA expression was lower in tumors with PLZF deletions. There was a strong, positive association between intratumoral androgen receptor (AR) signaling and PLZF expression. PLZF expression was also lower in tumors with PTEN loss. Low PLZF expression was associated with higher MAPK signaling. Patients in the lowest quartile of PLZF expression compared with those in the highest quartile were more likely to develop lethal prostate cancer, independent of clinicopathologic features, Gleason score, and AR signaling (odds ratio, 3.17; 95% confidence interval, 1.32-7.60). CONCLUSIONS: Low expression of the tumor suppressor gene PLZF is associated with a worse prognosis in primary prostate cancer. IMPACT: Suppression of PLZF as a consequence of androgen deprivation may be undesirable. PLZF should be tested as a predictive marker for resistance to androgen deprivation therapy.


Assuntos
Genes Supressores de Tumor/fisiologia , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Neoplasias da Próstata/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Humanos , Masculino , Pessoa de Meia-Idade
20.
Cancer Epidemiol Biomarkers Prev ; 28(3): 584-590, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30420441

RESUMO

BACKGROUND: Inflammation is linked to prostate cancer progression and is mediated by NF-κB. Tristetraprolin is a key node of NF-κB activation and we investigated its biological and prognostic role in lethal prostate cancer. METHODS: In vitro assays assessed the function of tristetraprolin and the association between low mRNA tristetraprolin levels and lethal prostate cancer (metastatic disease or death) was assessed across independent prostatectomy cohorts: (i) nested case-control studies from Health Professionals Follow-up Study and Physicians' Health Study, and (ii) prostatectomy samples from Cleveland Clinic, Mayo Clinic, Johns Hopkins and Memorial Sloan Kettering Cancer Center. Tristetraprolin expression levels in prostatectomy samples from patients with localized disease and biopsies of metastatic castration-resistant prostate cancer (mCRPC) were assessed in a Cornell University cohort. RESULTS: In vitro tristetraprolin expression was inversely associated with NF-κB-controlled genes, proliferation, and enzalutamide sensitivity. Men with localized prostate cancer and lower quartile of tumor tristetraprolin expression had a significant, nearly two-fold higher risk of lethal prostate cancer after adjusting for known clinical and histologic prognostic features (age, RP Gleason score, T-stage). Tristetraprolin expression was also significantly lower in mCRPC compared with localized prostate cancer. CONCLUSIONS: Lower levels of tristetraprolin in human prostate cancer prostatectomy tissue are associated with more aggressive prostate cancer and may serve as an actionable prognostic and predictive biomarker. IMPACT: There is a clear need for improved biomarkers to identify patients with localized prostate cancer in need of treatment intensification, such as adjuvant testosterone suppression, or treatment de-intensification, such as active surveillance. Tristetraprolin levels may serve as informative biomarkers in localized prostate cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Recidiva Local de Neoplasia/patologia , Neoplasias de Próstata Resistentes à Castração/secundário , Neoplasias da Próstata/patologia , Tristetraprolina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/cirurgia , Prognóstico , Prostatectomia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/cirurgia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/cirurgia , Estudos Retrospectivos , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA