Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Microbiol Biotechnol ; 34(2): 240-248, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37942548

RESUMO

In cancer treatment, multi-target approach has paid attention to a reasonable strategy for the potential agents. We investigated whether (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP) could exert an anticancer effect by dual-regulating VEGFR2 and PPARγ. MMPP showed modulating effects in TNBC type (MDA-MB-231 and MDA-MB-468) and luminal A type (MCF7) breast cancer cell lines. MMPP enhanced PPARγ transcriptional activity and inhibited VEGFR2 phosphorylation. MMPP-induced signaling by VEGFR2 and PPARγ ultimately triggered the downregulation of AKT activity. MMPP exhibited anticancer effects, as evidenced by growth inhibition, inducement of apoptosis, and suppression of migration and invasion. At the molecular level, MMPP activated pro-apoptotic proteins (caspase3, caspase8, caspase9, and bax), while inhibiting the anti-apoptotic proteins (bcl2). Additionally, MMPP inhibited the mRNA expressions of EMT-promoting transcription factors. Therefore, our findings showed molecular mechanisms of MMPP by regulating VEGFR2 and PPARγ, and suggested that MMPP has potential to treat breast cancer.


Assuntos
Neoplasias da Mama , Ácidos Ftálicos , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , PPAR gama/genética , Fenol/farmacologia , Fenóis/farmacologia , Apoptose , Proteínas Reguladoras de Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Movimento Celular
2.
BMB Rep ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964635

RESUMO

Many types of cancer are associated with excessive angiogenesis. Anti-angiogenic treatment is an effective strategy for treating solid cancers. This study aimed to demonstrate the inhibitory effects of (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP) in VEGFA-induced angiogenesis. The results indicated that MMPP effectively suppressed various angiogenic processes, such as cell migration, invasion, tube formation, and sprouting of new vessels in human umbilical vein endothelial cells (HUVECs) and mouse aortic ring. The inhibitory mechanism of MMPP on angiogenesis involves targeting VEGFR2. MMPP showed high binding affinity for the VEGFR2 ATP-binding domain. Additionally, MMPP improved VEGFR2 thermal stability and inhibited VEGFR2 kinase activity, suppressing the downstream VEGFR2/AKT/ERK pathway. MMPP attenuated the activation and nuclear translocation of NF-κB, and it downregulated NF-κB target genes such as VEGFA, VEGFR2, MMP2, and MMP9. Furthermore, conditioned medium from MMPP-treated breast cancer cells effectively inhibited angiogenesis in endothelial cells. These results suggested that MMPP had great promise as a novel VEGFR2 inhibitor with potent anti-angiogenic properties for cancer treatment via VEGFR2/AKT/ERK/NF-κB signaling pathway.

3.
Int Immunopharmacol ; 125(Pt A): 111124, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977740

RESUMO

Sepsis is a life-threatening disease with limited treatment options, and the inflammatory process represents an important factor affecting its progression. Many studies have demonstrated the critical roles of signal transducer and activator of transcription 3 (STAT3) in sepsis pathophysiology and pro-inflammatory responses. Inhibition of STAT3 activity may therefore represent a promising treatment option for sepsis. We here used a mouse model to demonstrate that (E)-2-methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol (MMPP) treatment prevented the liver sepsis-related mortality induced by 30 mg/kg lipopolysaccharide (LPS) treatment and reduced LPS-induced increase in alanine transaminase, aspartate transaminase, and lactate dehydrogenase levels, all of which are markers of liver sepsis progression. These recovery effects were associated with decreased LPS-induced STAT3, p65, and JAK1 phosphorylation and proinflammatory cytokine (interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha) level; expression of cyclooxygenase-2 and induced nitric oxide synthase were also reduced by MMPP. In an in vitro study using the normal liver cell line THLE-2, MMPP treatment prevented the LPS-induced increase of STAT3, p65, and JAK1 phosphorylation and inflammatory protein expression in a dose-dependent manner, and this effect was enhanced by combination treatment with MMPP and STAT3 inhibitor. The results clearly indicate that MMPP treatment prevents LPS-induced mortality by inhibiting the inflammatory response via STAT3 activity inhibition. Thus, MMPP represents a novel agent for alleviating LPS-induced liver sepsis.


Assuntos
Sepse , Transdução de Sinais , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Fenol/metabolismo , Fenol/farmacologia , Fosforilação , Fator de Transcrição STAT3/metabolismo , Fenóis/farmacologia , Fenóis/uso terapêutico , Fígado/metabolismo , Sepse/induzido quimicamente , Sepse/tratamento farmacológico , Sepse/metabolismo
4.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37111237

RESUMO

(E)-2-methoxy-4-[3-(4-methoxyphenyl) prop-1-en-1-yl] phenol (MMPP), a novel synthetic analog of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal (BHPB), exerts anti-inflammatory and anticancer effects by downregulating the STAT3 pathway. It has also been recently reported that MMPP can act as a PPAR agonist which enhances glucose uptake and increases insulin sensitivity. However, it has not yet been elucidated whether MMPP can act as an antagonist of MD2 and inhibit MD2-dependent pathways. In this study, we evaluated the underlying modulatory effect of MMPP on inflammatory responses in LPS-stimulated THP-1 monocytes. MMPP inhibited the LPS-induced expression of inflammatory cytokines, such as TNF-α, IL-1ß, and IL-6, as well as the inflammatory mediator COX-2. MMPP also alleviated the IKKαß/IκBα and JNK pathways and the nuclear translocation of NF-κB p50 and c-Jun in LPS-stimulated THP-1 monocytes. In addition, the molecular docking analyses and in vitro binding assay revealed that MMPP can directly bind to CD14 and MD2, which are expressed in the plasma membrane, to recognize LPS first. Collectively, MMPP was directly bound to CD14 and MD2 and inhibited the activation of the NF-κB and JNK/AP-1 pathways, which then exerted anti-inflammatory activity. Accordingly, MMPP may be a candidate MD2 inhibitor targeting TLR4, which exerts anti-inflammatory effects.

5.
Front Pharmacol ; 13: 994584, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339572

RESUMO

Peroxisome proliferator-activated receptor-gamma (PPARγ) is a transcription factor involved in adipogenesis, and its transcriptional activity depends on its ligands. Thiazolidinediones (TZDs), well-known PPARγ agonists, are drugs that improve insulin resistance in type 2 diabetes. However, TZDs are associated with severe adverse effects. As current therapies are not well designed, novel PPARγ agonists have been investigated in adipocytes. (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP) is known to have anti-arthritic, anti-inflammatory, and anti-cancer effects. In this study, we demonstrated the adipogenic effects of MMPP on the regulation of PPARγ transcriptional activity during adipocyte differentiation in vitro. MMPP treatment increased PPARγ transcriptional activity, and molecular docking studies revealed that MMPP binds directly to the PPARγ ligand binding domain. MMPP and rosiglitazone showed similar binding affinities to the PPARγ. MMPP significantly promoted lipid accumulation in adipocyte cells and increased the expression of C/EBPß and the levels of p-AKT, p-GSK3, and p-AMPKα at an early stage. MMPP enhanced the expression of adipogenic markers such as PPARγ, C/EBPα, FAS, ACC, GLUT4, FABP4 and adiponectin in the late stage. MMPP also improved insulin sensitivity by increasing glucose uptake. Thus, MMPP, as a PPARγ agonist, may be a potential drug for type 2 diabetes and metabolic disorders, which may help increase adipogenesis and insulin sensitivity.

6.
Mol Oncol ; 16(2): 508-526, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34758182

RESUMO

Our previous big data analyses showed a high level of association between chitinase 3 like1 (CHI3L1) expression and lung tumor development. In the present study, we investigated whether a CHI3L1-inhibiting chemical, 2-({3-[2-(1-cyclohexen-1-yl)ethyl]-6,7-dimethoxy-4-oxo-3,4-dihydro-2-quinazolinyl}sulfanyl)-N-(4-ethylphenyl)butanamide (K284), could inhibit lung metastasis and studied its mechanism of action. We investigated the antitumor effect of K284 both in vitro and in vivo. K284 (0.5 mg·kg-1 body weight) significantly inhibited lung metastasis in in vivo models after injection of murine melanoma cells (B16F10) or adenocarcinomic human alveolar basal epithelial cells (A549). K284 significantly and concentration-dependently also inhibited cancer cell proliferation and migration in the A549 and H460 lung cancer cell lines. We found that the binding of K284 to the chitin-binding domain (CBD) of CHI3L1 prevented the binding of CHI3L1 to its receptor, interleukin-13 receptor subunit alpha-2 (IL-13Rα2), thereby suppressing the CHI3L1 signal. This blocking of the CHI3L1-IL-13Rα2 signal caused the inhibition of c-Jun N-terminal kinase (JNK)-activator protein 1 (AP-1) signals, resulting in the prevention of lung metastasis and cancer cell growth. Our data demonstrate that K284 may serve as a potential candidate anticancer compound targeting CHI3L1.


Assuntos
Proteína 1 Semelhante à Quitinase-3/efeitos dos fármacos , Subunidade alfa2 de Receptor de Interleucina-13/antagonistas & inibidores , Neoplasias Pulmonares/prevenção & controle , MAP Quinase Quinase 4/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição AP-1/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Bibliotecas de Moléculas Pequenas
7.
Molecules ; 28(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36615523

RESUMO

Our previous big data analyses reported a strong association between CHI3L1 expression and lung tumor development. In this present study, we investigated whether a CHI3L1-inhibiting natural compound, ebractenoid F, inhibits lung cancer cell growth and migration and induces apoptosis. Ebractenoid F concentration-dependently (0, 17, 35, 70 µM) and significantly inhibited the proliferation and migration of A549 and H460 lung cancer cells and induced apoptosis. In the mechanism study, we found that ebractenoid F bound to CHI3L1 and suppressed CHI3L1-associated AKT signaling. Combined treatment with an AKT inhibitor, LY294002, and ebractenoid F synergistically decreased the expression of CHI3L1. Moreover, the combination treatment further inhibited the growth and migration of lung cancer cells and further induced apoptosis, as well as the expression levels of apoptosis-related proteins. Thus, our data demonstrate that ebractenoid F may serve as a potential anti-lung cancer compound targeting CHI3L1-associated AKT signaling.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Pulmonares/metabolismo , Apoptose , Proteína 1 Semelhante à Quitinase-3
8.
Allergy Asthma Immunol Res ; 11(4): 548-559, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31172723

RESUMO

PURPOSE: In our previous study, we demonstrated that both titrated extract of Centella asiatica (TECA) and astaxanthin (AST) have anti-inflammatory effects in a 5% phthalic anhydride (PA) mouse model of atopic dermatitis (AD). The increasing prevalence of AD demands new therapeutic approaches for treating the disease. We investigated the therapeutic efficacy of the ointment form of TECA, AST and a TECA + AST combination in a mouse model of AD to see whether a combination of the reduced doses of 2 compounds could have a synergistic effect. METHODS: An AD-like lesion was induced by the topical application of 5% PA to the dorsal ear and back skin of an Hos:HR-1 mouse. After AD induction, TECA (0.5%), AST (0.5%) and the TECA (0.25%) + AST (0.25%) combination ointment (20 µg/cm²) were spread on the dorsum of the ear or back skin 3 times a week for 4 weeks. We evaluated dermatitis severity, histopathological changes and changes in protein expression by Western blotting for inducible nitric oxide synthase (iNOS), cyclocxygenase (COX)-2, and nuclear factor (NF)-κB activity. We also measured the concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and immunoglobulin E (IgE) in the blood of AD mice by enzyme-linked immunosorbent assay (ELISA). RESULTS: PA-induced skin morphological changes and ear thickness were significantly reduced by TECA, AST and TECA + AST treatments, but these inhibiting effects were more pronounced in the TECA + AST treatment. TECA, AST and the TECA+AST reatments inhibited the expression of iNOS and COX-2; NF-κB activity; and the release of TNF-α, IL-6 and IgE. However, the TECA+AST treatment showed additive or synergistic effects on AD. CONCLUSIONS: Our results demonstrate that the combination of TECA and AST could be a promising therapeutic agent for AD by inhibiting NF-κB signaling.

9.
Exp Dermatol ; 27(4): 378-385, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28887839

RESUMO

In this study, we investigated anti-dermatitic effects of astaxanthin (AST) in phthalic anhydride (PA)-induced atopic dermatitis (AD) animal model as well as in vitro model. AD-like lesion was induced by the topical application of 5% PA to the dorsal skin or ear of Hos:HR-1 mouse. After AD induction, 100 µL of 1 mg/mL and 2 mg/mL of AST (10 µg or 20 µg/cm2 ) was spread on the dorsum of ear or back skin three times a week for four weeks. We evaluated dermatitis severity, histopathological changes and changes in protein expression by Western blotting for inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and nuclear factor-κB (NF-κB) activity. We also measured tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and immunoglobulin E (IgE) concentration in the blood of AD mice by enzyme-linked immunosorbent assay (ELISA). AST treatment attenuated the development of PA-induced AD. Histological analysis showed that AST inhibited hyperkeratosis, mast cells and infiltration of inflammatory cells. AST treatment inhibited expression of iNOS and COX-2, and NF-κB activity as well as release of TNF-α, IL-1ß, IL-6 and IgE. In addition, AST (5, 10 and 20 µM) potently inhibited lipopolysaccharide (LPS) (1 µg/mL)-induced nitric oxide (NO) production, expression of iNOS and COX-2 and NF-κB DNA binding activities in RAW 264.7 macrophage cells. Our data demonstrated that AST could be a promising agent for AD by inhibition of NF-κB signalling.


Assuntos
Anti-Inflamatórios/uso terapêutico , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Administração Cutânea , Animais , Anti-Inflamatórios/farmacologia , Contagem de Células , Ciclo-Oxigenase 2/metabolismo , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/patologia , Modelos Animais de Doenças , Imunoglobulina E/sangue , Interleucina-1beta/sangue , Interleucina-6/sangue , Lipopolissacarídeos/farmacologia , Linfonodos/patologia , Mastócitos , Camundongos , Óxido Nítrico Sintase/metabolismo , Tamanho do Órgão , Anidridos Ftálicos , Células RAW 264.7 , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/sangue , Xantofilas/farmacologia , Xantofilas/uso terapêutico
10.
Oncotarget ; 8(53): 91258-91269, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29207641

RESUMO

Here we report that a novel synthesized compound (E)-2-methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol (MMPP) which exhibits better stability, drug-likeness and anti-cancer effect than (E)-2,4-bis(p-hydroxyphenyl)-2-butenal (BHPB) that we previously reported. Of all newly synthesized BHPB analogues, MMPP showed the most significant inhibitory effect on colon cancer cell growth. Thus, we evaluated the anti-cancer effects and possible mechanisms of MMPP in vitro and in vivo. MMPP treatment (0-15 µg/mL) induced apoptotic cell death and enhanced the expression of cleaved caspase-3 and cleaved caspase-8 in a concentration dependent manner. Notably, the expression of death receptor (DR)5 and DR6 was significantly increased by MMPP treatment. Moreover, DR5 siRNA or DR6 siRNA transfection partially abolished MMPP-induced cell growth inhibition. Pull down assay and docking experiment showed that MMPP bound directly to IkappaB kinase ß (IKKß). It was noteworthy that IKKß mutant (C99S) partially abolished MMPP-induced cell growth inhibition and enhanced expression of DR5 and DR6. In addition, MMPP enhanced TRAIL-induced apoptosis, cell growth inhibition and expression of DRs. In xenograft mice model, MMPP (2.5-5 mg/kg) suppressed tumor growth in a dose dependent manner. Immunohistochemistry analysis showed that the expression levels of DR5 and DR6 and active caspase-3 were increased while the expression levels of PCNA and p-IKKß were decreased in a dose dependent manner. Thus, MMPP may be a promising anti-cancer agent in colon cancer treatment.

11.
Theranostics ; 7(18): 4632-4642, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29158850

RESUMO

Rationale: Signal transducer and activator of transcription-3 (STAT3) plays a pivotal role in cancer biology. Many small-molecule inhibitors that target STAT3 have been developed as potential anticancer drugs. While designing small-molecule inhibitors that target the SH2 domain of STAT3 remains the leading focus for drug discovery, there has been a growing interest in targeting the DNA-binding domain (DBD) of the protein. Methods: We demonstrated the potential antitumor activity of a novel, small-molecule (E)-2-methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol (MMPP) that directly binds to the DBD of STAT3, in patient-derived non-small cell lung cancer (NSCLC) xenograft model as well as in NCI-H460 cell xenograft model in nude mice. Results: MMPP effectively inhibited the phosphorylation of STAT3 and its DNA binding activity in vitro and in vivo. It induced G1-phase cell cycle arrest and apoptosis through the regulation of cell cycle- and apoptosis-regulating genes by directly binding to the hydroxyl residue of threonine 456 in the DBD of STAT3. Furthermore, MMPP showed a similar or better antitumor activity than that of docetaxel or cisplatin. Conclusion: MMPP is suggested to be a potential candidate for further development as an anticancer drug that targets the DBD of STAT3.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Ácidos Ftálicos/farmacologia , Fator de Transcrição STAT3/metabolismo , Células A549 , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Oncotarget ; 8(28): 45517-45530, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28489589

RESUMO

Oxidative stress and neuroinflammation is implicated in the pathogenesis and development of Alzheimer's disease (AD). Here, we investigated the suppressive possibility of ethanol extract of Nannochloropsis oceanica (N. oceanica) on memory deficiency along with the fundamental mechanisms in lipopolysaccharide (LPS)-treated mice model. Among several extracts of 32 marine microalgae, ethanol extract of N. oceanica showed the most significant inhibitory effect on nitric oxide (NO) generation, NF-κB activity and ß-secretase activity in cultured BV-2 cells, neuronal cells and Raw 264.7 cells. Ethanol extract of N. oceanica (50, 100 mg/kg) also ameliorated LPS (250 µg/kg)-induced memory impairment. We also found that ethanol extract of N. oceanica inhibited the LPS-induced expression of iNOS and COX-2. Furthermore, the production of reactive oxygen species (ROS), malondialdehyde (MDA) level as well as glutathione (GSH) level was also decreased by treatment of ethanol extract of N.oceanica. The ethanol extract of N. oceanica also suppresses IκB degradation as well as p50 and p65 translocation into the nucleus in LPS-treated mice brain. Associated with the inhibitory effect on neuroinflammation and oxidative stress, ethanol extract of N. oceanica suppressed Aß1-42 generation through down-regulation of APP and BACE1 expression in in vivo. These results suggest that ethanol extract of N. oceanica ameliorated memory impairment via anti-inflammatory, anti-oxidant and anti-amyloidogenic mechanisms.


Assuntos
Amiloidose/metabolismo , Produtos Biológicos/farmacologia , Transtornos da Memória/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estramenópilas/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Amiloidose/tratamento farmacológico , Amiloidose/etiologia , Amiloidose/fisiopatologia , Animais , Astrócitos/metabolismo , Produtos Biológicos/química , Linhagem Celular , Modelos Animais de Doenças , Expressão Gênica , Genes Reporter , Lipopolissacarídeos/efeitos adversos , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/fisiopatologia , Camundongos , Microglia/metabolismo , Óxido Nítrico/metabolismo , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
13.
J Microbiol Biotechnol ; 27(7): 1359-1366, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28511296

RESUMO

(E)-2-Methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol (MMPP), derived from butenal, is a recently synthesized Maillard reaction product. Owing to its novelty, little is known about the function of MMPP. In this study, we elucidated the effects of MMPP on apoptosis in cervical cancer by using the HeLa cervical cancer cell line, which is widely used in cancer research. We observed that MMPP was cytotoxic to HeLa cells and induced activation of caspase-3, -8, and -9, without affecting the expression of the viral oncogenes E6 and E7. In particular, the expression of the death receptors DR5 and FAS was significantly increased by MMPP treatment. There were no significant alterations of mitochondrial intrinsic factors. Taking all these results together, our findings show that MMPP primarily induces apoptosis in HeLa cervical cancer cells via the extrinsic apoptotic signaling pathway, accompanied by an enhanced expression of death receptors.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Guaiacol/análogos & derivados , Transdução de Sinais/efeitos dos fármacos , Caspases/genética , Caspases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Guaiacol/farmacologia , Células HeLa , Humanos , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Receptores de Morte Celular/genética , Receptores de Morte Celular/metabolismo
14.
Mol Carcinog ; 56(9): 2003-2013, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28277616

RESUMO

In the present study, we synthesized several non-aldehyde analogues of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal which showed anti-cancer effect. Interestingly, among the 16 compounds, we found that (E)-2-methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol (MMPP) showed the most significant anti-proliferative effect on PA-1 and SK-OV-3 ovarian epithelial cancer cells. MMPP treatment (0-15 µg/mL) induced apoptotic cell death, enhanced the expression of cleaved caspase-3, and cleaved caspase-9 in a concentration dependent manner. Notably, DNA binding activity of STAT3, phosphorylation of extracellular signal-regulated kinase (ERK) and p38 was significantly decreased by MMPP treatment. However, ERK siRNA augmented MMPP-induced inhibitory effect on cell growth rather than p38 siRNA or JNK siRNA. Moreover, combination treatment of MMPP with ERK inhibitor U0126 (10 µM) augmented MMPP-induced inhibitory effect on cell growth and DNA binding activity of STAT3, and enhanced expression of cleaved caspase-3 and cleaved caspase-9. In addition, STAT3 siRNA transfection augmented MMPP-induced cell growth inhibition. In PA-1 bearing xenograft mice model, MMPP (5 mg/kg) suppressed tumor growth significantly. Immunohistochemistry staining showed that the expression levels of p-ERK, PCNA, p-STAT3 were decreased while the expression level of caspase-3 was increased by MMPP treatment. Thus, MMPP may be a promising anti-cancer agent in ovarian epithelial cancer treatment.


Assuntos
Aldeídos/química , Antineoplásicos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Guaiacol/análogos & derivados , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Fenóis/química , Fator de Transcrição STAT3/antagonistas & inibidores , Aldeídos/farmacologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA de Neoplasias/metabolismo , Feminino , Guaiacol/química , Guaiacol/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fenóis/farmacologia , Ligação Proteica/efeitos dos fármacos
15.
Sci Rep ; 6: 26357, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27198178

RESUMO

Piperlongumine has anti-cancer activity in numerous cancer cell lines via various signaling pathways. But there has been no study regarding the mechanisms of PL on the lung cancer yet. Thus, we evaluated the anti-cancer effects and possible mechanisms of PL on non-small cell lung cancer (NSCLC) cells in vivo and in vitro. Our findings showed that PL induced apoptotic cell death and suppressed the DNA binding activity of NF-κB in a concentration dependent manner (0-15 µM) in NSCLC cells. Docking model and pull down assay showed that PL directly binds to the DNA binding site of nuclear factor-κB (NF-κB) p50 subunit, and surface plasmon resonance (SPR) analysis showed that PL binds to p50 concentration-dependently. Moreover, co-treatment of PL with NF-κB inhibitor phenylarsine oxide (0.1 µM) or p50 siRNA (100 nM) augmented PL-induced inhibitory effect on cell growth and activation of Fas and DR4. Notably, co-treatment of PL with p50 mutant plasmid (C62S) partially abolished PL-induced cell growth inhibition and decreased the enhanced expression of Fas and DR4. In xenograft mice model, PL (2.5-5 mg/kg) suppressed tumor growth of NSCLC dose-dependently. Therefore, these results indicated that PL could inhibit lung cancer cell growth via inhibition of NF-κB signaling pathway in vitro and in vivo.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Dioxolanos/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , NF-kappa B/metabolismo , Células A549 , Animais , Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dioxolanos/farmacologia , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , NF-kappa B/química , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
PLoS One ; 11(3): e0150235, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26960190

RESUMO

The focus of this study is the anti-cancer effects of Cudrania tricuspidata stem (CTS) extract on cervical cancer cells. The effect of CTS on cell viability was investigated in HPV-positive cervical cancer cells and HaCaT human normal keratinocytes. CTS showed significant dose-dependent cytotoxic effects in cervical cancer cells. However, there was no cytotoxic effect of CTS on HaCaT keratinocytes at concentrations of 0.125-0.5 mg/mL. Based on this cytotoxic effect, we demonstrated that CTS induced apoptosis by down-regulating the E6 and E7 viral oncogenes. Apoptosis was detected by DAPI staining, annexin V-FITC/PI staining, cell cycle analysis, western blotting, RT-PCR, and JC-1 staining in SiHa cervical cancer cells. The mRNA expression levels of extrinsic pathway molecules such as Fas, death receptor 5 (DR5), and TNF-related apoptosis-inducing ligand (TRAIL) were increased by CTS. Furthermore, CTS treatment activated caspase-3/caspase-8 and cleavage of poly (ADP-ribose) polymerase (PARP). However, the mitochondrial membrane potential and expression levels of intrinsic pathway molecules such as Bcl-2, Bcl-xL, Bax, and cytochrome C were not modulated by CTS. Taken together, these results indicate that CTS induced apoptosis by activating the extrinsic pathway, but not the intrinsic pathway, in SiHa cervical cancer cells. These results suggest that CTS can be used as a modulating agent in cervical cancer.


Assuntos
Apoptose/efeitos dos fármacos , Moraceae/química , Extratos Vegetais/farmacologia , Caules de Planta/química , Transdução de Sinais/efeitos dos fármacos , Neoplasias do Colo do Útero/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Fenóis/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores de Morte Celular/metabolismo , Compostos Orgânicos Voláteis/análise
17.
Arch Pharm Res ; 38(7): 1351-62, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25791937

RESUMO

Activation of nuclear factor kappa-B (NF-κB) is implicated in drug resistant of lung cancer cells. Our previous data showed that thiacremonone inhibited activation of NF-κB. In the present study, we investigated whether thiacremonone enhanced susceptibility of lung cancer cells to a common anti-cancer drug paclitaxel by further inhibition of NF-κB. Thus, we used the threefold lower doses of IC50 values (50 µg/ml thiacremonone and 2.5 nM paclitaxel). We found that combination treatment with thiacremonone and paclitaxel was more susceptible (combination index; 0.40 in NCI-H460 cells and 0.46 in A549 cells) in cell growth inhibition of two types of lung cancer cell lines compared to a single agent treatment. Consistent with the combination effect on cancer cell growth inhibition, the combination treatment further induced apoptotic cell death and arrested the cancer cells in G2/M phase accompanied with a much lower expression of cdc2 and cyclin B1, and inhibited colony formation. Much more inactivation of NF-κB and greater expression of NF-κB target apoptosis regulated genes such as caspase-8 and PARPs were found by the combination treatment. Molecular model and pull down assay as well as MALDI-TOF analysis demonstrated that thiacremonone directly binds to p50. These data indicated that thiacremonone leads to increased apoptotic cell death in lung cancer cell lines through greater inhibition of NF-κB by the combination treatment with paclitaxel.


Assuntos
Antineoplásicos/farmacologia , Inibidores do Crescimento/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Paclitaxel/farmacologia , Tiofenos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 8/biossíntese , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , NF-kappa B/antagonistas & inibidores , Subunidade p50 de NF-kappa B/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/biossíntese
18.
Apoptosis ; 19(1): 165-78, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24052407

RESUMO

The Maillard reaction products are known to be effective in chemoprevention. Here, we focused on the anti-cancer effects of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal on in vitro and in vivo colon cancer. We analysed the anti-cancer activity of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal on colon cancer cells by using cell cycle and apoptosis analysis. To elucidate it's mechanism, NF-κB DNA binding activity, docking model as well as pull-down assay. Further, a xenograft model of colon cancer was studied to test the in vivo effects of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal. (E)-2,4-Bis(p-hydroxyphenyl)-2-butenal inhibited colon cancer cells (SW620 and HCT116) growth followed by induction of apoptosis in a concentration-dependent manner via down-regulation of NF-κB activity. In docking model as well as pull-down assay, (E)-2,4-bis(p-hydroxyphenyl)-2-butenal directly binds to three amino acid residues of IKKß, thereby inhibited IKKß activity in addition to induction of death receptor 6 (DR6) as well as their target apoptotic genes. Finally, (E)-2,4-bis(p-hydroxyphenyl)-2-butenal suppressed anchorage-independent cancer cell growth, and tumor growth in xenograft model accompanied with apoptosis through inhibition of IKKß/NF-κB activity, and overexpression of DR6. These results suggest that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal inhibits colon cancer cell growth through inhibition of IKKß/NF-κB activity and induction of DR6 expression.


Assuntos
Aldeídos/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , NF-kappa B/metabolismo , Fenóis/administração & dosagem , Receptores do Fator de Necrose Tumoral/metabolismo , Aldeídos/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/fisiopatologia , Regulação para Baixo/efeitos dos fármacos , Humanos , Quinase I-kappa B/química , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , NF-kappa B/genética , Fenóis/química , Estrutura Terciária de Proteína , Receptores do Fator de Necrose Tumoral/genética
19.
Vascul Pharmacol ; 56(1-2): 91-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22166585

RESUMO

The increased proliferation of vascular smooth muscle cells (VSMCs) in the arterial wall is a critical pathogenic factor for vascular diseases such as atherosclerosis and restenosis after angioplasty. Clitocybin B was reported to have either a potent free radical scavenging effect or effects that were isolated from the culture broth of mushroom Clitocybe aurantiaca. The present study was designed to investigate the effects of clitocybin B on VSMC proliferation and its possible molecular mechanism. Clitocybin B significantly inhibited the proliferation and the DNA synthesis of PDGF-BB-stimulated VSMCs in a concentration-dependent manner. In agreement with these findings, clitocybin B suppressed the PDGF-BB-induced progression through G0/G1 to S phase of cell cycle. Clitocybin B also down-regulated the expressions of cell cycle-related proteins, including cyclin-dependent kinase (CDK)2, cyclin E, CDK4, cyclin D1, and proliferative cell nuclear antigen in PDGF-BB-stimulated VSMCs. Clitocybin B significantly inhibited the phosphorylation of Akt, extracellular signal-regulated kinase 1/2, and phospholipase C-γ1, in the PDGF-BB signaling pathway. Clitocybin B suppressed the PDGF-Rß activation in PDGF-BB signaling cascade. These results suggested that the inhibitory effect of clitocybin B on the proliferation of VSMCs may be associated with suppressing PDGF-Rß phosphorylation. Thus, clitocybin B may be an effective antiproliferative agent for the prevention of atherosclerosis and restenosis.


Assuntos
Aorta/efeitos dos fármacos , Isoindóis/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Aorta/metabolismo , Becaplermina , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fosfolipase C gama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Proteínas Proto-Oncogênicas c-sis/farmacologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
20.
Biomol Ther (Seoul) ; 20(6): 538-43, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24009847

RESUMO

The Maillard Reaction Products (MRPs) are chemical compounds which have been known to be effective in chemoprevention. Death receptors (DR) play a central role in directing apoptosis in several cancer cells. In our previous study, we demonstrated that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal, a MRP product, inhibited human colon cancer cell growth by inducing apoptosis via nuclear factor-κB (NF-κB) inactivation and G2/M phase cell cycle arrest. In this study, (E)-2,4-bis(p-hydroxyphenyl)-2-butenal diacetate, a new (E)-2,4-bis(p-hydroxyphenyl)-2-butenal derivative, was synthesized to improve their solubility and stability in water and then evaluated against NCI-H460 and A549 human lung cancer cells. (E)-2,4-bis(p-hydroxyphenyl)-2-butenal diacetate reduced the viability in both cell lines in a time and dose-dependent manner. We also found that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal diacetate increased apoptotic cell death through the upregulation of the expression of death receptor (DR)-3 and DR6 in both lung cancer cell lines. In addition to this, the transfection of DR3 siRNA diminished the growth inhibitory and apoptosis inducing effect of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal diacetate on lung cancer cells, however these effects of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal diacetate was not changed by DR6 siRNA. These results indicated that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal diacetate inhibits human lung cancer cell growth via increasing apoptotic cell death by upregulation of the expression of DR3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA