Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38790646

RESUMO

In this study, we investigated the hepatoprotective effects of an ethanol extract of Sophora flavescens Aiton (ESF) on an alcohol-induced liver disease mouse model. Alcoholic liver disease (ALD) was caused by the administration of ethanol to male C57/BL6 mice who were given a Lieber-DeCarli liquid diet, including ethanol. The alcoholic fatty liver disease mice were orally administered ESF (100 and 200 mg/kg bw/day) or silymarin (50 mg/kg bw/day), which served as a positive control every day for 16 days. The findings suggest that ESF enhances hepatoprotective benefits by significantly decreasing serum levels of aspartate transaminase (AST) and alanine transaminase (ALT), markers for liver injury. Furthermore, ESF alleviated the accumulation of triglyceride (TG) and total cholesterol (TC), increased serum levels of superoxide dismutase (SOD) and glutathione (GSH), and improved serum alcohol dehydrogenase (ADH) activity in the alcoholic fatty liver disease mice model. Cells and organisms rely on the Kelch-like ECH-associated protein 1- Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2) system as a critical defensive mechanism in response to oxidative stress. Therefore, Nrf2 plays an important role in ALD antioxidant responses, and its level is decreased by increased reactive oxidation stress (ROS) in the liver. ESF increased Nrf2, which was decreased in ethanol-damaged livers. Additionally, four polyphenol compounds were identified through a qualitative analysis of the ESF using LC-MS/MS. This study confirmed ESF's antioxidative and hangover-elimination effects and suggested the possibility of using Sophora flavescens Aiton (SF) to treat ALD.

2.
Antioxidants (Basel) ; 13(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38790680

RESUMO

Inflammatory bowel disease (IBD) is a chronic inflammatory condition caused by the disruption of the intestinal barrier. The intestinal barrier is maintained by tight junctions (TJs), which sustain intestinal homeostasis and prevent pathogens from entering the microbiome and mucosal tissues. Ziziphus jujuba Miller (Z. jujuba) is a natural substance that has been used in traditional medicine as a therapy for a variety of diseases. However, in IBD, the efficacy of Z. jujuba is unknown. Therefore, we evaluated ZJB in Caco2 cells and a dextran sodium sulfate (DSS)-induced mouse model to demonstrate its efficacy in IBD. Z. jujuba extracts were prepared using 70% ethanol and were named ZJB. ZJB was found to be non-cytotoxic and to have excellent antioxidant effects. We confirmed its anti-inflammatory properties via the down-regulation of inflammatory factors, including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). To evaluate the effects of ZJB on intestinal barrier function and TJ improvement, the trans-epithelial electrical resistance (TEER) and fluorescein isothiocyanate-dextran 4 kDa (FITC-Dextran 4) permeability were assessed. The TEER value increased by 61.389% and permeability decreased by 27.348% in the 200 µg/mL ZJB group compared with the 50 ng/mL IL-6 group after 24 h. Additionally, ZJB alleviated body weight loss, reduced the disease activity index (DAI) score, and induced colon shortening in 5% DSS-induced mice; inflammatory cytokines, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 were down-regulated in the serum. TJ proteins, such as Zonula occludens (ZO)-1 and occludin, were up-regulated by ZJB in an impaired Caco2 mouse model. Additionally, according to the liquid chromatography results, in tandem with mass spectrometry (LC-MS/MS) analysis, seven active ingredients were detected in ZJB. In conclusion, ZJB down-regulated inflammatory factors, protected intestinal barrier function, and increased TJ proteins. It is thus a safe, natural substance with the potential to be used as a therapeutic agent in IBD treatment.

3.
EMBO Rep ; 24(9): e55376, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37503678

RESUMO

Bacteria of the genus Brucella cause brucellosis, one of the world's most common zoonotic diseases. A major contributor to Brucella's virulence is the ability to circumvent host immune defense mechanisms. Here, we find that the DNA-binding protein Dps from Brucella is secreted within the macrophage cytosol, modulating host iron homeostasis and mediating intracellular growth of Brucella. In addition to dampening iron-dependent production of reactive oxygen species (ROS), a key immune effector required for immediate bacterial clearance, cytosolic Dps mediates ferritinophagy activation to elevate intracellular free-iron levels, thereby promoting Brucella growth and inducing host cell necrosis. Inactivation of the ferritinophagy pathway by Ncoa4 gene knockout significantly inhibits intracellular growth of Brucella and host cell death. Our study uncovers an unconventional role of bacterial Dps, identifying a crucial virulence mechanism used by Brucella to adapt to the harsh environment inside macrophages.


Assuntos
Brucella , Brucelose , Humanos , Brucelose/metabolismo , Brucelose/microbiologia , Macrófagos/metabolismo , Morte Celular , Ferro/metabolismo
4.
J Microbiol Biotechnol ; 33(8): 1006-1012, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37280772

RESUMO

In this study, we investigated the effects of sodium propionate (SP) treatment on intracellular mechanism of murine macrophages and its contribution to host immunity during Brucella abortus 544 infection. The intracellular growth assay revealed that SP inhibited Brucella replication inside the macrophages. To determine intracellular signaling involved during SP treatment after Brucella infection, we analyzed the change of five different cytokines production relevant to SP such as TNF-α, IL-10, IFN-γ, IL-1ß, and IL-6, and the results indicated that the boost with IL-10 was apparent throughout the culture period for 48 h as well as IL-1ß which was apparent at 24 h post-infection and IFN-γ which was apparent at 24 h and 48 h in comparison to SP untreated groups. On the other way, SP-treated cells displayed suppressed production of TNF-α and IL-6 at all time points tested and 48 h post-infection, respectively. Furthermore, we conducted western blot to establish a cellular mechanism, and the result suggested that SP treatment attenuated p50 phosphorylation, part of the NF-κB pathway. These findings indicated that the inhibitory effect of SP against Brucella infection could be attributed through induction of cytokine production and interference on intracellular pathway, suggesting SP as a potential candidate for treating brucellosis.


Assuntos
Brucelose , Citocinas , Animais , Camundongos , Citocinas/metabolismo , Brucella abortus , Células RAW 264.7 , Interleucina-10 , Fator de Necrose Tumoral alfa , Interleucina-6/metabolismo , Brucelose/tratamento farmacológico
5.
J Microbiol Biotechnol ; 33(4): 441-448, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-36859519

RESUMO

Brucellosis is a contagious zoonotic disease that infects millions of people annually with hundreds of millions more being exposed. It is caused by Brucella, a highly infectious bacterial species capable of infecting humans with an estimated dose of 10-100 organisms. Sirtuin 1 (SIRT1) has been reported to contribute to prevention of viral diseases as well as a chronic infection caused by Mycobacterium bovis. Here, we investigated the role of SIRT1 in the establishment of Brucella abortus infection in both in vitro and in vivo systems using the reported SIRT1 activators resveratrol (RES), piceatannol (PIC), and ginsenoside Rg3 (Rg3). In RAW264.7 cells, SIRT1 activators did not alter the adherence of Brucella or Salmonella Typhimurium. However, reduced uptake of Brucella was observed in cells treated with PIC and Rg3, and survival of Brucella within the cells was only observed to decrease in cells that were treated with Rg3, while PIC treatment reduced the intracellular survival of Salmonella. SIRT1 treatment in mice via oral route resulted in augmented Brucella resistance for PIC and Rg3, but not RES. PIC treatment favors Th2 immune response despite reduced serum proinflammatory cytokine production, while Rg3-treated mice displayed high IL-12 and IFN-γ serum production. Overall, our findings encourage further investigation into the complete mechanisms of action of the different SIRT1 activators used as well as their potential benefit as an effective alternative approach against intracellular and extracellular pathogens.


Assuntos
Brucella abortus , Brucelose , Humanos , Animais , Camundongos , Brucella abortus/fisiologia , Sirtuína 1/metabolismo , Resveratrol/farmacologia , Resveratrol/metabolismo , Brucelose/tratamento farmacológico , Brucelose/prevenção & controle , Macrófagos/metabolismo , Linhagem Celular
6.
Biomolecules ; 11(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34944451

RESUMO

Chemotherapy is an essential strategy for cancer treatment. On the other hand, consistent exposure to chemotherapeutic drugs induces chemo-resistance in cancer cells through a variety of mechanisms. Therefore, it is important to develop a new drug inhibiting chemo-resistance. Although hemistepsin A (HsA) is known to have anti-tumor effects, the molecular mechanisms of HsA-mediated cell death are unclear. Accordingly, this study examined whether HsA could induce apoptosis in aggressive prostate cancer cells, along with its underlying mechanism. Using HsA on two prostate cancer cell lines, PC-3 and LNCaP cells, the cell analysis and in vivo xenograft model were assayed. In this study, HsA induced apoptosis and autophagy in PC-3 cells. HsA-mediated ROS production attenuated HsA-induced apoptosis and autophagy after treatment with N-acetyl-L-cysteine (NAC), a ROS scavenger. Moreover, autophagy inhibition by 3-MA or CQ is involved in accelerating the apoptosis induced by HsA. Furthermore, we showed the anti-tumor effects of HsA in mice, as assessed by the reduced growth of the xenografted tumors. In conclusion, HsA induced apoptosis and ROS generation, which were blocked by protective autophagy signaling.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Cloroquina/administração & dosagem , Lactonas/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/administração & dosagem , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cloroquina/farmacologia , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lactonas/farmacologia , Masculino , Camundongos , Células PC-3 , Neoplasias da Próstata/metabolismo , Sesquiterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Immunobiology ; 226(3): 152073, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33657463

RESUMO

Here, we explore the potential role of formyl peptide receptor 2 (FPR2) during Brucella abortus infection. FPR2 manipulation affected B. abortus internalization but not its growth within macrophages. During the activation of FPR2 induced by its agonist AGP-8694, a high level of Brucella uptake was accompanied by an increase in ERK phosphorylation, while intracellular survival at 24 h postincubation was observed to be associated with slightly reduced nitrite accumulation but augmented superoxide anion production. Attenuated secretion of IL-6 and IL-10 were observed 48 h postincubation in the bone marrow-derived macrophages (BMDMs) treated with the FPR2 antagonist WRW4. An opposite pattern of bacterial uptake was observed upon treatment with the FPR2 antagonist, but no significant changes in the activation of MAPKs or the production of nitrite or superoxide anion were observed. Interestingly, AGP-8694 treatment of mice did not lead to differences in spleen or liver weight but slightly enhanced bacterial proliferation was observed in the spleen. Although the weights of the spleen or liver did not differ, WRW4 treatment led to reduced bacterial proliferation in the spleen. Furthermore, FPR2 antagonist treatment was associated with high serum levels of the proinflammatory cytokines IL-12, TNF-α, IFN-γ and MCP-1, while the production of TNF-α was inhibited in AGP-8694-treated mice. IL-6 and IL-10 levels were slightly increased in AGP-8694-treated mice at 24 h postinfection. Our findings demonstrated the contribution of FPR2 via manipulating this receptor using its reported agonist AGP-8694 and antagonist WRW4 in both in vitro and in vivo systems. Although activation of the receptor did not consistently induced Brucella infection, FPR2 inhibition may be a promising strategy to treat brucellosis in animals which encourages further investigation.


Assuntos
Antibacterianos/farmacologia , Brucella abortus/efeitos dos fármacos , Brucelose/microbiologia , Brucelose/prevenção & controle , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Terapia de Alvo Molecular , Receptores de Formil Peptídeo/antagonistas & inibidores , Animais , Biomarcadores , Brucelose/metabolismo , Citocinas/biossíntese , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
8.
Dev Comp Immunol ; 115: 103902, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33091457

RESUMO

To date, the implications of prostaglandin I2 (PGI2), a prominent lipid mediator for modulation of immune responses, has not been clearly understood in Brucella infection. In this study, we found that cyclooxygenase-2 (COX-2) was significantly expressed in both infected bone marrow-derived macrophages (BMMs) and RAW 264.7 cells. Prostaglandin I2 synthase (PTGIS) expression was not significantly changed, and PGI2receptor (PTGIR) expression was downregulated in BMMs but upregulated in RAW 264.7 macrophages at late infection. Here, we presented that PGI2, a COX-derived metabolite, was produced by macrophages during Brucella infection and its production was regulated by COX-2 and IL-10. We suggested that PGI2 and selexipag, a potent PGI2 analogue, inhibited Brucella internalization through IP signaling which led to down-regulation of F-actin polymerization and p38α MAPK activity. Administration with selexipag suppressed immune responses and resulted in a notable reduction in bacterial burden in spleen of Brucella-challenged mice. Taken together, our study is the first to characterize PGI2 synthesis and its effect in evasion strategy of macrophages against Brucella infection.


Assuntos
Brucella abortus/imunologia , Brucelose/tratamento farmacológico , Epoprostenol/administração & dosagem , Macrófagos/imunologia , Receptores de Epoprostenol/agonistas , Acetamidas/administração & dosagem , Animais , Brucelose/imunologia , Brucelose/microbiologia , Ciclo-Oxigenase 2/metabolismo , Sistema Enzimático do Citocromo P-450 , Feminino , Humanos , Macrófagos/metabolismo , Camundongos , Pirazinas/administração & dosagem , Células RAW 264.7 , Receptores de Epoprostenol/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Organismos Livres de Patógenos Específicos
9.
Vet Microbiol ; 242: 108586, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32122590

RESUMO

Brucella as a stealthy intracellular pathogen avoids activation of innate immune response. Here we investigated the contribution of an adenosine receptor, Adora2b, during Brucella infection in professional phagocyte RAW 264.7 cells and in a murine model. Adora2b-deficient cells showed attenuated Brucella internalization and intracellular survival with enhanced release of IL-6, TNF-α, IL-12 and MCP-1. In addition, blockade of Adora2b using MRS 1754 treatment in mice resulted in increased total weight of the spleens but suppressed bacterial burden in these organs accompanied by elevated levels of IL-6, IFN-γ, TNF-α, IL-12 and MCP-1, while reduced IL-10. Overall, we proposed that the Adora2b participates in the successful phagocytic pathway and intracellular survival of Brucella in RAW 264.7 cells, and could be a potential therapeutic target for the treatment of acute brucellosis in animals.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Brucelose/tratamento farmacológico , Imunidade Inata , Macrófagos/microbiologia , Receptor A2B de Adenosina/imunologia , Acetamidas/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Aminopiridinas/farmacologia , Animais , Brucella abortus/efeitos dos fármacos , Brucella abortus/fisiologia , Brucelose/microbiologia , Citocinas/imunologia , Feminino , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose , Purinas/farmacologia , Células RAW 264.7 , Receptor A2B de Adenosina/genética , Transdução de Sinais
10.
Infect Immun ; 87(11)2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31451617

RESUMO

To date, the implications of interleukin 6 (IL-6) for immune responses in the context of Brucella infection are still unknown. In the present study, we found that Brucella abortus infection induced marked production of IL-6 in mice that was important for sufficient differentiation of CD8+ T cells, a key factor in Brucella clearance. Blocking IL-6 signaling also significantly induced serum IL-4 and IL-10, together with a decreased gamma interferon (IFN-γ) level, suggesting that IL-6 is essential for priming the T-helper (Th) 1 cell immune response during Brucella infection. The IL-6 pathway also activated the bactericidal activity of primary and cultured macrophages. Bacterial killing was markedly abrogated when IL-6 signaling was suppressed, and this phenomenon was mainly associated with decreased activity of lysosome-mediated killing. Interestingly, suppressor of cytokine signaling 3 (SOCS3) was important for regulating the IL-6-dependent anti-Brucella activity through the JAK/STAT pathway. During early infection, in the absence of SOCS3, IL-6 exhibited anti-inflammatory effects and lysosome-mediated killing inhibition; however, the increase in SOCS3 successfully shifted functional IL-6 toward proinflammatory brucellacidal activity in the late stage. Our data clearly indicate that IL-6 contributes to host resistance against B. abortus infection by controlling brucellacidal activity in macrophages and priming cellular immune responses.


Assuntos
Brucella abortus/fisiologia , Citocinas/metabolismo , Interleucina-6/metabolismo , Macrófagos/microbiologia , Animais , Anticorpos , Células Apresentadoras de Antígenos , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Citocinas/genética , Interleucina-6/genética , Camundongos , Células RAW 264.7 , Interferência de RNA , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Células Th1/metabolismo
11.
Vet Microbiol ; 232: 128-136, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31030836

RESUMO

The interleukin-1 (IL-1) family of cytokines, particularly IL-1α and IL-1ß, are potent regulators of innate immunity that play key roles in host defense against infection, hence we evaluated the role of these cytokines in the control of brucellosis within RAW 264.7 cells. Marked expression and secretion of IL-1α and IL-1ß were observed during Brucella infection in macrophages. Blocking of IL-1α and IL-1ß reduced induction of IL-10, IL-1ß and TNF, and IL-6 and TNF, respectively. However, interference of IL-1α and not IL-1ß signaling notably augmented susceptibility of macrophages to Brucella infection which indicates that IL-1α is required for a downstream signaling cascade of innate immunity for efficient clearance of Brucella. This protection requires binding to interleukin-1 receptor (IL-1R) mediated by myeloid differentiation factor 88 (MyD88) signaling and associated with increased lysosomal-mediated killing and nitric oxide (NO) production. Expression of pro-inflammatory cytokines was observed to be mediated via NF-κB-p50, HIF-1α and CEBPA, but negatively controlled by CEBPB while transcription of some important phagolysosomal genes was regulated via CEBPA and c-Jun which indicates the important role of these transcription factors in the control of Brucella infection in macrophages via IL-1α signaling pathway.


Assuntos
Brucella abortus/patogenicidade , Interleucina-1alfa/imunologia , Macrófagos/imunologia , Óxido Nítrico/imunologia , Animais , Imunidade Inata , Interleucina-1alfa/genética , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Células RAW 264.7 , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
12.
J Microbiol Biotechnol ; 28(10): 1723-1729, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30196590

RESUMO

The aim of this work is to investigate the protective efficacy of emodin, an active, naturally-occurring anthraquinone derivative of several traditional Chinese herbs, against Brucella abortus infection in macrophages. Brucella were incubated with different concentrations of emodin and showed that bacterial survival rates were markedly reduced in a dose-dependent manner at increasing incubation time points. Through bacterial infection assay, the highest non-cytotoxic concentration of emodin demonstrated attenuated invasion of Brucella into macrophages, however it did not inhibit the growth of these pathogens within the host cells. On the other hand, emodin effectively decreased the number of bacteria that adhered to host cells, which indicated its potential as an anti-adhesin agent. Furthermore, using immunoblotting and FACS assay for detecting MAPK signaling proteins and F-actin polymerization, respectively, the results showed that the emodin-incubated cells displayed modest reduction in the phosphorylation levels of ERK1/2 and inhibition of F-actin polymerization as compared to control cells. These findings indicate the potential use of emodin as a naturally-occurring alternative method for the prevention of animal brucellosis although this requires confirmation of safe clinical doses.


Assuntos
Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Brucella abortus/efeitos dos fármacos , Emodina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Microtúbulos/metabolismo , Actinas/metabolismo , Animais , Brucella abortus/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fagocitose/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Polimerização/efeitos dos fármacos , Células RAW 264.7
13.
BMC Microbiol ; 18(1): 44, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29801438

RESUMO

BACKGROUND: Brucella causes a chronic and debilitating infection that leads to great economic losses and a public health burden. In this study, we demonstrated the brucellacidal effect of heat shock mediated by the induction of pro-inflammatory cytokines, reactive oxygen species (ROS) accumulation and apoptosis in murine macrophages and in mice. RESULTS: RAW264.7 cells were incubated at 43 °C, and BALB/c mice were subjected to whole body hyperthermia. The data showed a reduction in bacterial survival in the mice after daily heat exposure. This was accompanied by increased levels of cytokines TNF, IL-6, IL-1ß and IFN-γ in the sera of the mice. Gene expression of NF-κB and inducible nitric oxide production were also induced in the mouse splenic cells. In parallel with the bacterial reduction in the mouse model, an increased bactericidal effect was observed in RAW264.7 cells after exposure to heat stress. In addition, the heat stress increased both the nuclear translocation of NF-κB and the expression of the heat shock proteins HSP70 and HSP90 in murine macrophages. Furthermore, heat exposure induced the increase of pro-inflammatory cytokines, ROS accumulation and apoptosis but did not affect the production of nitric oxide (NO) in macrophages. CONCLUSION: This study demonstrated the induction of innate immune responses by heat stress that significantly reduced the intracellular survival of B. abortus in vitro and in vivo. Transcriptional factor NF-κB, which is a master regulator, could be termed a key activator of heat-induced immunity against Brucella. The increase in the expression and activation of NF-κB in splenic cells and macrophages was followed by enhanced antimicrobial effectors, including cytokines, ROS and NO that may contribute to the reduction of bacterial survival.


Assuntos
Brucella abortus/crescimento & desenvolvimento , Brucelose/imunologia , Resposta ao Choque Térmico/imunologia , Macrófagos/citologia , Animais , Apoptose , Brucella abortus/imunologia , Núcleo Celular/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
14.
Microb Pathog ; 119: 255-259, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29680683

RESUMO

In this study, we investigated the effects of gallic acid (GA) in intracellular signaling within murine macrophages and its contribution to host immunity during Brucella infection. In vitro analysis revealed that GA treatment decreased F-actin content and suppressed p38α phosphorylation level. In vivo analysis showed that GA treatment reduced inflammation and proliferation of Brucella in spleens of mice in comparison to PBS treatment yielding a significant protection unit. For the analysis of immune response, the uninfected GA-treated mice showed increased production of IFN-γ and MCP-1, and the Brucella-infected GA-treated mice showed elevated levels of IL-12p70, TNF, IFN-γ, MCP-1, IL-10 and IL-6 in comparison to negative and positive control groups, respectively. These findings demonstrate the therapeutic effects of GA against Brucella infection through interference on intracellular signaling pathway, induction of cytokine production and protection from bacterial proliferation in spleens of mice.


Assuntos
Brucelose/imunologia , Ácido Gálico/farmacologia , Interleucina-12/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Transdução de Sinais/efeitos dos fármacos , Actinas/metabolismo , Animais , Brucella abortus/imunologia , Brucelose/microbiologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CCL2 , Citocinas/metabolismo , Feminino , Inflamação , Interferon gama , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Camundongos , Fosforilação , Células RAW 264.7/efeitos dos fármacos , Baço/microbiologia
15.
Lab Anim Res ; 34(1): 30-36, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29628974

RESUMO

This study investigated the anti-cancer potential of a near-infrared fluorescence (NIRF) molecule conjugated with Cetuximab (Cetuximab-NIRF) in six-week-old female BALB/c athymic (nu+/nu+) nude mice. A431 cells were cultured and injected into the animals to induce solid tumors. Paclitaxel (30 mg/kg body weight (BW)), Cetuximab (1 mg/kg BW), and Cetuximab-NIRF (0.25, 0.5 and 1.0 mg/kg BW) were intraperitoneally injected twice a week into the A431 cell xenografts of the nude mice. Changes in BW, tumor volume and weight, fat and lean mass, and diameter of the peri-tumoral blood vessel were determined after two weeks. Tumor volumes and weights were significantly decreased in the Cetuximab-NIRF (1 mg/kg BW) group compared with the control group (P<0.001). Lean mass and total body water content were also conspicuously reduced in the Cetuximab-NIRF (1 mg/kg BW) group compared with the vehicle control group. Peri-tumoral blood vessel diameters were very thin in the Cetuximab-NIRF groups compared with those of the paclitaxel group. These results indicate that the conjugation of Cetuximab with NIRF does not affect the anti-cancer potential of Cetuximab and NIRF can be used for molecular imaging in cancer treatments.

16.
J Biol Chem ; 293(9): 3134-3144, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29301939

RESUMO

Brucella abortus is a Gram-negative zoonotic pathogen for which there is no 100% effective vaccine. Phagosomes in B. abortus-infected cells fail to mature, allowing the pathogen to survive and proliferate. Interleukin 10 (IL10) promotes B. abortus persistence in macrophages by mechanisms that are not fully understood. In this study, we investigated the regulatory role of IL10 in the immune response to B. abortus infection. B. abortus-infected macrophages were treated with either IL10 siRNA or recombinant IL10 (rIL10), and the expression of phagolysosome- or inflammation-related genes was evaluated by qRT-PCR and Western blotting. Phagolysosome fusion was monitored by fluorescence microscopy. We found that the synthesis of several membrane-trafficking regulators and lysosomal enzymes was suppressed by IL10 during infection, resulting in a significant increase in the recruitment of hydrolytic enzymes by Brucella-containing phagosomes (BCPs) when IL10 signaling was blocked. Moreover, blocking IL10 signaling also enhanced proinflammatory cytokine production. Finally, concomitant treatment with STAT3 siRNA significantly reduced the suppression of proinflammatory brucellacidal activity but not phagolysosome fusion by rIL10. Thus, our data provide the first evidence that clearly indicates the suppressive role of IL10 on phagolysosome fusion and inflammation in response to B. abortus infection through two distinct mechanisms, STAT3-independent and -dependent pathways, respectively, in murine macrophages.


Assuntos
Brucella abortus/fisiologia , Interleucina-10/metabolismo , Lisossomos/metabolismo , Macrófagos/citologia , Macrófagos/microbiologia , Animais , Camundongos , Fagossomos/metabolismo , Células RAW 264.7 , Fator de Transcrição STAT3/metabolismo , Regulação para Cima
17.
Cell Microbiol ; 20(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29168343

RESUMO

Lipocalin 2 (Lcn2) is an important innate immunity component against bacterial pathogens. In this study, we report that Lcn2 is induced by Brucella (B.) abortus infection and significantly contributes to the restriction of intracellular survival of Brucella in macrophages. We found that Lcn2 prevented iron uptake by B. abortus through two distinct mechanisms. First, Lcn2 is secreted to capture bacterial siderophore(s) and abrogate iron import by Brucella. Second, Lcn2 decreases the intracellular iron levels during Brucella infection, which probably deprives the invading Brucella of the iron source needed for growth. Suppression of Lcn2 signalling resulted in a marked induction of anti-inflammatory cytokine, interleukin 10, which was shown to play a major role in Lcn2-induced antibrucella immunity. Similarly, interleukin 6 was also found to be increased when Lcn2 signalling is abrogated; however, this induction was thought to be an alternative pathway that rescues the cell from infection when the effective Lnc2 pathway is repressed. Furthermore, Lcn2 deficiency also caused a marked decrease in brucellacidal effectors, such as reactive oxygen species and nitric oxide but not the phagolysosome fusion. Taken together, our results indicate that Lcn2 is required for the efficient restriction of intracellular B. abortus growth that is through limiting iron acquisition and shifting cells to pro-inflammatory brucellacidal activity in murine macrophages.


Assuntos
Brucella abortus/metabolismo , Ferro/metabolismo , Lipocalina-2/metabolismo , Animais , Brucella abortus/imunologia , Brucella abortus/patogenicidade , Proteínas de Transporte de Cátions/metabolismo , Imunidade Inata/fisiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Células RAW 264.7
18.
J Vet Sci ; 19(1): 51-57, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28693306

RESUMO

Brucellosis is an emerging infectious disease affecting humans and animals. In this study, we investigated the in vitro and in vivo effects of tannic acid (TA) against Brucella abortus infection. After infection, F-actin polymerization and mitogen-activated protein kinases (MAPKs) (ERK 1/2 and p38α) phosphorylation were reduced in TA-treated cells compared with that in control cells. The mice were infected via an intraperitoneal route and were orally given TA or phosphate-buffered saline for 14 days. Spleen weights of the TA-treated and control mice were not different; however, splenic proliferation of B. abortus was significantly reduced in the TA-treated group. Immune response analysis showed that, compared with the control group, non-infected TA-treated mice displayed increased levels of interferon-γ (IFN-γ), monocyte chemoattractant protein-1 (MCP-1), and interleukin-10 at 3 days post-infection and a further increase in IFN-γ and MCP-1 at 14 days post-infection. In contrast, compared with the control group, infected TA-treated mice displayed elevated levels of IFN-γ at 3 days post-infection, which continued to increase at 14 days post-infection, as was also observed for tumor necrosis factor. Taken together, the results showing TA activation of cytokine production and inhibition of bacterial proliferation in the host highlight a potential use of TA treatment in the control of Brucella infection.


Assuntos
Antibacterianos/farmacologia , Brucella abortus/efeitos dos fármacos , Brucelose/imunologia , Imunidade Inata , Taninos/farmacologia , Animais , Brucelose/microbiologia , Feminino , Camundongos , Camundongos Endogâmicos ICR , Organismos Livres de Patógenos Específicos , Baço/microbiologia
19.
Microb Pathog ; 113: 57-67, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29054743

RESUMO

Brucella is a zoonotic pathogen that survives within macrophages; however the replicative mechanisms involved are not fully understood. We describe the isolation of sufficient Brucella abortus RNA from primary host cell environment using modified reported methods for RNA-seq analysis, and simultaneously characterize the transcriptional profiles of intracellular B. abortus and bone marrow-derived macrophages (BMM) from BALB/c mice at 24 h (replicative phase) post-infection. Our results revealed that 25.12% (801/3190) and 16.16% (515/3190) of the total B. abortus genes were up-regulated and down-regulated at >2-fold, respectively as compared to the free-living B. abortus. Among >5-fold differentially expressed genes, the up-regulated genes are mostly involved in DNA, RNA manipulations as well as protein biosynthesis and secretion while the down-regulated genes are mainly involved in energy production and metabolism. On the other hand, the host responses during B. abortus infection revealed that 14.01% (6071/43,346) of BMM genes were reproducibly transcribed at >5-fold during infection. Transcription of cytokines, chemokines and transcriptional factors, such as tumor necrosis factor (Tnf), interleukin-1α (Il1α), interleukin-1ß (Il1ß), interleukin-6 (Il6), interleukin-12 (Il12), chemokine C-X-C motif (CXCL) family, nuclear factor kappa B (Nf-κb), signal transducer and activator of transcription 1 (Stat1), that may contribute to host defense were markedly induced while transcription of various genes involved in cell proliferation and metabolism were suppressed upon B. abortus infection. In conclusion, these data suggest that Brucella modulates gene expression in hostile intracellular environment while simultaneously alters the host pathways that may lead to the pathogen's intracellular survival and infection.


Assuntos
Brucella abortus/patogenicidade , Regulação da Expressão Gênica/genética , Interações Hospedeiro-Patógeno/genética , Macrófagos/metabolismo , Macrófagos/microbiologia , Animais , Sequência de Bases , Brucelose/patologia , Células Cultivadas , Quimiocinas/biossíntese , Feminino , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , RNA/genética , Análise de Sequência de RNA , Fatores de Transcrição/biossíntese
20.
Microb Pathog ; 109: 86-93, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28552635

RESUMO

In this study, we investigated the protective effects of tannin-derived components, gallic acid (GA) and tannic acid (TA), in vitro and in vivo against Salmonella infection in mice. Both GA and TA showed antibacterial effects against Salmonella (S.) Typhimurium as well as inhibitory effects on the adherence, invasion, and intracellular growth of the pathogens in macrophages. Following a lethal dose of Salmonella infection in mice, reduced virulence in both GA- and TA-treated groups was observed based on reduced mortality rates. In the non-infected groups, the average weights of the spleens and livers of GA- or TA-treated mice were not significantly different with the control group. In addition, the average weights of these organs in all of the Salmonella-infected groups were not significantly different but the numbers of bacteria in the spleens and livers in both GA- and TA-treated mice were significantly reduced. The levels of cytokine production in non-infected mice revealed that GA-treated and TA-treated mice elicited an increased level of IFN-γ, and both IFN-γ and MCP-1, respectively, as compared with the PBS-treated group. These findings highlight the potential of GA and TA as alternatives for the treatment of salmonellosis and as supplements to conventional antimicrobial food additives.


Assuntos
Antibacterianos/farmacologia , Ácido Gálico/farmacologia , Infecções por Salmonella/tratamento farmacológico , Salmonella typhimurium/efeitos dos fármacos , Taninos/farmacologia , Adesinas Bacterianas/efeitos dos fármacos , Animais , Carga Bacteriana , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CCL2 , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Interferon gama/metabolismo , Fígado/microbiologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos , Mortalidade , Fagocitose/efeitos dos fármacos , Células RAW 264.7 , Infecções por Salmonella/imunologia , Infecções por Salmonella/mortalidade , Salmonella typhimurium/crescimento & desenvolvimento , Baço/microbiologia , Virulência/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA