Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279349

RESUMO

Retinal ischemia plays a vital role in vision-threatening retinal ischemic disorders, such as diabetic retinopathy, age-related macular degeneration, glaucoma, etc. The aim of this study was to investigate the effects of S-allyl L-cysteine (SAC) and its associated therapeutic mechanism. Oxidative stress was induced by administration of 500 µM H2O2 for 24 h; SAC demonstrated a dose-dependent neuroprotective effect with significant cell viability effects at 100 µM, and it concurrently downregulated angiogenesis factor PKM2 and inflammatory biomarker MCP-1. In a Wistar rat model of high intraocular pressure (HIOP)-induced retinal ischemia and reperfusion (I/R), post-administration of 100 µM SAC counteracted the ischemic-associated reduction of ERG b-wave amplitude and fluorogold-labeled RGC reduction. This study supports that SAC could protect against retinal ischemia through its anti-oxidative, anti-angiogenic, anti-inflammatory, and neuroprotective properties.


Assuntos
Glaucoma , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Doenças Retinianas , Ratos , Animais , Ratos Wistar , Cisteína/farmacologia , Cisteína/uso terapêutico , Peróxido de Hidrogênio/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Doenças Retinianas/tratamento farmacológico , Isquemia/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Glaucoma/tratamento farmacológico
2.
Nutrients ; 11(10)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569604

RESUMO

Traumatic brain injury (TBI) affects millions worldwide with devastating long-term effects on health and cognition. Emerging data suggest that targeting the immune response may offer promising strategies to alleviate TBI outcomes; kahweol, an anti-inflammatory diterpene that remains in unfiltered coffee, has been shown to be beneficial in neuronal recovery. Here, we examined whether kahweol could alleviate brain trauma-induced injury in a mouse model of TBI and its underlying mechanisms. TBI was induced by controlled cortical impact (CCI) and various doses of kahweol were intraperitoneally administered following injury. Contusion volume, brain edema, neurobehavioral deficits, and protein expression and activity were evaluated in both short-term and long-term recovery. We found that kahweol treatments significantly reduced secondary brain injury and improved neurobehavioral outcomes in TBI mice. These changes were accompanied by the attenuation of proinflammatory cytokine secretion, decreased microglia/macrophage activation, and reduction of neutrophil and leukocyte infiltration. In addition, continuous kahweol treatment further improved short-term TBI outcomes compared to single-dosage. Collectively, our data showed that kahweol protects against TBI by reducing immune responses and may serve as a potential therapeutic intervention for TBI patients.


Assuntos
Anti-Inflamatórios/farmacologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Diterpenos/farmacologia , Animais , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/etiologia , Citocinas/efeitos dos fármacos , Modelos Animais de Doenças , Leucócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Microglia/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos
3.
J Cell Physiol ; 230(8): 1781-93, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25503516

RESUMO

Inhaled cigarette smoke (CS) causes persistent lung inflammation in smokers. Interleukin 8 (IL-8) released from macrophages is a key chemokine during initiation and progression of CS-induced lung inflammation, yet its regulation is largely unknown. AMP-activated protein kinase (AMPK), a crucial energy homeostasis regulator, may modulate inflammation. Here we report that CS extract (CSE) increased the level of intracellular reactive oxygen species (ROS), activating AMPK, mitogen-activated protein kinases (MAPKs), and NF-κB, as well as inducing IL-8, in human macrophages. N-acetyl-cysteine (ROS scavenger) or hexamethonium [nicotinic acetylcholine receptor (nAChR) antagonist] attenuated the CSE-induced increase in intracellular ROS, activation of AMPK and NF-κB, as well as IL-8 induction, which suggests that nAChRs and ROS are important. Prevention of AMPK activation by compound C or AMPK siRNA reduced CSE-induced IL-8 production, confirming the role of AMPK. Compound C or AMPK siRNA also inhibited the activation of MAPKs and NF-κB by CSE, which suggests that these molecules are downstream of AMPK. Additionally, exposure of human macrophages to nicotine activated AMPK and induced IL-8 and that these effects were lessened by hexamethonium or compound C, implying that nicotine in CS may be causative. Furthermore, chronic CS exposure in mice promoted AMPK phosphorylation and expression of MIP-2 (an IL-8 homolog) in infiltrated macrophages and in lung tissues, as well as induced lung inflammation, all of which were reduced by compound C treatment. Thus, we identified a novel nAChRs-dependent, ROS-sensitive, AMPK/MAPKs/NF-κB signaling pathway, which seems to be important to CS-induced macrophage IL-8 production and possibly to lung inflammation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Interleucina-8/biossíntese , Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fumaça/efeitos adversos , Produtos do Tabaco/efeitos adversos , Animais , Western Blotting , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , NF-kappa B/metabolismo , Pneumonia/metabolismo , RNA Interferente Pequeno , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
4.
J Appl Physiol (1985) ; 118(5): 635-45, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25539933

RESUMO

Patients with gastroesophageal reflux disease (GERD) display enhanced laryngeal reflex reactivity to stimuli that may be due to sensitization of the laryngeal C-fibers by acid and pepsin. Menthol, a ligand of transient receptor potential melastatin-8 (TRPM8), relieves throat irritation. However, the possibility that GERD induces laryngeal C-fiber hypersensitivity to cigarette smoke (CS) and that menthol suppresses this event has not been investigated. We delivered CS into functionally isolated larynxes of 160 anesthetized rats. Laryngeal pH 5-pepsin treatment, but not pH 5-denatured pepsin, augmented the apneic response to CS, which was blocked by denervation or perineural capsaicin treatment (a procedure that blocks the conduction of C fibers) of the superior laryngeal nerves. This augmented apnea was partially attenuated by capsazepine [an transient receptor potential vanilloid 1 (TRPV1) antagonist], SB-366791 (a TRPV1 antagonist), and HC030031 [a transient receptor potential ankyrin 1 (TRPA1) antagonist] and was completely prevented by a combination of TRPV1 and TRPA1 antagonists. Local application of menthol significantly suppressed the augmented apnea and this effect was reversed by pretreatment with AMTB (a TRPM8 antagonist). Our electrophysiological studies consistently revealed that laryngeal pH 5-pepsin treatment increased the sensitivity of laryngeal C-fibers to CS. Likewise, menthol suppressed this laryngeal C-fiber hypersensitivity and its effect could be reversed by pretreatment with AMTB. Our results suggest that laryngeal pH 5-pepsin treatment increases sensitivity to CS of both TRPV1 and TRPA1, which are presumably located at the terminals of laryngeal C-fibers. This sensory sensitization leads to enhanced laryngeal reflex reactivity and augmentation of the laryngeal C-fiber responses to CS, which can be suppressed by menthol acting via TRPM8.


Assuntos
Refluxo Gastroesofágico/tratamento farmacológico , Hipersensibilidade/fisiopatologia , Laringe/efeitos dos fármacos , Mentol/farmacologia , Fibras Nervosas Amielínicas/metabolismo , Canais de Cátion TRPM/metabolismo , Produtos do Tabaco/efeitos adversos , Animais , Apneia/tratamento farmacológico , Apneia/metabolismo , Refluxo Gastroesofágico/metabolismo , Refluxo Gastroesofágico/fisiopatologia , Hipersensibilidade/metabolismo , Nervos Laríngeos/efeitos dos fármacos , Nervos Laríngeos/metabolismo , Nervos Laríngeos/fisiopatologia , Laringe/metabolismo , Laringe/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Reflexo/efeitos dos fármacos , Reflexo/fisiologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Fumar/efeitos adversos , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
5.
Mediators Inflamm ; 2014: 651890, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25165413

RESUMO

Cigarette smoking causes persistent lung inflammation that is mainly regulated by redox-sensitive pathways. We have previously reported that cigarette smoke (CS) activates reactive oxygen species- (ROS-) sensitive mitogen-activated protein kinases (MAPKs)/nuclear factor-κB (NF-κB) signaling leading to induction of lung inflammation. Paeonol, the main phenolic compound present in the Chinese herb Paeonia suffruticosa, has antioxidant and anti-inflammatory properties. However, whether paeonol has similar beneficial effects against CS-induced lung inflammation remains unclear. Using a murine model, we showed that chronic CS exposure for 4 weeks caused pulmonary inflammatory infiltration, increased lung vascular permeability, elevated lung levels of chemokines, cytokines, and 4-hydroxynonenal (an oxidative stress biomarker), and induced lung inflammation; all of these CS-induced events were suppressed by chronic treatment with paeonol. Using human bronchial epithelial cells (HBECs), we demonstrated that cigarette smoke extract (CSE) sequentially increased extracellular and intracellular levels of ROS, activated the MAPKs/NF-κB signaling, and induced interleukin-8 (IL-8); all these CSE-induced events were inhibited by paeonol pretreatment. Our findings suggest a novel role for paeonol in alleviating the oxidative stress and lung inflammation induced by chronic CS exposure in vivo and in suppressing CSE-induced IL-8 in vitro via its antioxidant function and an inhibition of the MAPKs/NF-κB signaling.


Assuntos
Acetofenonas/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Fumar/efeitos adversos , Animais , Western Blotting , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
6.
Childs Nerv Syst ; 28(3): 363-73, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22249380

RESUMO

INTRODUCTION: CD133 (PROM1) is a potential marker for cancer stem cells (CSCs), including those found in brain tumors. Recently, medulloblastoma (MB)-derived CD133-positive cells were found to have CSC-like properties and were proposed to be important contributors to tumorigenicity, cancer progression, and chemoradioresistance. However, the biomolecular pathways and therapeutic targets specific to MB-derived CSCs remain unresolved. MATERIALS AND METHODS: In the present study, we isolated CD133(+) cells from MB cell lines and determined that they showed increased tumorigenicity, radioresistance, and higher expression of both embryonic stem cell-related and drug resistance-related genes compared to CD133(-) cells. Bioinformatics analysis suggested that the STAT3 pathway might be important in MB and CD133(+) cells. To evaluate the effects of inhibiting the STAT3 pathway, MB-derived CD133(+/-) cells were treated with the potent STAT3 inhibitor, cucurbitacin I. Treatment with cucurbitacin I significantly suppressed the CSC-like properties and stemness gene signature of MB-derived CD133(+) cells. Furthermore, cucurbitacin I treatment increased the apoptotic sensitivity of MB-derived CD133(+) cells to radiation and chemotherapeutic drugs. Notably, cucurbitacin I demonstrated synergistic effects with ionizing radiation to inhibit tumorigenicity in MB-CD133(+)-inoculated mice. RESULTS: These results indicate that the STAT3 pathway plays a key role in mediating CSC properties in MB-derived CD133(+) cells. Targeting STAT3 with cucurbitacin I may therefore represent a novel therapeutic approach for treating malignant brain tumors.


Assuntos
Meduloblastoma/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Triterpenos/farmacologia , Antígeno AC133 , Animais , Antígenos CD/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos da radiação , Biologia Computacional , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Glicoproteínas/metabolismo , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/radioterapia , Camundongos , Análise em Microsséries , Células-Tronco Neoplásicas/efeitos da radiação , Peptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA