Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 391: 110900, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325522

RESUMO

Lung cancer is a highly prevalent and lethal malignancy worldwide, with non-small cell lung cancer (NSCLC) accounting for 85% of cancer-related deaths. In this study, the effects of co-treatment with melatonin and ortho-topolin riboside (oTR) on the cell viability and alteration of metabolites and transcripts were investigated in NSCLC cells using gas chromatography-mass spectrometry (GC-MS) and next-generation sequencing (NGS). The co-treatment of melatonin and oTR exhibited synergistic effects on the reduction of cell viability and alteration of metabolic and transcriptomic profiles in NSCLC cells. We observed that the co-treatment inhibited glycolytic function and mitochondria respiration, and downregulated glycine, serine and threonine metabolism alongside tyrosine metabolism in NSCLC cells. In the glycine, serine and threonine metabolism pathway, the co-treatment resulted in a significant 8.4-fold reduction in the expression level of the SDS gene, which encodes the enzyme responsible for the breakdown of serine to pyruvate. Moreover, co-treatment decreased the gene expression of TH, DDC, and CYP1A1 in tyrosine metabolism. Additionally, we observed that the co-treatment resulted in a significant 146.9-fold reduction in the expression of the DISC1 gene. The alteration in metabolites and transcript expressions might provide information to explain the cytotoxicity of co-treatment of melatonin and oTR in NSCLC cells. Our study presents insights into the synergistic anticancer effect of the co-treatment of melatonin and oTR, which could be a potential future therapeutic strategy for the treatment of NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Citocininas , Neoplasias Pulmonares , Melatonina , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Melatonina/farmacologia , Melatonina/uso terapêutico , Sobrevivência Celular , Metaboloma , Glicina/metabolismo , Glicina/farmacologia , Glicina/uso terapêutico , Serina/metabolismo , Treonina/metabolismo , Tirosina/metabolismo , Linhagem Celular Tumoral
2.
Metabolomics ; 19(9): 80, 2023 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690093

RESUMO

INTRODUCTION: Lung cancer is one of the most malignant cancers and the leading cause of cancer-related deaths worldwide, while acquired chemoresistance would represent a major problem in the treatment of non-small cell lung cancer (NSCLC) because of the reduced treatment effect and increased rates of recurrence. METHODS: To establish the chemoresistant NSCLC cells, doxorubicin was treated to A549 cells over 3 months at gradually increasing concentrations from 0.03 to 0.5 µM. Real-time PCR and Western blotting were employed for investigating mRNA and protein expression of the glutathione peroxidase (GPX) protein family and multidrug resistance protein 1 (MRP1) in A549 and A549/CR cells. We also employed gas chromatography mass-spectrometry and nano electrospray ionization mass-spectrometry coupled with multivariate statistical analysis to characterize the unique metabolic and lipidomic profiles of chemoresistant NSCLC cells in order to identify potential therapeutic targets. RESULTS: Reactive oxygen species levels were decreased, and mRNA and protein levels of GPX2 and multidrug resistance protein 1 (MRP1) were increased in A549/CR. We identified 87 metabolites and intact lipid species in A549 and A549/CR. Among these metabolites, lactic acid, glutamic acid, glycine, proline, aspartic acid, succinic acid, and ceramide, alongside the PC to PE ratio, and arachidonic acid-containing phospholipids were suggested as characteristic features of chemoresistant NSCLC cells (A549/CR). CONCLUSIONS: This study reveals characteristic feature differences between drug-resistance NSCLC cells and their parental cells. We suggest potential therapeutic targets in chemoresistant NSCLC. Our results provide new insight into metabolic and lipidomic alterations in chemoresistant NSCLC. This could be used as fundamental information to develop therapeutic strategies for the treatment of chemoresistant NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Lipidômica , Metabolômica
3.
Metabolites ; 13(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37110136

RESUMO

The endogenous factors that control the differentiation of myeloid-derived suppressor cells (MDSCs) are not yet fully understood. The purpose of this study was to find MDSC-specific biomolecules through comprehensive metabolomic and lipidomic profiling of MDSCs from tumor-bearing mice and to discover potential therapeutic targets for MDSCs. Partial least squares discriminant analysis was performed on the metabolomic and lipidomic profiles. The results showed that inputs for the serine, glycine, and one-carbon pathway and putrescine are increased in bone marrow (BM) MDSC compared to normal BM cells. Splenic MDSC showed an increased phosphatidylcholine to phosphatidylethanolamine ratio and less de novo lipogenesis products, despite increased glucose concentration. Furthermore, tryptophan was found to be at the lowest concentration in splenic MDSC. In particular, it was found that the concentration of glucose in splenic MDSC was significantly increased, while that of glucose 6-phosphate was not changed. Among the proteins involved in glucose metabolism, GLUT1 was overexpressed during MDSC differentiation but decreased through the normal maturation process. In conclusion, high glucose concentration was found to be an MDSC-specific feature, and it was attributed to GLUT1 overexpression. These results will help to develop new therapeutic targets for MDSCs.

4.
FASEB J ; 36(2): e22127, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35066937

RESUMO

Lung cancer has the highest incidence and mortality rates among all types of cancer worldwide, and 80%-85% of patients with lung cancer are diagnosed with non-small cell lung cancer (NSCLC), which has 5-year survival rate of only 5% at advanced stages. Development of new therapeutic agents and strategies is required to enhance the treatment efficiency in patients with NSCLC. Metabolic alterations and anticancer effects of plant hormones and their derivatives have not been investigated in NSCLC in vitro and in vivo. The present study investigated the cytotoxic effects of 11 plant hormones and their derivatives against NSCLC cell lines; ortho-topolin riboside (oTR) showed the highest cytotoxicity among all tested compounds against NSCLC cells. Alteration of metabolites and lipids was investigated using gas chromatography-mass spectrometry and nano electrospray ionization-mass spectrometry in oTR-treated NSCLC cells and a xenograft mouse model. oTR reduced amino acid and pyrimidine synthesis in NSCLC cells and xenograft tumors. Moreover, oTR reduced glycolytic function and decreased mitochondrial respiration function by inhibiting glutamine and fatty acid oxidation. Increased levels of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine species suggested that oTR might act as a fatty acid oxidation inhibitor. In addition, the increased level of phosphatidylserine species implied that phosphatidylserine-mediated apoptosis occurred in oTR-treated NSCLC cells and xenograft tumor. The antiproliferative and apoptotic effects of oTR were mediated by the reduced p-ERK and p-AKT levels and increased cleaved Caspase-3 levels, respectively. This is the first study to investigate the metabolic alterations and anticancer activity of oTR in in vitro and in vivo models of NSCLC. Our results provide basis for the development of oTR-based therapeutic agent for patients with NSCLC.


Assuntos
Antineoplásicos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Citocininas/metabolismo , Neoplasias Pulmonares/metabolismo , Metaboloma/fisiologia , Células A549 , Animais , Apoptose/fisiologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/metabolismo
5.
J Pharm Biomed Anal ; 208: 114449, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34749107

RESUMO

To provide preliminary insights into metabolic and lipidomic characteristics in radioresistant triple-negative breast cancer (TNBC) cells and suggest potential therapeutic targets, we performed a comprehensive metabolic and lipidomic profiling of radioresistant MDA-MB-231 (MDA-MB-231/RR) TNBC cells and their parental cells using gas chromatography-mass spectrometry and nano electrospray ionization-mass spectrometry, followed by multivariate statistical analysis. Buthionine sulfoximine (BSO) and radiation were co-treated to radioresistant TNBC cells. The level of glutathione (GSH) was significantly increased, and the levels of GSH synthesis-related metabolites, such as cysteine, glycine, and glutamine were also increased in MDA-MB-231/RR cells. In contrast, the level of lactic acid was significantly reduced. In addition, reactive oxygen species (ROS) level was decreased in MDA-MB-231/RR cells. In the lipidomic profiles of MDA-MB-231/RR cells, the levels of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were significantly increased, whereas those of most of the phosphatidylinositol species were significantly decreased. BSO sensitized MDA-MB-231/RR cells to radiotherapy, which resulted in decreased GSH level and increased ROS level and apoptosis. Radioresistant TNBC cells showed distinct metabolic and lipidomic characteristics compared to their parental cells. We suggested activated GSH, PC, and PE biosynthesis pathways as potential targets for treating radioresistant TNBC cells. Particularly, enhanced radiosensitivity was achieved by inhibition of GSH biosynthesis in MDA-MB-231/RR cells.


Assuntos
Lipidômica , Neoplasias de Mama Triplo Negativas , Apoptose , Linhagem Celular Tumoral , Humanos , Espécies Reativas de Oxigênio , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
6.
Cancers (Basel) ; 13(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34439333

RESUMO

SQCC is a major type of NSCLC, which is a major cause of cancer-related deaths, and there were no reports regarding the prediction of metastatic potential of lung SQCC by metabolomic and lipidomic profiling. In this study, metabolomic and lipidomic profiling of lung SQCC were performed to predict its metastatic potential and to suggest potential therapeutic targets for the inhibition of lung SQCC metastasis. Human bronchial epithelial cells and four lung SQCC cell lines with different metastatic potentials were analyzed using gas chromatography-mass spectrometry and direct infusion-mass spectrometry. Based on the obtained metabolic and lipidomic profiles, we constructed models to predict the metastatic potential of lung SQCC; glycerol, putrescine, ß-alanine, hypoxanthine, inosine, myo-inositol, phosphatidylinositol (PI) 18:1/18:1, and PI 18:1/20:4 were suggested as characteristic metabolites and intact lipid species associated with lung SQCC metastatic potential. In this study, we established predictive models for the metastatic potential of lung SQCC; furthermore, we identified metabolites and intact lipid species relevant to lung SQCC metastatic potential that may serve as potential therapeutic targets for the inhibition of lung SQCC metastasis.

7.
Sci Rep ; 7(1): 8864, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821754

RESUMO

Malignant melanoma, characterized by its ability to metastasize to other organs, is responsible for 90% of skin cancer mortality. To investigate alterations in the cellular metabolome and lipidome related to melanoma metastasis, gas chromatography-mass spectrometry (GC-MS) and direct infusion-mass spectrometry (DI-MS)-based metabolic and lipidomic profiling were performed on extracts of normal human melanocyte (HEMn-LP), low metastatic melanoma (A375, G361), and highly metastatic melanoma (A2058, SK-MEL-28) cell lines. In this study, metabolomic analysis identified aminomalonic acid as a novel potential biomarker to discriminate between different stages of melanoma metastasis. Uptake and release of major metabolites as hallmarks of cancer were also measured between high and low metastatic melanoma cells. Lipid analysis showed a progressive increase in phosphatidylinositol (PI) species with saturated and monounsaturated fatty acyl chains, including 16:0/18:0, 16:0/18:1, 18:0/18:0, and 18:0/18:1, with increasing metastatic potential of melanoma cells, defining these lipids as possible biomarkers. In addition, a partial-least-squares projection to latent structure regression (PLSR) model for the prediction of metastatic properties of melanoma was established, and central metabolic and lipidomic pathways involved in the increased motility and metastatic potential of melanoma cells were identified as therapeutic targets. These results could be used to diagnose and control of melanoma metastasis.


Assuntos
Metabolismo dos Lipídeos , Lipídeos/sangue , Melanoma/metabolismo , Melanoma/patologia , Metaboloma , Metabolômica , Biomarcadores , Biologia Computacional/métodos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Melanócitos/metabolismo , Redes e Vias Metabólicas , Metabolômica/métodos , Metástase Neoplásica , Estadiamento de Neoplasias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA