Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 857789, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529447

RESUMO

TMS-HDMF-5z is a hybrid of the natural products mosloflavone and resveratrol. It was discovered to show potent inhibitory effects against lipopolysaccharide (LPS)-induced production of inflammatory mediators in RAW 264.7 macrophages. However, its mechanism of action is unknown. Hence this study aimed to demonstrate and explore in vitro and in vivo anti-inflammatory effects of TMS-HDMF-5z and its mechanism of action employing RAW 264.7 macrophages and carrageenan-induced hind paw edema. This work revealed that TMS-HDMF-5z suppressed the LPS-induced inducible nitric-oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein, mRNA, and promoter binding levels and tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, and IL-6, and interferon-ß (IFN-ß) at the mRNA expression in RAW 264.7 macrophages. The results showed that TMS-HDMF-5z reduced the transcription and DNA binding activities of nuclear factor-κB (NF-κB) through inhibiting nuclear translocation of p65 and phosphorylation of κB inhibitor α (IκBα), IκB kinase (IKK), and TGF-ß activated kinase 1 (TAK1). Additionally, TMS-HDMF-5z attenuated the LPS-induced transcriptional and DNA binding activities of activator protein-1 (AP-1) by suppressing nuclear translocation of phosphorylated c-Fos, c-Jun, and activating transcription factor 2 (ATF2). TMS-HDMF-5z also reduced the LPS-induced phosphorylation of Janus kinase 1/2 (JAK1/2), signal transducers and activators of transcription 1/3 (STAT1/3), p38 mitogen-activated protein kinase (MAPK), and MAPK-activated protein kinase 2 (MK2). In rats, TMS-HDMF-5z alleviated carrageenan-induced hind paw edema through the suppressing iNOS and COX-2 via NF-κB, AP-1, and STAT1/3 inactivation. Collectively, the TMS-HDMF-5z-mediated inhibition of NF-κB, AP-1, and STAT1/3 offer an opportunity for the development of a potential treatment for inflammatory diseases.

2.
Mol Ther Oncolytics ; 24: 683-694, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35284627

RESUMO

Elucidation of the interplay between viruses and host cells is crucial for taming viruses to benefit human health. Cancer therapy using adenovirus, called oncolytic virotherapy, is a promising treatment option but is not robust in all patients. In addition, inefficient replication of human adenovirus in mouse hampered the development of an in vivo model for preclinical evaluation of therapeutically engineered adenovirus. nc886 is a human non-coding RNA that suppresses Protein Kinase R (PKR), an antiviral protein. In this study, we have found that nc886 greatly promotes adenoviral gene expression and replication. Remarkably, the stimulatory effect of nc886 is not dependent on its function to inhibit PKR. Rather, nc886 facilitates the nuclear entry of adenovirus via modulating the kinesin pathway. nc886 is not conserved in mouse and, when xenogeneically expressed in mouse cells, promotes adenovirus replication. Our investigation has discovered a novel mechanism of how a host ncRNA plays a pro-adenoviral role. Given that nc886 expression is silenced in a subset of cancer cells, our study highlights that oncolytic virotherapy might be inefficient in those cells. Furthermore, our findings open future possibilities of harnessing nc886 to improve the efficacy of oncolytic adenovirus and to construct nc886-expressing transgenic mice as an animal model.

3.
Pharmaceutics ; 13(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34834209

RESUMO

The present study demonstrated that 2'-hydroxycinnamaldehyde (2'-HCA) induced apoptosis in human promyelocytic leukemia HL-60 cells through the activation of mitochondrial pathways including (1) translocation of Bim and Bax from the cytosol to mitochondria, (2) downregulation of Bcl-2 protein expression, (3) cytochrome c release into the cytosol, (4) loss of mitochondrial membrane potential (ΔΨm), and (5) caspase activation. 2'-HCA also induced the activation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase1/2 (ERK1/2) in HL-60 cells. The pharmacological and genetic inhibition of JNK effectively prevented 2'-HCA-induced apoptosis and activator protein-1 (AP-1)-DNA binding. In addition, 2'-HCA resulted in the accumulation of reactive oxygen species (ROS) and depletion of intracellular glutathione (GSH) and protein thiols (PSH) in HL-60 cells. NAC treatment abrogated 2'-HCA-induced JNK phosphorylation, AP-1-DNA binding, and Bim mitochondrial translocation, suggesting that oxidative stress may be required for 2'-HCA-induced intrinsic apoptosis. Xenograft mice inoculated with HL-60 leukemia cells demonstrated that the intraperitoneal administration of 2'-HCA inhibited tumor growth by increasing of TUNEL staining, the expression levels of nitrotyrosine and pro-apoptotic proteins, but reducing of PCNA protein expression. Taken together, our findings suggest that 2'-HCA induces apoptosis via the ROS-dependent JNK pathway and could be considered as a potential therapeutic agent for leukemia.

4.
Biomed Pharmacother ; 142: 111961, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34329824

RESUMO

We previously reported the anticancer activity of 4-(4-fluorobenzylcarbamoylmethyl)-3-(4-cyclohexylphenyl)-2-[3-(N,N-dimethylureido)-N'-methylpropylamino]-3,4-dihydroquinazoline (OZ-001), a T-type calcium channel (TTCC) blocker, against non-small cell lung cancer (NSCLC) in vitro and in vivo. Here, we evaluated the synergistic effect of OZ-001 and cisplatin on A549 human lung cancer cells and A549 xenograft mice. Our study demonstrated that treatment with OZ-001 and cisplatin sensitized A549 cells to cisplatin and significantly inhibited cell growth, increased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, and induced poly (ADP-ribose) polymerase (PARP) cleavage in A549 cells and an A549 xenograft tumor mouse model. Moreover, our findings showed that mechanistic target of rapamycin (mTOR), ribosomal protein S6 kinase (p70S6K), and signal transducer and activator of transcription (STAT3) inactivation was required for apoptosis induced by the combination of OZ-001 and cisplatin in in vitro and in vivo experiments. Our results suggest that combined treatment with OZ-001 and cisplatin could potentiate antiproliferative effects via suppression of the mTOR/p70S6K and STAT3 pathways and may be considered a potential therapeutic agent for NSCLC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Cisplatino/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Cisplatino/administração & dosagem , Sinergismo Farmacológico , Humanos , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Fator de Transcrição STAT3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670458

RESUMO

Interferons (IFNs) are a crucial component in the innate immune response. Especially the IFN-ß signaling operates in most cell types and plays a key role in the first line of defense upon pathogen intrusion. The induction of IFN-ß should be tightly controlled, because its hyperactivation can lead to tissue damage or autoimmune diseases. Activation of the IFN-ß promoter needs Interferon Regulatory Factor 3 (IRF3), together with Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Activator Protein 1 (AP-1). Here we report that a human noncoding RNA, nc886, is a novel suppressor for the IFN-ß signaling and inflammation. Upon treatment with several pathogen-associated molecular patterns and viruses, nc886 suppresses the activation of IRF3 and also inhibits NF-κB and AP-1 via inhibiting Protein Kinase R (PKR). These events lead to decreased expression of IFN-ß and resultantly IFN-stimulated genes. nc886's role might be to restrict the IFN-ß signaling from hyperactivation. Since nc886 expression is regulated by epigenetic and environmental factors, nc886 might explain why innate immune responses to pathogens are variable depending on biological settings.


Assuntos
Regulação da Expressão Gênica/imunologia , Fator Regulador 3 de Interferon/imunologia , Interferon Tipo I/imunologia , RNA não Traduzido/imunologia , Animais , Linhagem Celular Tumoral , Células HCT116 , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Camundongos , NF-kappa B/imunologia , NF-kappa B/metabolismo , Regiões Promotoras Genéticas/genética , Células RAW 264.7 , RNA não Traduzido/genética , Transdução de Sinais/imunologia , Fator de Transcrição AP-1/imunologia , Fator de Transcrição AP-1/metabolismo , Vírus/imunologia , eIF-2 Quinase/genética , eIF-2 Quinase/imunologia , eIF-2 Quinase/metabolismo
6.
Int Immunopharmacol ; 86: 106726, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32593157

RESUMO

Patrineolignan B (PB), a lignan compound isolated from the radix and rhizomes of Patrinia scabra, was previously reported to possess a strong tumor-specific cytotoxic activity and beneficial effects on nitric oxide (NO) levels in macrophages induced by lipopolysaccharide (LPS). In this study, we assessed the effects of PB on LPS-induced inflammation in RAW 264.7 cells and clarified its molecular mechanisms. PB reversed LPS-induced increase in NO levels and prostaglandin E2 (PGE2) production, as well as inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and mRNA levels in macrophages. Besides, PB prevented the secretion of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, and IL-6 in a concentration-dependent manner. The regulatory effects of PB on LPS-induced inflammatory mediators and overproduction of pro-inflammatory cytokines were shown to depend partly on the suppression of nuclear factor kappa B (NF-κB)-mediated transcription and AP-1 activation regulated by a c-Jun amino-terminal kinase (JNK) and extracellular signal-regulated kinases (ERK). Its anti-inflammatory activity was also mediated by regulating the phosphorylation of Janus kinase (JAK)/signal transducers and activators of transcription 1/3 (STAT1/3) signaling pathway. Taken together, our results suggest that PB exhibits anti-inflammatory potency through interfering with the NF-κB, AP-1, and JAK/STAT signaling pathway in LPS-stimulated macrophages.


Assuntos
Anti-Inflamatórios/farmacologia , Janus Quinases/metabolismo , Lignanas/farmacologia , Subunidade p50 de NF-kappa B/metabolismo , Patrinia/química , Fatores de Transcrição STAT/metabolismo , Fator de Transcrição AP-1/metabolismo , Animais , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
7.
J Clin Med ; 9(3)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150979

RESUMO

We previously reported that 4-(4-fluorobenzylcarbamoylmethyl)-3-(4-cyclohexylphenyl)-2-[3-(N,N-dimethylureido)-N'-methylpropylamino]-3,4-dihydroquinazoline (KCP10043F) can induce G1-phase arrest and synergistic cell death in combination with etoposide in lung cancer cells. Here, we investigated the underlying mechanism by which KCP10043F induces cell death in non-small cell lung cancer (NSCLC). Propidium iodide (PI) and annexin V staining revealed that KCP10043F-induced cytotoxicity was caused by apoptosis. KCP10043F induced a series of intracellular events: (1) downregulation of Bcl-2 and Bcl-xL and upregulation of Bax and cleaved Bid; (2) loss of mitochondrial membrane potential; (3) increase of cytochrome c release; (4) cleavage of procaspase-8, procaspase-9, procaspase-3, and poly (ADP-ribose) polymerase (PARP). In addition, KCP10043F exhibited potent inhibitory effects on constitutive or interleukin-6 (IL-6)-induced signal transducer and activator of transcription (STAT3) phosphorylation and STAT3-regulated genes including survivin, Mcl-1, and cyclin D1. Furthermore, STAT3 overexpression attenuated KCP10043F-induced apoptosis and the cleavage of caspase-9, caspase-3, and PARP. Docking analysis disclosed that KCP10043F could bind to a pocket in the SH2 domain of STAT3 and prevent STAT3 phosphorylation. The oral administration of KCP10043F decreased tumor growth in an A549 xenograft mouse model, as associated with the reduced phosphorylated STAT3, survivin, Mcl-1, and Bcl-2 expression and increased TUNEL staining and PARP cleavage in tumor tissues. Collectively, our data suggest that KCP10043F suppresses NSCLC cell growth through apoptosis induction via STAT3 inactivation.

8.
Phytomedicine ; 68: 153167, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32028186

RESUMO

BACKGROUND: The roots of Partrinia scabra have been used as a medicinal herb in Asia. We previously reported that the inhibitory effect of patriscabrin F on lipopolysaccharide (LPS)-induced nitric oxide (NO) production was the most potent than that of other isolated iridoids from the roots of P. scabra. PURPOSE: We investigated the anti-inflammatory activity of patriscabrin F as an active compound of P. scabra and related signaling cascade in LPS-activated macrophages. METHOD: The anti-inflammatory activities of patriscabrin F were determined according to its inhibitory effects on NO, prostaglandin E2 (PGE2), and pro-inflammatory cytokines. The molecular mechanisms were revealed by analyzing nuclear factor-κB (NF-κB), activator protein-1 (AP-1), interferon regulatory factor 3 (IRF3), and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. RESULTS: Patriscabrin F inhibited the LPS-induced production of NO, PGE2, tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, and IL-6 in both bone-marrow derived macrophages (BMDMs) and RAW 264.7 macrophages. Patriscabrin F downregulated LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), TNF-α, IL-1ß, and IL-6 at the transcriptional level. Patriscabrin F suppressed LPS-induced NF-κB activation by decreasing p65 nuclear translocation, inhibitory κBα (IκBα) phosphorylation, and IκB kinase (IKK)α/ß phosphorylation. Patriscabrin F attenuated LPS-induced AP-1 activity by inhibiting c-Fos phosphorylation. Patriscabrin F suppressed the LPS-induced phosphorylation of IRF3, JAK1/JAK2, and STAT1/STAT3. CONCLUSION: Taken together, our findings suggest patriscabrin F may exhibit anti-inflammatory properties via the inhibition of NF-κB, AP-1, IRF3, and JAK-STAT activation in LPS-induced macrophages.


Assuntos
Inflamação/tratamento farmacológico , Inflamação/metabolismo , Iridoides/farmacologia , Macrófagos/efeitos dos fármacos , Patrinia/química , Animais , Ciclo-Oxigenase 2/metabolismo , Regulação para Baixo/efeitos dos fármacos , Inflamação/patologia , Fator Regulador 3 de Interferon/metabolismo , Iridoides/uso terapêutico , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Raízes de Plantas/química , Células RAW 264.7 , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição AP-1/metabolismo
9.
Bioorg Med Chem Lett ; 30(4): 126884, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31879211

RESUMO

In this article, a series of 22 triarylpyrazole derivatives were evaluated for in vitro antiinflammatory activity as inhibitors of nitric oxide (NO) and prostaglandin E2 (PGE2) release induced by lipopolysaccharide (LPS) in murine RAW 264.7 macrophages. The synthesized compounds 1a-h, 2a-f and 3a-h were first examined for their cytotoxicity for determination of the non-toxic concentration for antiinflammatory screening, so that the inhibitory effects against NO and PGE2 production were not caused by non-specific cytotoxicity. Compounds 1h and 2f were the most active PGE2 inhibitors with IC50 values of 2.94 µM and 4.21 µM, respectively. Western blotting and cell-free COX-2 screening revealed that their effects were due to inhibition of COX-2 protein expression. Moreover, compound 1h exerted strong inhibitory effect on the expression of COX-2 mRNA in LPS-induced murine RAW 264.7 macrophages.


Assuntos
Anti-Inflamatórios/química , Dinoprostona/metabolismo , Óxido Nítrico/metabolismo , Pirazóis/química , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Desenho de Fármacos , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Pirazóis/síntese química , Pirazóis/farmacologia , Células RAW 264.7 , Relação Estrutura-Atividade
10.
Cancers (Basel) ; 11(12)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816985

RESUMO

We previously reported the potential anti-proliferative activity of 3-(5,6,7-trimethoxy-4-oxo-4H-chromen-2-yl)-N-(3,4,5-trimethoxyphenyl) benzamide (TMS-TMF-4f) against human cancer cells; however, the underlying molecular mechanisms have not been investigated. In the present study, TMS-TMF-4f showed the highest cytotoxicity in human cervical cancer cells (HeLa and CaSki) and low cytotoxicity in normal ovarian epithelial cells. Annexin V-FITC and propidium iodide (PI) double staining revealed that TMS-TMF-4f-induced cytotoxicity was caused by the induction of apoptosis in both HeLa and CaSki cervical cancer cells. The compound TMS-TMF-4f enhanced the activation of caspase-3, caspase-8, and caspase-9 and regulated Bcl-2 family proteins, which led to mitochondrial membrane potential (MMP) loss and resulted in the release of cytochrome c and Smac/DIABLO into the cytosol. Also, TMS-TMF-4f suppressed both constitutive and IL-6-inducible levels of phosphorylated STAT3 (p-STAT3) and associated proteins such as Mcl-1, cyclin D1, survivin, and c-Myc in both cervical cancer cells. STAT-3 overexpression completely ameliorated TMS-TMF-4f-induced apoptotic cell death and PARP cleavage. Docking analysis revealed that TMS-TMF-4f could bind to unphosphorylated STAT3 and inhibit its interconversion to the activated form. Notably, intraperitoneal administration of TMS-TMF-4f (5, 10, or 20 mg/kg) decreased tumor growth in a xenograft cervical cancer mouse model, demonstrated by the increase in TUNEL staining and PARP cleavage and the reduction in p-STAT3, Mcl-1, cyclin D1, survivin, and c-Myc expression levels in tumor tissues. Taken together, our results suggest that TMS-TMF-4f may potentially inhibit human cervical tumor growth through the induction of apoptosis via STAT3 suppression.

11.
Eur J Med Chem ; 180: 253-267, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31310917

RESUMO

Herein, we address repurposing hybrids of mosloflavone or 5,6,7-trimethoxyflavone with amide analogs of resveratrol from anticancer leads to novel potent anti-inflammatory chemical entities. To unveil the potent anti-inflammatory molecules, biological evaluations were initiated in LPS-induced RAW 264.7 macrophages at 1 µM concentration. Promising compounds were further evaluated at various concentrations. Multiple proinflammatory mediators were assessed including NO, PGE2, IL-6, TNF-α and IL-1ß. Compound 5z inhibited the induced production of NO, PGE2, IL-6, TNF-α and IL-1ß at the low 1 µM concentration by 44.76, 35.71, 53.48, 29.39 and 41.02%, respectively. Compound 5z elicited IC50 values as low as 2.11 and 0.98 µM against NO and PGE2 production respectively. Compounds 5q and 5g showed potent submicromolar IC50 values of 0.31 and 0.59 µM respectively against PGE2 production. Reverse docking of compound 5z suggested p38-α MAPK, which is a key signaling molecule within the pathways controlling the transcription of proinflammatory mediators, as the molecular target. Biochemical testing confirmed these compounds as p38-α MAPK inhibitors explaining its potent inhibition of proinflammatory mediators' production. Collectively, the results presented 5z as a promising compound for further development of anti-inflammatory agents for treatment of macrophages-and/or immune mediated inflammatory diseases.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Flavonas/farmacologia , Flavonoides/farmacologia , Mediadores da Inflamação/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Resveratrol/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Flavonas/química , Flavonoides/química , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Células RAW 264.7 , Resveratrol/química , Relação Estrutura-Atividade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Bioorg Chem ; 86: 112-118, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30685642

RESUMO

EGFR inhibitors are well-known as anticancer agents. Quite differently, we report our effort to develop EGFR inhibitors as anti-inflammatory agents. Pyrimidinamide EGFR inhibitors eliciting low micromolar IC50 and the structurally close non-EGFR inhibitor urea analog were synthesized. Comparing their nitric oxide (NO) production inhibitory activity in peritoneal macrophages and RAW 246.7 macrophages indicated that their anti-inflammatory activity in peritoneal macrophages might be a sequence of EGFR inhibition. Further evaluations proved that compound 4d significantly and dose-dependently inhibits LPS-induced iNOS expression and IL-1ß, IL-6, and TNF-α production via NF-κB inactivation in peritoneal macrophages. Compound 4d might serve as a lead compound for development of a novel class of anti-inflammatory EGFR inhibitors.


Assuntos
Amidas/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Benzamidas/farmacologia , Inflamação/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Amidas/síntese química , Amidas/química , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Benzamidas/síntese química , Benzamidas/química , Sobrevivência Celular/efeitos dos fármacos , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Descoberta de Drogas , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Inflamação/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Células RAW 264.7 , Relação Estrutura-Atividade
13.
Chem Biol Interact ; 284: 101-111, 2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29470957

RESUMO

Kaempferol 7-O-ß-D-glucoside (KPG), a natural flavonol isolated from Cudrania tricuspidata, has been reported to exert anti-cancer effects; however, its anti-inflammatory effects have not yet been reported. In this study, we demonstrate the suppressive effect of KPG on the production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and mouse bone marrow-derived macrophages. KPG downregulated the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein level and iNOS, COX-2, TNF-α, IL-1ß, and IL-6 at the mRNA level in LPS-treated RAW 264.7 macrophages. Moreover, we elucidated the underlying molecular mechanism, demonstrating that KPG attenuated LPS-induced nuclear factor-κB (NF-κB) activation by decreasing p65 nuclear translocation, inhibiting κBα (IκBα) phosphorylation/degradation and IκB kinaseα/ß (IKKα/ß) phosphorylation. KPG additionally reduced LPS-induced activator protein-1 (AP-1) activity by inhibiting c-Fos expression in the nucleus, though c-Jun was not affected. Furthermore, we revealed that KPG significantly abrogated the LPS-induced phosphorylation of signal transducer and activator of transcription (STAT) 1 (Ser 727, Tyr 701) and STAT3 (Tyr 705) through inhibiting the phosphorylation of Janus kinase (JAK) 1 and JAK2, its upstream activating proteins. Taken together, our data suggest that KPG induces anti-inflammatory activity by blocking NF-κB, AP-1, and JAK-STAT signaling pathways in LPS-treated RAW 264.7 macrophages, thus suppressing inflammatory mediators.


Assuntos
Mediadores da Inflamação/metabolismo , Quempferóis/farmacologia , Lipopolissacarídeos/toxicidade , Moraceae/química , Transdução de Sinais/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Regulação para Baixo/efeitos dos fármacos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Janus Quinases/metabolismo , Quempferóis/química , Quempferóis/isolamento & purificação , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Moraceae/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Células RAW 264.7 , Fatores de Transcrição STAT/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
14.
Biol Pharm Bull ; 40(11): 1894-1902, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093336

RESUMO

Previously, we first reported the identification of four p-coumaroyl anthocyanins (petanin, peonanin, malvanin, and pelanin) from the tuber epidermis of colored potato (Solanum tuberosum L. cv JAYOUNG). In this study, we investigated the anti-oxidative and anti-inflammatory effects of a mixture of peonanin, malvanin, and pelanin (10 : 3 : 3; CAJY). CAJY displayed considerable radical scavenging capacity of 1, 1-diphenyl-2-picryl-hydrazyl (DPPH), increased mRNA levels of the catalytic and modulatory subunit of glutamate cysteine ligase, and subsequent cellular glutathione content. These increases preceded the inhibition of lipopolysaccharide (LPS)-induced intracellular reactive oxygen species (ROS) production. CAJY inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a concentration-dependent manner at the protein, mRNA, and promoter activity levels. These inhibitions caused attendant decreases in the production of prostaglandin E2 (PGE2). CAJY suppressed the production and mRNA expression of tumor necrosis factor (TNF)-α and interleukin (IL)-6. Molecular data revealed that CAJY inhibited the transcriptional activity and translocation of nuclear factor κB (NF-κB) and phosphorylation of signal transducer and activator of transcription 1 (STAT1) and STAT3. Taken together, these results suggest that the anthocyanin mixture exerts anti-inflammatory effects in macrophages, at least in part by reducing ROS production and inactivating NF-κB and STAT 1/3.


Assuntos
Antocianinas/farmacologia , Anti-Inflamatórios/farmacologia , Sequestradores de Radicais Livres/farmacologia , Extratos Vegetais/farmacologia , Propionatos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Solanum tuberosum/química , Animais , Antocianinas/química , Anti-Inflamatórios/química , Ácidos Cumáricos , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Sequestradores de Radicais Livres/química , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química , Tubérculos/química , Propionatos/química , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo
15.
Bioorg Med Chem Lett ; 27(11): 2613-2616, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28408221

RESUMO

In an effort to identify novel anti-inflammatory compounds, a series of flavone derivatives were synthesized and biologically evaluated for their inhibitory effects on the production of nitric oxide (NO) and prostaglandin E2 (PGE2), representative pro-inflammatory mediators, in LPS-induced RAW 264.7 cells. Their structure-activity relationship was also investigated. In particular, we found that compound 3g displayed more potent inhibitory activities on PGE2 production, similar inhibitory activities on NO production and less weak cytotoxicity than luteolin, a natural flavone known as a potent anti-inflammatory agent.


Assuntos
Anti-Inflamatórios/química , Dinoprostona/metabolismo , Flavonas/química , Óxido Nítrico/metabolismo , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/toxicidade , Flavonas/síntese química , Flavonas/toxicidade , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Camundongos , Células RAW 264.7 , Relação Estrutura-Atividade
16.
J Nat Prod ; 79(4): 711-20, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26977531

RESUMO

Two chromone C-glucosides, biflorin (1) and isobiflorin (2), were isolated from the flower buds of Syzygium aromaticum L. (Myrtaceae). Here, inhibitory effects of 1 and 2 on lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW 264.7 macrophages were evaluated, and 1 (IC50 = 51.7 and 37.1 µM, respectively) was more potent than 2 (IC50 > 60 and 46.0 µM). The suppression of NO and PGE2 production by 1 correlated with inhibition of iNOS and COX-2 protein expression. Compound 1 reduced inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA expression via inhibition of their promoter activities. Compound 1 inhibited the LPS-induced production and mRNA expression of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6. Furthermore, 1 reduced p-STAT1 and p-p38 expression but did not affect the activity of nuclear factor κ light-chain enhancer of activated B cells (NF-κB) or activator protein 1 (AP-1). In a mouse model of LPS-induced endotoxemia, 1 reduced the mRNA levels of iNOS, COX-2, and TNF-α, and the phosphorylation-mediated activation of the signal transducer and activator of transcription 1 (STAT1), consequently improving the survival rates of mice. Compound 1 showed a significant anti-inflammatory effect on carrageenan-induced paw edema and croton-oil-induced ear edema in rats. The collective data indicate that the suppression of pro-inflammatory gene expression via p38 mitogen-activated protein kinase and STAT1 inactivation may be a mechanism for the anti-inflammatory activity of 1.


Assuntos
Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Naftoquinonas/isolamento & purificação , Naftoquinonas/farmacologia , Fator de Transcrição STAT1/efeitos dos fármacos , Syzygium/química , Animais , Anti-Inflamatórios/farmacologia , Carragenina/farmacologia , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/antagonistas & inibidores , Modelos Animais de Doenças , Edema/induzido quimicamente , Endotoxemia/tratamento farmacológico , Flores/química , Mediadores da Inflamação , Interleucina-6 , Masculino , Camundongos , Estrutura Molecular , NF-kappa B/antagonistas & inibidores , Naftoquinonas/química , Óxido Nítrico/biossíntese , Ratos , Fator de Transcrição AP-1 , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
J Cell Biochem ; 117(10): 2327-39, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26931732

RESUMO

α-Solanine, a trisaccharide glycoalkaloid, has been reported to possess anti-cancer effects. In this study, we investigated the anti-inflammatory effects of α-solanine isolated from "Jayoung" a dark purple-fleshed potato by examining its in vitro inhibitory effects on inducible nitric-oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines in LPS-induced RAW 264.7 macrophages and its in vivo effects on LPS-induced septic shock in a mouse model. α-Solanine suppressed the expression of iNOS and COX-2 both at protein and mRNA levels and consequently inhibited nitric oxide (NO) and prostaglandin E2 (PGE2 ) production in LPS-induced RAW 264.7 macrophages. α-Solanine also reduced the production and mRNA expression of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) induced by LPS. Furthermore, molecular mechanism studies indicated that α-solanine inhibited LPS-induced activation of nuclear factor-κB (NF-κB) by reducing nuclear translocation of p65, degradation of inhibitory κBα (IκBα), and phosphorylation of IκB kinaseα/ß (IKKα/ß). In an in vivo experiment of LPS-induced endotoxemia, treatment with α-solanine suppressed mRNA expressions of iNOS, COX-2, IL-6, TNF-α, and IL-1ß, and the activation of NF-κB in liver. Importantly, α-solanine increased the survival rate of mice in LPS-induced endotoxemia and polymicrobial sepsis models. Taken together, our data suggest that the α-solanine may be a promising therapeutic against inflammatory diseases by inhibiting the NF-κB signaling pathway. J. Cell. Biochem. 117: 2327-2339, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Colite/prevenção & controle , Inflamação/prevenção & controle , Macrófagos/efeitos dos fármacos , NF-kappa B/metabolismo , Choque Séptico/prevenção & controle , Solanina/farmacologia , Solanum tuberosum/química , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colite/induzido quimicamente , Colite/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , Óxido Nítrico/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Choque Séptico/induzido quimicamente , Choque Séptico/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Biol Pharm Bull ; 38(7): 1081-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26133719

RESUMO

To identify bioactive natural products possessing anti-inflammatory activity, the potential of fulgidic acid from the rhizomes of Cyperus rotundus and the underlying mechanisms involved in its anti-inflammatory activity were evaluated in this study. Fulgidic acid reduced the production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. Consistent with these findings, fulgidic acid suppressed the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein level, as well as iNOS, COX-2, TNF-α, and IL-6 at mRNA levels. Fulgidic acid suppressed the LPS-induced transcriptional activity of activator protein-1 (AP-1) as well as the phosphorylation of c-Fos and c-Jun. On the other hand, fulgidic acid did not show any effect on LPS-induced nuclear factor κB (NF-κB) activity. Taken together, these results suggest that the anti-inflammatory effect of fulgidic acid is associated with the suppression of iNOS, COX-2, TNF-α, and IL-6 expression through down-regulating AP-1 activation in LPS-induced RAW264.7 macrophages.


Assuntos
Anti-Inflamatórios/farmacologia , Cyperus , Ácidos Linoleicos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Ácidos Linoleicos/isolamento & purificação , Lipopolissacarídeos , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Rizoma , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
19.
Chem Biol Interact ; 235: 85-94, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-25913072

RESUMO

In this study, we investigated the molecular mechanisms underlying the anti-inflammatory effects of α-chaconine in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and in LPS-induced septic mice. α-Chaconine inhibited the expressions of cyclooxygenase-2 (COX-2), interleukin-1ß (IL-1ß), IL-6, and tumor necrosis factor-α (TNF-α) at the transcriptional level, and attenuated the transcriptional activity of activator protein-1 (AP-1) by reducing the translocation and phosphorylation of c-Jun. α-Chaconine also suppressed the phosphorylation of TGF-ß-activated kinase-1 (TAK1), which lies upstream of mitogen-activated protein kinase kinase 7 (MKK7)/Jun N-terminal kinase (JNK) signaling. JNK knockdown using siRNA prevented the α-chaconine-mediated inhibition of pro-inflammatory mediators. In a sepsis model, pretreatment with α-chaconine reduced the LPS-induced lethality and the mRNA and production levels of pro-inflammatory mediators by inhibiting c-Jun activation. These results suggest that the anti-inflammatory effects of α-chaconine are associated with the suppression of AP-1, and support its possible therapeutic role for the treatment of sepsis.


Assuntos
Endotoxinas/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Solanina/análogos & derivados , Solanum tuberosum/química , Fator de Transcrição AP-1/metabolismo , Animais , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase 7 , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Solanina/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
Oncol Rep ; 33(5): 2639-47, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25812484

RESUMO

Styrylquinazolines are synthetic analogues of resveratrol and have been suggested to cause anti-inflammatory activity by modulating prostaglandin E2 (PGE2) production. In the present study, we evaluated cytotoxic effects of various styrylquinazoline derivatives and found that (E)-8-acetoxy-2-[2-(3,4-diacetoxyphenyl)ethenyl]-quinazoline (8-ADEQ) most potently inhibited the proliferation of the human cervical carcinoma HeLa cells. Exploring the growth-inhibitory mechanisms of 8-ADEQ, we found that it causes a cell cycle arrest at the G2/M phase by DNA flow cytometric analysis, which was accompanied by upregulation of cyclin B1 expression and cyclin-dependent protein kinase 1 (Cdk1) phosphorylation. In addition, we observed that 8-ADEQ causes phosphorylation of the cell division cycle 25C (Cdc25C) protein through the activation of checkpoint kinases 1 (Chk1) and Chk2, which in turn were activated via ataxia telangiectasia mutated (ATM)/ataxia telangiectasia-Rad3-related (ATR) kinases in response to the DNA damage. Furthermore, ATM/ATR inhibitor caffeine, p53- or ATM/ATR-specific siRNA significantly attenuated 8-ADEQ-induced G2/M arrest. These results suggest that the 8-ADEQ inhibits the proliferation of human cervical cancer HeLa cells by DNA damage-mediated G2/M cell cycle arrest. 8-ADEQ­induced G2/M arrest is mediated by the activation of both Chk1/2-Cdc25 and p53-p21CIP1/WAF1 via ATM/ATR pathway, and indicates that 8-ADEQ appears to have potential in the treatment of cervical cancer.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Quinazolinas/farmacologia , Neoplasias do Colo do Útero/genética , Proteína Quinase CDC2 , Carcinoma/genética , Pontos de Checagem do Ciclo Celular/genética , Divisão Celular/genética , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2/genética , Ciclina B1/genética , Inibidor de Quinase Dependente de Ciclina p21 , Quinases Ciclina-Dependentes/genética , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Feminino , Fase G2/genética , Células HeLa , Humanos , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteínas Quinases/genética , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Estilbenos/farmacologia , Proteína Supressora de Tumor p53/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Fosfatases cdc25/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA