Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38888456

RESUMO

MOTIVATION: The advent of multimodal omics data has provided an unprecedented opportunity to systematically investigate underlying biological mechanisms from distinct yet complementary angles. However, the joint analysis of multi-omics data remains challenging because it requires modeling interactions between multiple sets of high-throughput variables. Furthermore, these interaction patterns may vary across different clinical groups, reflecting disease-related biological processes. RESULTS: We propose a novel approach called Differential Canonical Correlation Analysis (dCCA) to capture differential covariation patterns between two multivariate vectors across clinical groups. Unlike classical Canonical Correlation Analysis, which maximizes the correlation between two multivariate vectors, dCCA aims to maximally recover differentially expressed multivariate-to-multivariate covariation patterns between groups. We have developed computational algorithms and a toolkit to sparsely select paired subsets of variables from two sets of multivariate variables while maximizing the differential covariation. Extensive simulation analyses demonstrate the superior performance of dCCA in selecting variables of interest and recovering differential correlations. We applied dCCA to the Pan-Kidney cohort from the Cancer Genome Atlas Program database and identified differentially expressed covariations between noncoding RNAs and gene expressions. AVAILABILITY AND IMPLEMENTATION: The R package that implements dCCA is available at https://github.com/hwiyoungstat/dCCA.


Assuntos
Algoritmos , Humanos , Biologia Computacional/métodos , Genômica/métodos , Perfilação da Expressão Gênica/métodos , Análise Multivariada
2.
Stat Med ; 41(22): 4484-4500, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36106648

RESUMO

Neuroimaging techniques have been increasingly used to understand the neural biology of aging brains. The neuroimaging variables from distinct brain locations and modalities can exhibit age-related patterns that reflect localized neural decline. However, it is a challenge to identify the impacts of risk factors (eg, mental disorders) on multivariate imaging variables while simultaneously accounting for the dependence structure and nonlinear age trajectories using existing tools. We propose a mixed-effects model to address this challenge by building random effects based on the latent brain aging status. We develop computationally efficient algorithms to estimate the parameters of new random effects. The simulations show that our approach provides accurate parameter estimates, improves the inference efficiency, and reduces the root mean square error compared to existing methods. We further apply this method to the UK Biobank data to investigate the effects of tobacco smoking on the white matter integrity of the entire brain during aging and identify the adverse effects on white matter integrity with multiple fiber tracts.


Assuntos
Substância Branca , Envelhecimento , Algoritmos , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Humanos , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA