Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Korean J Physiol Pharmacol ; 28(4): 323-333, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38926840

RESUMO

Polychlorinated biphenyls (PCBs) were once used throughout various industries; however, because of their persistence in the environment, exposure remains a global threat to the environment and human health. The Kv1.3 and Kv1.5 channels have been implicated in the immunotoxicity and cardiotoxicity of PCBs, respectively. We determined whether 3,3',4,4'-tetrachlorobiphenyl (PCB77), a dioxin-like PCB, alters human Kv1.3 and Kv1.5 currents using the Xenopus oocyte expression system. Exposure to 10 nM PCB77 for 15 min enhanced the Kv1.3 current by approximately 30.6%, whereas PCB77 did not affect the Kv1.5 current at concentrations up to 10 nM. This increase in the Kv1.3 current was associated with slower activation and inactivation kinetics as well as right-shifting of the steady-state activation curve. Pretreatment with PCB77 significantly suppressed tumor necrosis factor-α and interleukin-10 production in lipopolysaccharide-stimulated Raw264.7 macrophages. Overall, these data suggest that acute exposure to trace concentrations of PCB77 impairs immune function, possibly by enhancing Kv1.3 currents.

2.
Sci Rep ; 12(1): 660, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027643

RESUMO

Zika virus (ZIKV) is a mosquito-borne virus that has a high risk of inducing Guillain-Barré syndrome and microcephaly in newborns. Because vaccination is considered the most effective strategy against ZIKV infection, we designed a recombinant vaccine utilizing the baculovirus expression system with two strains of ZIKV envelope protein (MR766, Env_M; ZBRX6, Env_Z). Animals inoculated with Env_M and Env_Z produced ZIKV-specific antibodies and secreted effector cytokines such as interferon-γ, tumor necrosis factor-α, and interleukin-12. Moreover, the progeny of immunized females had detectable maternal antibodies that protected them against two ZIKV strains (MR766 and PRVABC59) and a Dengue virus strain. We propose that the baculovirus expression system ZIKV envelope protein recombinant provides a safe and effective vaccine strategy.


Assuntos
Baculoviridae/imunologia , Imunidade Celular , Imunidade Humoral , Imunocompetência/imunologia , Vacinas Sintéticas , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/fisiologia , Vacinas Virais/imunologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia , Zika virus/imunologia , Animais , Masculino , Camundongos Endogâmicos C57BL
3.
Front Oncol ; 11: 665420, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959512

RESUMO

Although many cancer patients are administered radiotherapy for their treatment, the interaction between tumor cells and macrophages in the tumor microenvironment attenuates the curative effects of radiotherapy. The enhanced activation of mTOR signaling in the tumors promotes tumor radioresistance. In this study, the effects of rapamycin on the interaction between tumor cells and macrophages were investigated. Rapamycin and 3BDO were used to regulate the mTOR pathway. In vitro, tumor cells cocultured with macrophages in the presence of each drug under normoxic or hypoxic conditions were irradiated with γ-rays. In vivo, mice were irradiated with γ-radiation after injection with DMSO, rapamycin and 3BDO into tumoral regions. Rapamycin reduced the secretion of IL-4 in tumor cells as well as YM1 in macrophages. Mouse recombinant YM1 decreased the enhanced level of ROS and the colocalized proportion of both xCT and EEA1 in irradiated tumor cells. Human recombinant YKL39 also induced results similar to those of YM1. Moreover, the colocalized proportion of both xCT and LC3 in tumor tissues was elevated by the injection of rapamycin into tumoral regions. Overall, the suppression of mTOR signaling in the tumor microenvironment might be useful for the improvement of tumor radioresistance.

4.
Cells ; 9(12)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348858

RESUMO

The treatment of tumors requires the induction of cell death. Radiotherapy, chemotherapy, and immunotherapy are administered to kill cancer cells; however, some cancer cells are resistant to these therapies. Therefore, effective treatments require various strategies for the induction of cell death. Regulated cell death (RCD) is systematically controlled by intracellular signaling proteins. Apoptosis and autophagy are types of RCD that are morphologically different from necrosis, while necroptosis, pyroptosis, and ferroptosis are morphologically similar to necrosis. Unlike necrosis, regulated necrotic cell death (RNCD) is caused by disruption of the plasma membrane under the control of specific proteins and induces tissue inflammation. Various types of RNCD, such as necroptosis, pyroptosis, and ferroptosis, have been used as therapeutic strategies against various tumor types. In this review, the mechanisms of necroptosis, pyroptosis, and ferroptosis are described in detail, and a potential effective treatment strategy to increase the anticancer effects on apoptosis- or autophagy-resistant tumor types through the induction of RNCD is suggested.


Assuntos
Neoplasias/patologia , Morte Celular Regulada , Antineoplásicos/uso terapêutico , Autofagia , Ferroptose , Humanos , Inflamação/metabolismo , Inflamação/patologia , Necroptose , Neoplasias/metabolismo , Neoplasias/terapia , Piroptose , Morte Celular Regulada/efeitos dos fármacos
5.
Mol Cells ; 43(12): 989-1001, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33250450

RESUMO

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen that causes salmonellosis and mortality worldwide. S. Typhimurium infects macrophages and survives within phagosomes by avoiding the phagosome-lysosome fusion system. Phagosomes sequentially acquire different Rab GTPases during maturation and eventually fuse with acidic lysosomes. Lysophosphatidylcholine (LPC) is a bioactive lipid that is associated with the generation of chemoattractants and reactive oxygen species (ROS). In our previous study, LPC controlled the intracellular growth of Mycobacterium tuberculosis by promoting phagosome maturation. In this study, to verify whether LPC enhances phagosome maturation and regulates the intracellular growth of S. Typhimurium, macrophages were infected with S. Typhimurium. LPC decreased the intracellular bacterial burden, but it did not induce cytotoxicity in S. Typhimuriuminfected cells. In addition, combined administration of LPC and antibiotic significantly reduced the bacterial burden in the spleen and the liver. The ratios of the colocalization of intracellular S. Typhimurium with phagosome maturation markers, such as early endosome antigen 1 (EEA1) and lysosome-associated membrane protein 1 (LAMP-1), were significantly increased in LPC-treated cells. The expression level of cleaved cathepsin D was rapidly increased in LPCtreated cells during S. Typhimurium infection. Treatment with LPC enhanced ROS production, but it did not affect nitric oxide production in S. Typhimurium-infected cells. LPC also rapidly triggered the phosphorylation of IκBα during S. Typhimurium infection. These results suggest that LPC can improve phagosome maturation via ROS-induced activation of NF-κB pathway and thus may be developed as a therapeutic agent to control S. Typhimurium growth.


Assuntos
Lisofosfatidilcolinas/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , NF-kappa B/metabolismo , Fagossomos/metabolismo , Infecções por Salmonella/metabolismo , Transdução de Sinais , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Inibidor de NF-kappaB alfa/metabolismo , Fosforilação , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/fisiologia
6.
PLoS One ; 14(3): e0199799, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30865638

RESUMO

Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb) and remains a major health problem worldwide. Thus, identification of new and more effective drugs to treat emerging multidrug-resistant TB (MDR-TB) and to reduce the side effects of anti-TB drugs, such as liver toxicity and other detrimental changes, is urgently needed. In this study, to develop a novel candidate drug for effective TB treatment with few side effects in the host, we selected pasakbumin A isolated from Eurycoma longifolia (E. longifolia) Jack, which protected host cells against Mtb infection-induced death. Pasakbumin A significantly inhibited intracellular Mtb growth by inducing the autophagy via the ERK1/2-mediated signaling pathway in Mtb-infected macrophages. We further investigated whether pasakbumin A could be used as a potential adjuvant for TB treatment. Treatment with pasakbumin A and anti-TB drug rifampicin (RMP) potently suppressed intracellular Mtb killing by promoting autophagy as well as TNF-α production via the ERK1/2- and NF-κB-mediated signaling pathways in Mtb-infected cells. Our results suggest that pasakbumin A could be developed as a novel anti-TB drug or host-directed therapeutic (HDT) strategy to protect against host cell death and improve host defense mechanisms against Mtb infection in macrophages.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Extratos Vegetais/farmacologia , Quassinas/farmacologia , Animais , Antituberculosos/isolamento & purificação , Autofagia/efeitos dos fármacos , Sinergismo Farmacológico , Eurycoma/química , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/patogenicidade , NF-kappa B/metabolismo , Óxido Nítrico/biossíntese , Extratos Vegetais/isolamento & purificação , Quassinas/isolamento & purificação , Células RAW 264.7 , Rifampina/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/biossíntese
7.
J Oncol ; 2019: 5956867, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31929797

RESUMO

Radiotherapy is widely used for the treatment of cancer patients, but tumor radioresistance presents serious therapy challenges. Tumor radioresistance is closely related to high levels of mTOR signaling in tumor tissues. Therefore, targeting the mTOR pathway might be a strategy to promote solid tumor sensitivity to ionizing radiation. Radioresistance is associated with enhanced antioxidant mechanisms in cancer cells. Therefore, examination of the relationship between mTOR signaling and antioxidant mechanism-linked radioresistance is required for effective radiotherapy. In particular, the effect of mTOR signaling on antioxidant glutathione induction by the Keap1-NRF2-xCT pathway is described in this review. This review is expected to assist in the identification of therapeutic adjuvants to increase the efficacy of radiotherapy.

8.
Front Immunol ; 9: 920, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755479

RESUMO

Tuberculosis is caused by the infectious agent Mycobacterium tuberculosis (Mtb). Mtb has various survival strategies, including blockade of phagosome maturation and inhibition of antigen presentation. Lysophosphatidylcholine (LPC) is a major phospholipid component of oxidized low-density lipoprotein and is involved in various cellular responses, such as activation of second messengers and bactericidal activity in neutrophils. In this study, macrophages were infected with a low infectious dose of Mtb and treated with LPC to investigate the bactericidal activity of LPC against Mtb. In macrophages infected with Mtb strain, H37Ra or H37Rv, LPC suppressed bacterial growth; however, this effect was suppressed in bone marrow-derived macrophages (BMDMs) isolated from G2A (a G protein-coupled receptor involved in some LPC actions) knockout mice. LPC also promoted phagosome maturation via phosphatidylinositol 3 kinase (PI3K)-p38 mitogen-activated protein kinase (MAPK)-mediated reactive oxygen species production and intracellular Ca2+ release during Mtb infection. In addition, LPC induced increased levels of intracellular cyclic adenosine monophosphate (cAMP) and phosphorylated glycogen synthase kinase 3 beta (GSK3ß) in Mtb-infected macrophages. Protein kinase A (PKA)-induced phosphorylation of GSK3ß suppressed activation of NF-κB in LPC-treated macrophages during Mtb infection, leading to decreased secretion of pro-inflammatory cytokines and increased secretion of anti-inflammatory cytokines. These results suggest that LPC can effectively control Mtb growth by promoting phagosome maturation via cAMP-induced activation of the PKA-PI3K-p38 MAPK pathway. Moreover, LPC can regulate excessive production of pro-inflammatory cytokines associated with bacterial infection of macrophages.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Lisofosfatidilcolinas/farmacologia , Macrófagos/microbiologia , Fagossomos/fisiologia , Fosfatidilinositol 3-Quinase/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/imunologia , Citocinas/imunologia , Citoplasma/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis , Fagossomos/efeitos dos fármacos , Fosforilação , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
9.
Oncotarget ; 8(15): 24932-24948, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28212561

RESUMO

Toll-like receptor (TLR) ligands are strongly considered immune-adjuvants for cancer immunotherapy and have been shown to exert direct anti-cancer effects. This study was performed to evaluate the synergistic anti-cancer and anti-metastatic effects of the TLR7 agonist imiquimod (IMQ) during radiotherapy for melanoma. The pretreatment of B16F10 or B16F1 cells with IMQ combined with γ-ionizing radiation (IR) led to enhanced cell death via autophagy, as demonstrated by increased expression levels of autophagy-related genes, and an increased number of autophagosomes in both cell lines. The results also confirmed that the autophagy process was accelerated via the reactive oxygen species (ROS)-mediated MAPK and NF-κB signaling pathway in the cells pretreated with IMQ combined with IR. Mice subcutaneously injected with melanoma cells showed a reduced tumor growth rate after treatment with IMQ and IR. Treatment with 3-methyladenine (3-MA), ameliorated the anti-cancer effect of IMQ combined with IR. Additionally, the combination therapy enhanced anti-cancer immunity, as demonstrated by an increased number of CD8+ T cells and decreased numbers of regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSCs) in the tumor lesions. Moreover, the combination therapy decreased the number of metastatic nodules in the lungs of mice that were injected with B16F10 cells via the tail vein. In addition, the combination therapy enhanced systemic anti-cancer immunity by increasing the abundances of T cell populations expressing IFN-γ and TNF-α. Therefore, these findings suggest that IMQ could serve as a radiosensitizer and immune booster during radiotherapy for melanoma patients.


Assuntos
Aminoquinolinas/farmacologia , Antineoplásicos/farmacologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/radioterapia , Glicoproteínas de Membrana/agonistas , Receptor 7 Toll-Like/agonistas , Animais , Autofagia/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Quimiorradioterapia , Modelos Animais de Doenças , Imiquimode , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL
10.
Mol Cells ; 38(1): 26-32, 2015 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-25518931

RESUMO

Toll-like receptors (TLR) 7 and 9 transduce a cellular signal through the MyD88-dependent pathway and induce the production of inflammatory mediators against microbial nucleotide components. The repeated stimulation of TLR4 leads to endotoxin tolerance, but the molecular mechanisms of tolerance induced through the costimulation of individual TLR has not yet been established, although endosomal TLRs share signaling pathways with TLR4. In the present study, mouse macrophages were simultaneously stimulated with the TLR7 agonist, gardiquimod (GDQ), and the TLR9 agonist, CpG ODN 1826, to examine the mechanism and effector functions of macrophage tolerance. Compared with individual stimulation, the costimulation of both TLRs reduced the secretion of TNF-α and IL-6 through the delayed activation of the NF-κB pathway; notably, IL-10 remained unchanged in costimulated macrophages. This tolerance reflected the early induction of suppressor of cytokine signaling-1 (SOCS-1), according to the detection of elevated TNF-α secretion and restored NF-κB signaling in response to the siRNA-mediated abrogation of SOCS-1 signaling. In addition, the restimulation of each TLRs using the same ligand significantly reduced the expression of both TLRs in endosomes. These findings revealed that the costimulation of TLR7 and TLR9 induced macrophage tolerance via SOCS-1, and the restimulation of each receptor or both TLR7 and TLR9 downregulated TLR expression through a negative feedback mechanisms that protects the host from excessive inflammatory responses. Moreover, the insufficient and impaired immune response in chronic viral infection might also reflect the repeated and simultaneous stimulation of those endosomal TLRs.


Assuntos
Regulação para Baixo , Tolerância Imunológica , Macrófagos/imunologia , Glicoproteínas de Membrana/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Aminoquinolinas/farmacologia , Animais , Células Cultivadas , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Imidazóis/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Glicoproteínas de Membrana/agonistas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina/genética , Receptor 7 Toll-Like/agonistas , Receptor Toll-Like 9/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA