Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Biomol Ther (Seoul) ; 32(4): 467-473, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38844804

RESUMO

In this study, we investigated the potential protective effects of (+)-afzelechin (AZC), a natural compound that is derived from Bergenia ligulata, on lipopolysaccharide (LPS)-induced inflammatory responses. AZC is known to have antioxidant, anticancer, antimicrobial, and cardiovascular protective properties. However, knowledge regarding the therapeutic potential of AZC against LPS-induced inflammatory responses is limited. Thus, we investigated the protective attributes of AZC against inflammatory damage caused by LPS exposure. We examined the effects of AZC on heme oxygenase (HO)-1, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) in LPS-activated human umbilical vein endothelial cells (HUVECs). In addition, the effects of AZC on the expression of iNOS, tumor necrosis factor (TNF)-α, and interleukin (IL)-1ß were analyzed in the lung tissues of LPS-injected mice. Data revealed that AZC promoted the production of HO-1, inhibited the interaction between luciferase and nuclear factor (NF)-κB, and reduced the levels of COX-2/PGE2 and iNOS/NO, thereby leading to a decrease in the signal transducer and activator of transcription (STAT)-1 phosphorylation. Moreover, AZC facilitated the nuclear translocation of Nrf2, increased the binding activity between Nrf2 and the antioxidant response elements (AREs), and lowered the expression of IL-1ß in the LPS-treated HUVECs. In the animal model, AZC significantly reduced the expression of iNOS in the lung tissue structure and the TNF-α level in the bronchoalveolar lavage fluid. These findings demonstrate that AZC possesses anti-inflammatory properties that regulate iNOS through the inhibition of both NF-κB expression and p-STAT-1. Consequently, AZC has potential as a future candidate for the development of new clinical substances for the treatment of pathological inflammation.

2.
Nat Commun ; 15(1): 799, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280855

RESUMO

Three-dimensional human intestinal organoids (hIO) are widely used as a platform for biological and biomedical research. However, reproducibility and challenges for large-scale expansion limit their applicability. Here, we establish a human intestinal stem cell (ISC) culture method expanded under feeder-free and fully defined conditions through selective enrichment of ISC populations (ISC3D-hIO) within hIO derived from human pluripotent stem cells. The intrinsic self-organisation property of ISC3D-hIO, combined with air-liquid interface culture in a minimally defined medium, forces ISC3D-hIO to differentiate into the intestinal epithelium with cellular diversity, villus-like structure, and barrier integrity. Notably, ISC3D-hIO is an ideal cell source for gene editing to study ISC biology and transplantation for intestinal diseases. We demonstrate the intestinal epithelium differentiated from ISC3D-hIO as a model system to study severe acute respiratory syndrome coronavirus 2 viral infection. ISC3D-hIO culture technology provides a biological tool for use in regenerative medicine and disease modelling.


Assuntos
Intestinos , Células-Tronco Pluripotentes , Humanos , Reprodutibilidade dos Testes , Mucosa Intestinal , Organoides , Diferenciação Celular
3.
Food Chem Toxicol ; 183: 114201, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013002

RESUMO

Exposure to particulate matter is currently recognized as a serious aggravating factor of respiratory diseases. In this study, we investigated the effects of particulate matter (PM) on the respiratory system in BALB/c mice and NCI-H292 cells. PM (0, 2.5, 5 and 20 mg/kg) was administered to mice by intra-tracheal instillation for 7 days. After a 7 day-repeated treatment of PM, we evaluated inflammatory cytokines/cell counts in bronchoalveolar lavage fluid (BALF) and conducted pulmonary histology and functional test. We also investigated the role of TXNIP/NF-κB and SIRT1-mediated p53 and TGF-ß/Smad3 pathways in PM-induced airway inflammation and pulmonary dysfunction. PM caused a significant increase in pro-inflammatory cytokines, inflammatory cell counts in bronchoalveolar lavage fluid. PM-mediated oxidative stress down-regulated thioredoxin-1 and up-regulated thioredoxin-interacting protein and activation of nuclear factor-kappa B in the lung tissue and PM-treated NCI-H292 cells. PM suppressed sirtuin1 protein levels and increased p53 acetylation in PM-exposed mice and PM-treated NCI-H292 cells. In addition, PM caused inflammatory cell infiltration and the thickening of alveolar walls by exacerbating the inflammatory response in the lung tissue. PM increased levels of transforming growth factor-ß, phosphorylation of Smad3 and activation of α-smooth muscle actin, and collagen type1A2 in PM-exposed mice and PM-treated NCI-H292 cells. In pulmonary function tests, PM exposure impaired pulmonary function resembling pulmonary fibrosis, characterized by increased resistance and elastance of the respiratory system, and resistance, elastance, and damping of lung tissues, whereas decreased compliance of the respiratory system, forced expired volume and forced vital capacity. Overall, PM-mediated oxidative stress caused airway inflammation and pulmonary dysfunction with pulmonary fibrosis via TXNIP pathway/NF-κB activation and modulation of the SIRT1-mediated TGF-ß/Smad3 pathways. The results of this study can provide fundamental data on the potential adverse effects and underlying mechanism of pulmonary fibrosis caused by PM exposure as a public health concern. Due to the potential toxicity of PM, people with respiratory disease must be careful with PM exposure.


Assuntos
Material Particulado , Fibrose Pulmonar , Doenças Respiratórias , Animais , Humanos , Camundongos , Proteínas de Transporte/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Pulmão/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Estresse Oxidativo , Material Particulado/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Doenças Respiratórias/induzido quimicamente , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Smad3/metabolismo
4.
J Cosmet Dermatol ; 23(4): 1365-1373, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38031658

RESUMO

BACKGROUND: Sargassum horneri came ashore after flowing from the South China Sea to Jeju Island a few years ago. This caused a significant environmental impact on coastal areas where S. horneri has accumulated because of decomposition and the release of toxic substances, such as hydrogen sulfide. AIMS: In this study, we evaluated a biological ingredient prepared from fucoidan-rich S. horneri and demonstrated its antiwrinkle effects on ultraviolet B (UVB)-induced fibroblast cells. MATERIALS AND METHODS: Fucoidan samples from S. horneri were prepared according to a previously published process with modifications. The compositional analysis of S. horneri fucoidan extract (SHFE) as well as its effects on antiaging were examined to determine its utility as a functional material. RESULTS: SHFE exhibited antioxidant properties using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. Treatment of UVB-induced fibroblasts with SHFE significantly increased the synthesis of procollagen compared with adenosine treatment and inhibited MMP-1 and MMP-3 expression. In a clinical study, SHFE lotion improved skin barrier effects in forearms and transepidermal water loss (TEWL) values were reduced after 3 weeks of use compared with a placebo. CONCLUSION: SHFE has utility as an additive with functional antiaging effects for a range of cosmetic products as it restores skin hydration in the epidermal barrier.


Assuntos
Sargassum , Humanos , Sargassum/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Antioxidantes/farmacologia , Antioxidantes/química , Colágeno
5.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240208

RESUMO

Sepsis, characterized by an uncontrolled host inflammatory response to infections, remains a leading cause of death in critically ill patients worldwide. Sepsis-associated thrombocytopenia (SAT), a common disease in patients with sepsis, is an indicator of disease severity. Therefore, alleviating SAT is an important aspect of sepsis treatment; however, platelet transfusion is the only available treatment strategy for SAT. The pathogenesis of SAT involves increased platelet desialylation and activation. In this study, we investigated the effects of Myristica fragrans ethanol extract (MF) on sepsis and SAT. Desialylation and activation of platelets treated with sialidase and adenosine diphosphate (platelet agonist) were assessed using flow cytometry. The extract inhibited platelet desialylation and activation via inhibiting bacterial sialidase activity in washed platelets. Moreover, MF improved survival and reduced organ damage and inflammation in a mouse model of cecal ligation and puncture (CLP)-induced sepsis. It also prevented platelet desialylation and activation via inhibiting circulating sialidase activity, while maintaining platelet count. Inhibition of platelet desialylation reduces hepatic Ashwell-Morell receptor-mediated platelet clearance, thereby reducing hepatic JAK2/STAT3 phosphorylation and thrombopoietin mRNA expression. This study lays a foundation for the development of plant-derived therapeutics for sepsis and SAT and provides insights into sialidase-inhibition-based sepsis treatment strategies.


Assuntos
Myristica , Sepse , Trombocitopenia , Camundongos , Animais , Plaquetas/metabolismo , Neuraminidase/metabolismo , Trombocitopenia/tratamento farmacológico , Trombocitopenia/etiologia , Punções/efeitos adversos , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo
6.
Int Immunopharmacol ; 115: 109635, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36580758

RESUMO

The therapeutic benefits of curcuminoids in various diseases have been extensively reported. However, little is known regarding their preventive effects on extensive immunosuppression. We investigated the immunoregulatory effects of a curcuminoid complex (CS/M), solubilized with stevioside, using a microwave-assisted method in a cyclophosphamide (CTX)-induced immunosuppressive mouse model and identified its new pharmacological benefits. CTX-treated mice showed a decreased number of innate cells, such as dendritic cells (DCs), neutrophils, and natural killer (NK) cells, and adaptive immune cells (CD4 and CD8 T cells) in the spleen. In addition, CTX administration decreased T cell activation, especially that of Th1 and CD8 T cells, whereas it increased Th2 and regulatory T (Treg) cell activations. Pre-exposure of CS/M to CTX-induced immunosuppressed mice restored the number of innate cells (DCs, neutrophils, and NK cells) and increased their activity (including the activity of macrophages). Exposure to CS/M also led to the superior restoration of T cell numbers, including Th1, activated CD8 T cells, and multifunctional T cells, suppressed by CTX, along with a decrease in Th2 and Treg cells. Furthermore,CTX-injected mice pre-exposed to CS/M were accompanied by an increase in the levels of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase), which play an essential role against oxidative stress. Importantly, CS/M treatment significantly reduced viral loads in severe acute respiratory syndrome coronavirus2-infected hamsters and attenuated the gross pathology in the lungs. These results provide new insights into the immunological properties of CS/M in preventing extensive immunosuppression and offer new therapeutic opportunities against various cancers and infectious diseases caused by viruses and intracellular bacteria.


Assuntos
COVID-19 , Reconstituição Imune , Animais , Camundongos , Antioxidantes/uso terapêutico , SARS-CoV-2 , Terapia de Imunossupressão/métodos
7.
Molecules ; 27(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080207

RESUMO

We focused on the functional components, antioxidant activity, skin-whitening, and anti-wrinkle properties of subcritical and supercritical water (SCW)-treated rutin. Rutin treatments were performed at the following temperature and pressure conditions: 200 °C/15 bar, 300 °C/100 bar, and 400 °C/250 bar. ABTS and DPPH radical scavenging activities and reducing power presented their highest values (1193.72 mg AAE/g, 728.73 mg AAE/g, and 0.65, respectively) at 300 °C/100 bar. The tyrosinase inhibitory activity of SCW-treated rutin was 21.72-60.05% at 1 mg/mL. The ethyl acetate fraction showed 14.91% melanin inhibitory activity at a concentration of 10 µg/mL compared to the α-MSH treatment group. The protein expression inhibition rates of MITF, tyrosinase, TRP-1, and TRP-2 in the ethyl acetate fractions were 14.05%, 72%, 93.05%, and 53.44%, respectively, at a concentration of 10 µg/mL, compared to the control. These results indicate that SCW treatment could be used to develop cosmetic materials and functional food with physiological activity, and that SCW-treated rutin can be used as a skin-whitening cosmetic material.


Assuntos
Antioxidantes , Monofenol Mono-Oxigenase , Antioxidantes/química , Melaninas/metabolismo , Extratos Vegetais/química , Rutina/farmacologia , Água
8.
J Asian Nat Prod Res ; 24(10): 987-999, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35023793

RESUMO

Aloin is the main anthraquinone glycoside from Aloe species. Here, the anti-inflammatory functions of aloin against lipopolysaccharide (LPS)-induced vascular inflammatory responses were tested in endothelial cells or mice such as permeability, expressions of cell adhesion molecule (CAM), migration of leukocytes and lethality. Aloin was found to inhibit LPS-induced barrier disruption, CAM expression, and neutrophil adhesion/transendothelial migration to endothelial cells. Furthermore, aloin inhibited LPS-induced hyperpermeability, leukocyte migration, lethality in vivo. These results suggest that aloin has anti-inflammatory activities against LPS, thereby supporting its usefulness as a treatment for vascular inflammatory.


Assuntos
Emodina , Lipopolissacarídeos , Camundongos , Animais , Humanos , Lipopolissacarídeos/farmacologia , Células Endoteliais da Veia Umbilical Humana , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL , Estrutura Molecular , Emodina/farmacologia , Anti-Inflamatórios/farmacologia , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/farmacologia
9.
Drug Chem Toxicol ; 45(5): 2109-2115, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33906534

RESUMO

The self-assembled-micelle inhibitory RNA-targeting amphiregulin (SAMiRNA-AREG) is a novel small-interfering RNA (siRNA) nanoparticle that is used for treatment of pulmonary fibrosis. We investigated the potential genotoxicity of SAMiRNA-AREG based on the guidelines published by the Organization for Economic Cooperation and Development. In the bacterial reverse mutation assay (Ames test), SAMiRNA-AREG did not induce mutations in Salmonella typhimurium TA100, TA1535, TA98, and TA1537 and Escherichia coli WP2uvrA at concentrations of up to 3000 µg/plate with or without metabolic activation. The SAMiRNA-AREG (concentrations up to 500 µg/mL) did not induce chromosomal aberrations in cultured Chinese hamster lung cells with or without metabolic activation. In the in vivo mouse bone marrow micronucleus assay, the SAMiRNA-AREG (concentrations up to 300 mg/kg body weight) did not affect the proportions of polychromatic erythrocytes and total erythrocytes, nor did it increase the number of micronucleated polychromatic erythrocytes in ICR mice. Collectively, these results suggest that SAMiRNA-AREG is safe with regard to genotoxicity such as mutagenesis or clastogenesis under the present experimental conditions. These results might support the safety of SAMiRNA-AREG as a potential therapeutic agent for pharmaceutical development.


Assuntos
Micelas , Nanopartículas , Anfirregulina/genética , Animais , Aberrações Cromossômicas , Cricetinae , Cricetulus , Escherichia coli/genética , Camundongos , Camundongos Endogâmicos ICR , Testes para Micronúcleos , Testes de Mutagenicidade , Nanopartículas/toxicidade , RNA Interferente Pequeno/genética
10.
Int J Toxicol ; 40(5): 453-465, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34286615

RESUMO

The present study investigated the potential subchronic toxicity of self-assembled-micelle inhibitory RNA-targeting amphiregulin (SAMiRNA-AREG) in mice. The test reagent was administered once-daily by intravenous injection for 4 weeks at 0, 100, 200, or 300 mg/kg/day doses. Additional recovery groups (vehicle control and high dose groups) were observed for a 2-week recovery period. During the test period, mortality, clinical signs, body weight, food consumption, ophthalmology, urinalysis, hematology, serum biochemistry, gross pathology, organ weight, and histopathology were examined. An increase in the percentages of basophil and large unstained cells was observed in the 200 and 300 mg/kg/day groups of both sexes. In addition, the absolute and relative weights of the spleen were higher in males given 300 mg/kg/day relative to the concurrent controls. However, these findings were considered of no toxicological significance because the changes were minimal, were not accompanied by other relevant results (eg, correlating microscopic changes), and were not observed at the end of the 2-week recovery period indicating recovery of the findings. Based on the results, SAMiRNA-AREG did not cause treatment-related adverse effects at dose levels of up to 300 mg/kg/day in mice after 4-week repeated intravenous doses. Under these conditions, the no-observed-adverse-effect level of the SAMiRNA-AREG was ≥300 mg/kg/day in both sexes and no target organs were identified.


Assuntos
Anfirregulina/administração & dosagem , Nanopartículas/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Anfirregulina/toxicidade , Animais , Feminino , Injeções Intravenosas , Masculino , Camundongos Endogâmicos ICR , Micelas , Nanopartículas/toxicidade , Nível de Efeito Adverso não Observado , RNA Interferente Pequeno/toxicidade , Testes de Toxicidade Subaguda
11.
Front Pharmacol ; 12: 614442, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643046

RESUMO

Alnus hirsuta (Spach) Rupr. (AH), a member of the Betulaceae family, is widely used in Eastern Asia of as a source of medicinal compounds for the treatment of hemorrhage, diarrhea, and alcoholism. In this study, we investigated the protective effects of a methanolic extract of AH branches against airway inflammation and mucus production in tumor necrosis factor (TNF)-α-stimulated NCI-H292 cells and in an ovalbumin (OVA)-challenged allergic asthma mouse model. Female BALB/c mice were injected with OVA (40 µg) and aluminum hydroxide (2 mg) on days 0 and 14 to induce allergic airway inflammation. The mice were then challenged with 1% OVA from days 21-23. Mice were treated with AH (50 and 100 mg/kg/day; 2% DMSO) or dexamethasone (positive control; 3 mg/kg/day) from days 18-23. AH treatment effectively attenuated airway resistance/hyperresponsiveness and reduced levels of T helper type 2 (Th2) cytokines, eotaxins, and number of inflammatory cells in bronchoalveolar lavage fluid, and immunoglobulin E in serums of OVA-challenged mice. In histological analysis, AH treatment significantly inhibited airway inflammation and mucus production in OVA-challenged mice. AH treatment downregulated the phosphorylation of I kappa B-alpha, p65 nuclear factor-kappa B (p65NF-κB), and mitogen-activated protein kinases with suppression of mucin 5AC (MUC5AC) in lung tissue. Moreover, AH treatment decreased the levels of pro-inflammatory cytokines and Th2 cytokines, as well as MUC5AC expression, and inhibited the phosphorylation of p65NF-κB in TNF-α-stimulated NCI-H292 cells. These results indicate that AH might represent a useful therapeutic agent for the treatment of allergic asthma.

12.
J Asian Nat Prod Res ; 23(1): 89-99, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32077313

RESUMO

Human endothelial cells-derived polyphosphate (PolyP) is one of the pro-inflammatory mediators as suggested by the previous reports. Aloin is the major anthraquinone glycoside obtained from the Aloe species and exhibits anti-inflammatory and anti-oxidative activities. Aloin inhibits PolyP-mediated barrier disruption, the expressions of cell adhesion molecules, and adhesion/migration of leukocyte to HUVEC. PolyP-induced NF-κB activation and the productions of TNF-α and IL-6 were inhibited by aloin in HUVECs. These anti-inflammatory functions of aloin were confirmed in PolyP-injected mice. In conclusion, based on the anti-inflammatory effects of aloin in PolyP-mediated septic response, aloin has therapeutic potential for various systemic inflammatory diseases.


Assuntos
Polifosfatos , Fator de Necrose Tumoral alfa , Animais , Emodina/análogos & derivados , Células Endoteliais da Veia Umbilical Humana , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , NF-kappa B/metabolismo
13.
Antioxidants (Basel) ; 9(7)2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32605045

RESUMO

Lindera obtusiloba is widespread in northeast Asia and used for treatment of improvement of blood circulation and anti-inflammation. In this study, we investigated anti-inflammatory and anti-oxidant effects of the methanolic extract of L. obtusiloba leaves (LOL) in an ovalbumin (OVA)-challenged allergic asthma model and tumor necrosis factor (TNF)-α-stimulated NCI-H292 cell. Female BALB/c mice were sensitized with OVA by intraperitoneal injection on days 0 and 14, and airway-challenged with OVA from days 21 to 23. Mice were administered 50 and 100 mg/kg of LOL by oral gavage 1 h before the challenge. LOL treatment effectively decreased airway hyper-responsiveness and inhibited inflammatory cell recruitment, Th2 cytokines, mucin 5AC (MUC5AC) in bronchoalveolar lavage fluid in OVA-challenged mice, which were accompanied by marked suppression of airway inflammation and mucus production in the lung tissue. LOL pretreatment inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) with suppression of activator protein (AP)-1 and MUC5AC in the lung tissue. LOL also down-regulated expression of inflammatory cytokines, and inhibited the activation of NF-κB in TNF-α-stimulated NCI-H292 cells. LOL elevated the translocation of nuclear factor-erythroid 2-related factor (Nrf-2) into nucleus concurrent with increase of heme oxyngenase-1 (HO-1) and NAD(P)H quinine oxidoreductase 1 (NQO1). Moreover, LOL treatment exhibited a marked increase in the anti-oxidant enzymes activities, whereas effectively suppressed the production of reactive oxygen species and nitric oxide, as well as lipid peroxidation in lung tissue of OVA-challenged mice and TNF-α-stimulated NCI-H292 cells. These findings suggest that LOL might serve as a therapeutic agent for the treatment of allergic asthma.

14.
Antioxidants (Basel) ; 9(3)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111036

RESUMO

Spiraea prunifolia var. simpliciflora (SP) is traditionally used as an herbal remedy to treat fever, malaria, and emesis. This study aimed to evaluate the anti-oxidative and anti-inflammatory properties of the methanol extract of SP leaves in tumor necrosis factor (TNF)-α-stimulated NCI-H292 cells and in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. SP decreased the number of inflammatory cells and the levels of TNF-α, interleukin (IL)-1ß, and IL-6 in the bronchoalveolar lavage fluid, and inflammatory cell infiltration in the lung tissues of SP-treated mice. In addition, SP significantly suppressed the mRNA and protein levels of TNF-α, IL-1ß, and IL-6 in TNF-α-stimulated NCI-H292 cells. SP significantly suppressed the phosphorylation of the mitogen-activated protein kinases (MAPKs) and p65-nuclear factor-kappa B (NF-κB) in LPS-induced ALI mice and TNF-α-stimulated NCI-H292 cells. SP treatment enhanced the nuclear translocation of nuclear factor erythroid 2-related factor (Nrf2) with upregulated antioxidant enzymes and suppressed reactive oxygen species (ROS)-mediated oxidative stress in the lung tissues of LPS-induced ALI model and TNF-α-stimulated NCI-H292 cells. Collectively, SP effectively inhibited airway inflammation and ROS-mediated oxidative stress, which was closely related to its ability to induce activation of Nrf2 and inhibit the phosphorylation of MAPKs and NF-κB. These findings suggest that SP has therapeutic potential for the treatment of ALI.

15.
Cells ; 9(3)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164364

RESUMO

Silica dioxide nanoparticles (SiONPs) have been applied to several fields, such as drug delivery and gene therapy. However, SiONPs are a constituent of fine dust and can induce excessive inflammatory responses in the lungs via the airways. Silibinin, a major component of silymarin, has been known for its anti-oxidant and anti-inflammatory effects. In the present study, we explored the protective effects of silibinin against SiONPs-induced airway inflammation and explored its underlying mechanism of action, focusing on thioredoxin-interacting protein (TXNIP)/mitogen-activated protein kinases (MAPKs) in vitro and in vivo. In SiONPs-stimulated NCI-H292 airway epithelial cells, silibinin treatment effectively suppressed the elevation of the mRNA expression of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1ß, which was accompanied by the reduction in the expression of TXNIP, MAPKs, and activator protein-1 (AP-1). In SiONPs-treated mice, silibinin administration inhibited the increase in inflammatory cell counts and proinflammatory mediators, and it alleviated airway inflammation by SiONPs exposure. In addition, silibinin administration effectively suppressed the elevation of TXNIP/MAPKs/AP-1 signaling by SiONPs exposure. Taken together, silibinin effectively inhibited SiONPs-induced inflammatory responses, and this effect was closely related to the inhibition of TXNIP/MAPK/AP-1 signaling. These results suggested that silibinin might be useful for reducing pulmonary inflammation induced by SiONPs.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dióxido de Silício/uso terapêutico , Silibina/uso terapêutico , Animais , Antineoplásicos Fitogênicos/farmacologia , Humanos , Inflamação , Camundongos , Nanopartículas , Transdução de Sinais , Dióxido de Silício/farmacologia , Silibina/farmacologia
16.
Food Chem Toxicol ; 129: 201-210, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31039387

RESUMO

This study investigated the protective effects of melatonin (MT) against cisplatin (CP)-induced acute kidney injury in rats as well as its possible mechanism of action associated with anti-aging protein Klotho. The following four experimental groups were evaluated: vehicle control, CP (7 mg/kg), CP&MT20 (20 mg/kg/day), and CP&MT40 (40 mg/kg/day). The concomitant administration of MT significantly ameliorated CP-induced acute kidney injury in rats, as evidenced by increased kidney weight, increased serum levels of blood urea nitrogen and creatinine, and increased incidence of histopathological alterations with renal tubular cell apoptosis. In addition, MT treatment protected kidney tissue against oxidative damages and significantly upregulated the expression level of Klotho decreased by CP treatment, resulting in reduced phosphorylation of protein kinase B (AKT) and forkhead box O (FOXO) as well as reduced expression levels of B-cell lymphoma 2-associated X protein (Bax) and caspase-3. MT not only partially regulated oxidative stress via AKT/FOXO signaling, but also reduced apoptosis caused by CP by inhibiting the Bax/caspase-3 pathway. Our results indicated that MT could prevent acute kidney injury induced by CP in rats, presumably through upregulating the expression of Klotho, resulting in elevated anti-oxidant and anti-apoptotic properties.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Antineoplásicos/toxicidade , Cisplatino/toxicidade , Melatonina/farmacologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Apoptose/fisiologia , Peso Corporal/efeitos dos fármacos , Caspase 3/metabolismo , Glucuronidase/metabolismo , Glucuronidase/fisiologia , Glutationa/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Proteínas Klotho , Masculino , Malondialdeído/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
17.
Int Immunopharmacol ; 68: 124-130, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30622029

RESUMO

S-Allyl cysteine (SAC) is an active component in garlic and has various pharmacological effects, such as anti-inflammatory, anti-oxidant, and anti-cancer activities. In this study, we explored the suppressive effects of SAC on allergic airway inflammation induced in an ovalbumin (OVA)-induced asthma mouse model. To induce asthma, BALB/c mice were sensitized to OVA on days 0 and 14 by intraperitoneal injection and exposed to OVA from days 21 to 23 using a nebulizer. SAC was administered to mice by oral gavage at a dose of 10 or 20 mg/kg from days 18 to 23. SAC significantly reduced airway hyperresponsiveness, inflammatory cell counts, and Th2 type cytokines in bronchoalveolar lavage fluid induced by OVA exposure, which was accompanied by reduced serum OVA-specific immunoglobulin E. In histological analysis of the lung tissue, administration of SAC reduced inflammatory cell accumulation into lung tissue and mucus production in airway goblet cells induced by OVA exposure. Additionally, SAC significantly decreased MUC5AC expression and nuclear factor-κB phosphorylation induced by OVA exposure. In summary, SAC effectively suppressed allergic airway inflammation and mucus production in OVA-challenged asthmatic mice. Therefore, SAC shows potential for use in treating allergic asthma.


Assuntos
Antiasmáticos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Asma/tratamento farmacológico , Cisteína/análogos & derivados , Eosinofilia/tratamento farmacológico , Alérgenos , Animais , Antiasmáticos/farmacologia , Anti-Inflamatórios/farmacologia , Asma/imunologia , Asma/patologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Cisteína/farmacologia , Cisteína/uso terapêutico , Citocinas/imunologia , Modelos Animais de Doenças , Eosinofilia/imunologia , Eosinofilia/patologia , Feminino , Imunoglobulina E/sangue , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Camundongos Endogâmicos BALB C , Muco/metabolismo , Ovalbumina
18.
Iran J Public Health ; 48(11): 2025-2034, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31970101

RESUMO

BACKGROUND: Kenya AA green coffee bean extracts were tested for natural ingredients used for anti-oxidative and anti-inflammatory purposes in cosmetic products. METHODS: Anti-oxidative activities were measured by total polyphenol, 1,1-diphenyl-2-picrylhydrazyl (DPPH), and the 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. Anti-inflammatory activities were evaluated via nitric oxide (NO) assays, and through quantification of inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) protein expression by western blotting. Data analyses were performed using independent Student's t-tests, with statistical significance set at P < 0.05. RESULTS: Total polyphenol content of water and ethanol extract was 169.0 ± 3.1 mg and 300.34 ± 16.6 mg tannic acid/g dry weight, respectively. The DPPH and ABTS radical scavenging activities of all the extracts were significantly increased in a concentration-dependent manner. Kenya AA green coffee bean extracts were toxic at a concentration of 1,000 µg/mL in RAW 264.7 cells. Anti-inflammatory activity as determined by NO assay showed that lipopolysaccharide (LPS)-induced NO was significantly inhibited following treatment with Kenya AA green coffee bean extracts in a concentration-dependent manner. iNOS and COX-2 protein expression was also significantly inhibited following treatment. CONCLUSION: These results highlight the potential of Kenya AA green coffee bean extracts as a naturally active anti-inflammatory agent in cosmetic products.

19.
J Med Food ; 22(1): 57-61, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30160593

RESUMO

Pelargonidin (PEL) is a well-known red pigment found in plants, and it has been reported to have important biological activities that are potentially beneficial for human health. This study was initiated to determine whether PEL could modulate renal functional damage in a mouse model of sepsis, and to elucidate the underlying mechanisms. The potential of PEL treatment to reduce renal damage induced by cecal ligation and puncture (CLP) surgery in mice was measured by assessment of serum creatinine, blood urea nitrogen (BUN), lipid peroxidation, total glutathione, glutathione peroxidase (GSH-Px) activity, catalase activity, and superoxide dismutase (SOD) activity. Treatment with PEL resulted in elevated plasma levels of BUN and creatinine, and of protein in urine in mice with CLP-induced renal damage. Moreover, PEL inhibited nuclear factor-κB activation and reduced the induction of nitric oxide synthase and excessive production of nitric acid. PEL treatment also reduced the plasma levels of interleukin-6 and tumor necrosis factor-α reduced lethality due to CLP-induced sepsis, increased lipid peroxidation, and markedly enhanced the antioxidant defense system by restoring the levels of SOD, GSH-Px, and catalase in kidney tissues. These results suggested that PEL protects mice against sepsis-triggered renal injury.


Assuntos
Antocianinas/uso terapêutico , Antioxidantes/uso terapêutico , Nefropatias/prevenção & controle , Rim/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/uso terapêutico , Sepse/complicações , Animais , Antocianinas/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Nitrogênio da Ureia Sanguínea , Catalase/metabolismo , Creatinina/sangue , Modelos Animais de Doenças , Glutationa Peroxidase/metabolismo , Humanos , Interleucina-6/sangue , Rim/metabolismo , Nefropatias/etiologia , Nefropatias/metabolismo , Ligadura , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Ácido Nítrico/sangue , Óxido Nítrico Sintase/metabolismo , Extratos Vegetais/farmacologia , Sepse/metabolismo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/sangue
20.
Nanotoxicology ; 12(3): 239-250, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29383958

RESUMO

Use and application of nanoparticles has increased in recent years. Copper oxide nanoparticles (CuONPs) are one of the most common types of nanoparticles, and they are mainly used as catalysts and preservatives. However, limited toxicity data are available on the toxicity of CuONPs to the respiratory system. We investigated fibrotic responses induced by CuONPs in the respiratory tract and elucidated its underlying mechanism of action in vivo and in vitro experiments. In the mouse model, CuONPs exposure markedly increased transforming growth factor-ß1 (TGF-ß1) and collagen I expression and Smad3 phosphorylation, combined with elevation of inflammatory mediators including interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α). These alterations were also observed in histological analysis of lung tissue. CuONPs markedly increased inflammatory responses and collagen deposition, accompanied by the elevation of TGF-ß1 and collagen I expression in lung tissue. In addition, CuONPs-treated H292 cells showed significantly increased mRNA and protein production of TGF-ß1, collagen I, IL-6, and TNF-α; this response was markedly decreased by treatment of a TGF-ß1 inhibitor (SB-431542). Taken together, CuONPs induced fibrotic responses in the respiratory tract, closely related to TGF-ß1/Smad3 signaling. Therefore, our results raise the necessity of further investigation for the present state of its risk by providing useful information of the toxicity of CuONPs.


Assuntos
Colágeno/metabolismo , Cobre/toxicidade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Nanopartículas/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Benzamidas/farmacologia , Células Cultivadas , Dioxóis/farmacologia , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Fator de Crescimento Transformador beta1/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA