Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(51): e202212398, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36268639

RESUMO

The amphiphilic conformation of α-helical peptides has important biological functions, such as ion transport, antifreeze, and innate immunity, which can be mimicked by alternating polyisocyanate copolymers. We synthesized poly(allyl isocyanate-alt-(S)-(-)-α-methylbenzyl isocyanate (P(AIC-alt-SMBIC)) and ammonium-containing P(AIC-alt-SMBIC) (N-P(AIC-alt-SMBIC)), ensuring the amphiphilic helical conformation. The benzyl group of SMBIC plays an important role in alternating copolymerization with its steric and electron-withdrawing effects, while AIC provides an alkene group capable of introducing a customized functional group. The P(AIC-alt-SMBIC) with predominantly alternating sequence was acquired at fSMBIC /fAIC =8 with a controlled molecular weight and narrow dispersity. N-P(AIC-alt-SMBIC)s were synthesized from thiol-ene radical addition with P(AIC-alt-SMBIC).


Assuntos
Polímeros , Poliuretanos , Polimerização , Polímeros/química , Peptídeos , Conformação Molecular
2.
Front Neurosci ; 15: 725398, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690674

RESUMO

Rett syndrome (RTT) is a severe X-linked dominant neurodevelopmental disorder caused by mutations in the methyl-CpG-binding protein 2 (MECP2) gene; MeCP2 regulates the expression of brain-derived neurotrophic factor (BDNF) and increasing BDNF levels ameliorates RTT symptoms. However, the clinical application of BDNF is limited, because of its short half-life and low penetrance across the blood-brain barrier. In this study, we generated BDNF-secreting mesenchymal stem cells (MSCs) from the human umbilical cord cells, using CRISPR-Cas9. We studied the effects of BDNF-MSCs in MECP2 knockout and MECP2-deficient mice. BDNF-MSCs upregulated the expression of BDNF, pAKT, and pERK1/2 and downregulated that of pp38, both in vitro and in vivo. In our in vivo experiments, BDNF-MSCs increased the body and brain weights in mice. BDNF-MSCs increased the neuronal cell numbers in the hippocampus, cortex, and striatum; in addition, they increased the number of synapses. BDNF-MSCs upregulated BDNF and the activity of BDNF downstream effectors, such as pAKT and pERK 1/2; this upregulation was persistent. In conclusion, BDNF-MSCs generated using CRISPR-Cas9 could be a therapeutic strategy for treating RTT.

3.
RSC Adv ; 11(53): 33192-33201, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-35497528

RESUMO

Activated carbon xerogel monoliths were prepared from resorcinol and formaldehyde via a catalyst-free and template-free hydrothermal polycondensation reaction, followed by pyrolysis and activation. The ratio of resorcinol (R) to distilled water (W) was varied to afford an interconnected pore structure with controlled pore size, while the pyrolysis temperature was optimized to give high specific surface area. Activation was carried out at 700 °C after soaking the samples in 6 M KOH aqueous solution. The same process, called "heat treatment", was also carried out without soaking in KOH for comparison. The weight loss upon pyrolysis, activation and heat treatment and the weight gain via KOH soaking were measured. Field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and an N2 sorption instrument were utilized for characterization. Additionally, electrochemical properties were evaluated using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) with a 3-electrode system, while a 2-electrode system was also employed for selected samples. The highest specific capacitance of 323 F g-1 via GCD at 1 A g-1 was obtained at the R/W ratio of 45 and with 500 °C pyrolysis. In addition, this sample also exhibited 89.4% retention at 20 A g-1 in the current density variation and 100% retention in 5000 cycling tests.

4.
Pharmacol Ther ; 209: 107501, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32061705

RESUMO

Genome engineering technologies right from viral vector-mediated to protein-based editing- which include zinc finger nucleases, TALENs, and CRISPR/Cas systems-have been improved significantly. These technologies have facilitated drug discovery and have resulted in the development of potential curative therapies for many intractable diseases. They can efficiently correct genetic errors; however, these technologies have limitations, such as off-target effects and possible safety issues, which need to be considered when employing these techniques in humans. Significant efforts have been made to overcome these limitations and to accelerate the clinical implementation of these technologies. In this review, we focus on the recent technological advancements in genome engineering and their applications in stem cells to enable efficient discovery of drugs and treatment of intractable diseases.


Assuntos
Sistemas CRISPR-Cas/genética , Descoberta de Drogas/tendências , Edição de Genes/tendências , Engenharia Genética/tendências , Terapia Genética/tendências , Transplante de Células-Tronco/tendências , Animais , Descoberta de Drogas/métodos , Edição de Genes/métodos , Engenharia Genética/métodos , Terapia Genética/métodos , Humanos , Transplante de Células-Tronco/métodos , Células-Tronco/fisiologia
5.
Nanoscale ; 11(33): 15641-15646, 2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31408081

RESUMO

Synthesis of a two-dimensional (2D) highly crystalline composite, P(Py:BPDSA:Py)-GO, from the growth of a close-packed polymer crystal, P(Py:BPDSA:Py), on graphene oxide (GO) sheets via in situ polymerization of two-monomer-connected precursors (TMCPs, Py:BPDSA:Py), in which two pyrrole (Py) molecules are linked through a connector (4,4'-biphenyldisulfonic acid) (BPDSA), is reported. When the TMCP is polymerized on GO, it leads to an exceptionally ordered structure determined by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) studies. X-ray crystallography of the composite shows crystalline peaks with d spacings in the [100] direction. Transmission electron microscopy (TEM) analysis indicates that the composite has a face-centered cubic (FCC) crystal structure. Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) show that this composite with a well-defined nanostructure was successfully synthesized. Nitrogen adsorption-desorption isotherms show that this composite, P(Py:BPDSA:Py)-GO, has an improved specific surface area (71 m2 g-1) compared to that of P(Py:BPDSA:Py) (3.1 m2 g-1). The electrochemical properties of the composite studied by cyclic voltammetry indicates a specific capacitance of 480 F g-1 without an additional conducting material such as carbon black, suggesting its use as a pseudocapacitor.

6.
RSC Adv ; 9(17): 9480-9485, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35520742

RESUMO

Monolithic carbon xerogel (MCX) with co-continuous hierarchical porosity was prepared via a one-step, template- and catalyst-free hydrothermal polycondensation reaction with resorcinol (R), formaldehyde (F) and distilled water (W), followed by pyrolysis and CO2 activation. The reaction was carried out in a pressurized Teflon mold at 100 °C for 6 h, while F/R (2.2, 2.4, 2.6, and 2.8) and R/W ratios (40 and 45) were varied to obtain a co-continuous pore structure with interconnected particles. Next, the gels were dried at 60 °C for 36 h and then at 100 °C for 12 h to produce xerogels, which were then subjected to pyrolysis at 900 °C for 2 h and CO2 activation at 1000 °C for 2, 4 or 6 h. A co-continuous pore structure with interconnected particles was observed in gels with F/R = 2.4 and 2.6 at R/W = 40 and with F/R = 2.2 at R/W = 45, but the gel with F/R = 2.4 at R/W = 40 was the only one that showed no crack generation upon 6 h CO2 activation. Thus, this gel was subjected to a N2 sorption study, which resulted in a specific surface area (SSA) of 1418, 2489 and 3418 m2 g-1 at 2, 4 and 6 h activation, respectively. This was attributed to the introduction of micro-pores via activation, which also generated meso- and macro-pores to form hierarchical porosity.

7.
Expert Rev Proteomics ; 15(11): 911-922, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30358457

RESUMO

INTRODUCTION: Human embryonic stem cells (hESCs) have unique biological features and attributes that make them attractive in various areas of biomedical research. With heightened applications, there is an ever increasing need for advancement of proteome analysis. Membrane proteins are one of the most important subset of hESC proteins as they can be used as surface markers. Areas covered: This review discusses commonly used surface markers of hESCs, and provides in-depth analysis of available hESC membrane proteome reports and the existence of these markers in many other cell types, especially cancer cells. Appreciating, existing ambiguity in the definition of a membrane protein, we have attempted a meta analysis of the published membrane protein reports of hESCs by using a combination of protein databases and prediction tools to find the most confident plasma membrane proteins in hESCs. Furthermore, responsiveness of plasma membrane proteins to differentiation has been discussed based on available transcriptome profiling data bank. Expert commentary: Combined transcriptome and membrane proteome analysis highlighted additional proteins that may eventually find utility as new cell surface markers.


Assuntos
Biomarcadores/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Proteínas de Membrana/metabolismo , Biomarcadores/análise , Biotina/metabolismo , Adesão Celular , Membrana Celular/metabolismo , Enzimas/metabolismo , Perfilação da Expressão Gênica , Humanos , Canais Iônicos/metabolismo , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Proteômica/métodos , Frações Subcelulares
8.
Mol Cell Proteomics ; 17(9): 1670-1684, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29848781

RESUMO

Despite the progress in safety and efficacy of cell replacement therapy with pluripotent stem cells (PSCs), the presence of residual undifferentiated stem cells or proliferating neural progenitor cells with rostral identity remains a major challenge. Here we report the generation of a LIM homeobox transcription factor 1 alpha (LMX1A) knock-in GFP reporter human embryonic stem cell (hESC) line that marks the early dopaminergic progenitors during neural differentiation to find reliable membrane protein markers for isolation of midbrain dopaminergic neurons. Purified GFP positive cells in vitro exhibited expression of mRNA and proteins that characterized and matched the midbrain dopaminergic identity. Further quantitative proteomics analysis of enriched LMX1A+ cells identified several membrane-associated proteins including a polysialylated embryonic form of neural cell adhesion molecule (PSA-NCAM) and contactin 2 (CNTN2), enabling prospective isolation of LMX1A+ progenitor cells. Transplantation of human-PSC-derived purified CNTN2+ progenitors enhanced dopamine release from transplanted cells in the host brain and alleviated Parkinson's disease-related phenotypes in animal models. This study establishes an efficient approach for purification of large numbers of human-PSC-derived dopaminergic progenitors for therapeutic applications.


Assuntos
Biomarcadores/metabolismo , Membrana Celular/metabolismo , Separação Celular/métodos , Neurônios Dopaminérgicos/transplante , Células-Tronco Embrionárias/citologia , Doença de Parkinson/terapia , Animais , Diferenciação Celular , Contactina 2/metabolismo , Modelos Animais de Doenças , Células-Tronco Embrionárias/metabolismo , Feminino , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas com Homeodomínio LIM/metabolismo , Doença de Parkinson/patologia , Proteômica , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo
9.
Stem Cell Reports ; 10(3): 848-859, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29503094

RESUMO

The LIM-homeodomain transcription factor ISL1 marks multipotent cardiac progenitors that give rise to cardiac muscle, endothelium, and smooth muscle cells. ISL1+ progenitors can be derived from human pluripotent stem cells, but the inability to efficiently isolate pure populations has limited their characterization. Using a genetic selection strategy, we were able to highly enrich ISL1+ cells derived from human embryonic stem cells. Comparative quantitative proteomic analysis of enriched ISL1+ cells identified ALCAM (CD166) as a surface marker that enabled the isolation of ISL1+ progenitor cells. ALCAM+/ISL1+ progenitors are multipotent and differentiate into cardiomyocytes, endothelial cells, and smooth muscle cells. Transplantation of ALCAM+ progenitors enhances tissue recovery, restores cardiac function, and improves angiogenesis through activation of AKT-MAPK signaling in a rat model of myocardial infarction, based on cardiac MRI and histology. Our study establishes an efficient method for scalable purification of human ISL1+ cardiac precursor cells for therapeutic applications.


Assuntos
Células-Tronco Embrionárias/citologia , Proteínas com Homeodomínio LIM/metabolismo , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Masculino , Camundongos , Infarto do Miocárdio/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos de Músculo Liso , Proteômica/métodos , Ratos , Ratos Sprague-Dawley , Células-Tronco/metabolismo
10.
Oncotarget ; 9(4): 5155-5168, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29435169

RESUMO

DNA Directed Polymerase Zeta Catalytic Subunit (REV3L) has recently emerged as an important oncogene. Although the expressions of REV3L are similar in normal and cancer cells, several mutations in REV3L have been shown to play important roles in cancer. These mutations cause proteins misfolding and mislocalization, which in turn alters their interactions and biological functions. miRNAs play important regulatory roles during the progression and metastasis of several human cancers. This study was undertaken to determine how changes in the location and interactions of REV3L regulate colon cancer progression. REV3L protein mislocalization confirmed from the immunostaining results and the known interactions of REV3L was found to be broken as seen from the PLA assay results. The mislocalized REV3L might interact with new proteins partners in the cytoplasm which in turn may play role in regulating colon cancer progression. hsa-miR-340 (miR-340), a microRNA down-regulated in colon cancer, was used to bind to and downregulate REV3L, and found to control the proliferation and induce the apoptosis of colon cancer cells (HCT-116 and DLD-1) via the MAPK pathway. Furthermore, this down-regulation of REV3L also diminished colon cancer cell migration, and down-regulated MMP-2 and MMP-9. Combined treatment of colon cancer cells with miR-340 and 5-FU enhanced the inhibitory effects of 5-FU. In addition, in vivo experiments conducted on nude mice revealed tumor sizes were smaller in a HCT-116-miR-340 injected group than in a HCT-116-pCMV injected group. Our findings suggest mutations in REV3L causes protein mislocalization to the cytoplasm, breaking its interaction and is believed to form new protein interactions in cytoplasm contributing to colon cancer progression. Accordingly, microRNA-340 appears to be a good candidate for colon cancer therapy.

11.
Sci Rep ; 7(1): 11593, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912521

RESUMO

Post-ischemic reperfusion injury (PIRI) triggers an intense inflammatory response which is essential for repair but is also implicated in pathogenesis of post-ischemic remodeling in several organs in human. Stem cell therapy has recently emerged as a promising method for treatment of PIRI in human. However, satisfactory results have not been reported due to severe loss of injected stem cells in PIRI including critical limb ischemia (CLI). For investigating the advanced glycation end-product-albumin (AGE-albumin) from activated macrophages is critical in both muscle cell and stem cell death, we evaluated the recovery of PIRI-CLI by injection of human bone marrow derived mesenchymal stem cells (hBD-MSCs) with or without soluble receptor for AGEs (sRAGE). Our results showed that activated M1 macrophages synthesize and secrete AGE-albumin, which induced the skeletal muscle cell death and injected hBD-MSCs in PIRI-CLI through RAGE increase. Combined injection of sRAGE and hBD-MSCs resulted in enhanced survival of hBD-MSCs and angiogenesis in PIRI-CLI mice. Taken together, AGE-albumin from activated macrophages is critical for both skeletal muscle cell and hBD-MSCs death in PIRI-CLI. Therefore, the inhibition of AGE-albumin from activated macrophages could be a successful therapeutic strategy for treatment of PIRI including CLI with or without stem cell therapy.


Assuntos
Comunicação Celular , Sobrevivência Celular , Produtos Finais de Glicação Avançada/metabolismo , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Albuminas , Animais , Morte Celular , Modelos Animais de Doenças , Humanos , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Neovascularização Patológica/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/terapia
12.
Pharmacol Ther ; 177: 44-55, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28223234

RESUMO

Advanced glycation end products (AGEs) and their receptor have been implicated in the progressions of many intractable diseases, such as diabetes and atherosclerosis, and are also critical for pathologic changes in chronic degenerative diseases, such as Alzheimer's disease, Parkinson's disease, and alcoholic brain damage. Recently activated macrophages were found to be a source of AGEs, and the most abundant form of AGEs, AGE-albumin excreted by macrophages has been implicated in these diseases and to act through common pathways. AGEs inhibition has been shown to prevent the pathogenesis of AGEs-related diseases in human, and therapeutic advances have resulted in several agents that prevent their adverse effects. Recently, anti-inflammatory molecules that inhibit AGEs have been shown to be good candidates for ameliorating diabetic complications as well as degenerative diseases. This review was undertaken to present, discuss, and clarify current understanding regarding AGEs formation in association with macrophages, different diseases, therapeutic and diagnostic strategy and links with RAGE inhibition.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Macrófagos/metabolismo , Humanos , Inflamação/metabolismo , Doenças Neurodegenerativas/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo
13.
Nat Commun ; 7: 12803, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27640812

RESUMO

The design of crystalline polymers is intellectually stimulating and synthetically challenging, especially when the polymerization of any monomer occurs in a linear dimension. Such linear growth often leads to entropically driven chain entanglements and thus is detrimental to attempts to realize the full potential of conjugated molecular structures. Here we report the polymerization of two-monomer-connected precursors (TMCPs) in which two pyrrole units are linked through a connector, yielding highly crystalline polymers. The simultaneous growth of the TMCP results in a close-packed crystal in polypyrrole (PPy) at the molecular scale with either a hexagonal close-packed or face-centred cubic structure, as confirmed by high-voltage electron microscopy, and the structure that formed could be controlled by simply changing the connector. The electrical conductivity of the TMCP-based PPy is almost 35 times that of single-monomer-based PPy, demonstrating its promise for application in diverse fields.

14.
Cell Transplant ; 25(12): 2129-2144, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27442084

RESUMO

Oligodendrocytes play a crucial role in creating the myelin sheath that is an important component in neural transmission. In an animal model of transient cerebral ischemia, application of oligodendrocyte progenitor cells (OPCs) has not yet been reported. In this study, the effects of F3.Olig2 transplantation on memory and cognitive dysfunction were investigated in the aged gerbil in which ischemic stroke was induced. To investigate the possible mechanisms underlying repair, changes in the expression of myelin basic protein (MBP), oligodendrocyte-specific protein (OSP), and brain-derived neurotrophic factor (BDNF) were examined. Experimental ischemic stroke was induced by occlusion of bilateral common carotid arteries in aged gerbils. Gerbils (n=31 per group) were randomly divided into three groups: (1) vehicle sham group, (2) vehicle ischemia group, and (3) F3.Olig2 ischemia group. After 1, 3, and 7 days of ischemiareperfusion (I-R), saline or F3.Olig2 cells (1106 cells in 100 l) were injected into the gerbils intravenously. The gerbils were sacrificed 10 days after I-R for identification of grafted F3.Olig2 cells, and 15 and 30 days after I-R for tissue analysis after conducting passive avoidance and novel object recognition test. Injected F3.Olig2 cells and MBP, OSP, and BDNF were detected by specific antibodies using immunohistochemistry and/or Western blots. Memory and cognition were significantly increased in the F3.Olig2 ischemia group compared with the vehicle ischemia group. In the F3.Olig2 ischemia group, the neurons were not protected from ischemic damage; however, MBP, OSP, and BDNF expressions were significantly increased. Our results show that injection of F3.Olig2 cells significantly improved impaired memory and cognition, which might be related to increased MBP expression via increasing OSP and BDNF expression in the aged gerbil hippocampus following transient cerebral ischemia.


Assuntos
Ataque Isquêmico Transitório/terapia , Células-Tronco Neurais/citologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular , Claudinas/metabolismo , Gerbillinae , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Humanos , Imuno-Histoquímica , Ataque Isquêmico Transitório/metabolismo , Masculino , Proteína Básica da Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/transplante , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/terapia
15.
Langmuir ; 23(26): 12817-20, 2007 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-18031073

RESUMO

Water-in-oil (W/O) emulsion-induced micelles with narrow size distributions of approximately 140 nm were prepared by sonicating the polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer in the toluene/water (50:1 vol %). The ordered nanoporous block copolymer films with the hydrophilic P2VP interior and the PS matrix were distinctly fabricated by casting the resultant solution on substrates, followed by evaporating the organic solvent and water. The porous diameter was estimated to be about 70 nm. Here, we successfully prepared the open nanoporous nanocomposites, the P2VP domain decorated by Au (5+/-0.4 nm) nanoparticles based on the methodology mentioned. We anticipate that this novelty enhances the specific function of nanoporous films.


Assuntos
Emulsões , Ouro/química , Micelas , Nanoestruturas , Polímeros/química , Tensão Superficial , Termodinâmica , Água/química
16.
Bioresour Technol ; 97(3): 494-9, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15882942

RESUMO

Saw dust-reinforced linear low density polyethylene (LLDPE) (1:1) composites were prepared by using ethylene-vinyl alcohol copolymer (EVAL) as adhesion promoter to improve mechanical strength. To evaluate the optimum vinylalcohol (VA) content in EVAL, various EVAL samples containing different contents of VA were used. The tensile properties of saw dust-LLDPE composites were improved by using EVAL as adhesion promoter in place of ethylene-vinyl acetate copolymer (EVAc). The saw dust-LLDPE composites prepared with EVAL containing 15 mol% VA showed the maximum yield stress and modulus. The tensile stress increased with addition of EVAL up to 3wt% on the wood filler, and then leveled off in the range of 3-10 wt%. However, the elongation was decreased with increasing VA content. Hydrogen bonding interaction between saw dust and EVAL was detected by FT-IR spectra. When EVAL consisting with 15 mol% VA was used, good adhesion between saw dust and LLDPE matrix was confirmed by SEM fractography.


Assuntos
Adesivos/química , Polietileno/química , Polivinil/química , Madeira , Adesividade , Hidrólise , Teste de Materiais , Mecânica , Microscopia Eletrônica de Varredura , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier
17.
J Nanosci Nanotechnol ; 6(11): 3594-8, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17252818

RESUMO

The polystyrene-poly(arylene ether sulfone)-polystyrene (PS-PAES-PS) coil-semirod-coil triblock copolymer was synthesized by the condensation reaction of PS-COCI and H2N-PAES-NH2 telechelic polymers. The reaction was facile characterized by high yields with a perfect control over the block lengths. Following a known reaction protocol it was possible to selectively sulfonate the PS block of the triblock copolymer that led to the sulfonated copolymer sPS-PAES-sPS. Studies on its proton conductivity and methanol permeability were carried out to evaluate its use as the proton exchange membrane in direct methanol fuel cells. Proton conductivity of the membranes was increased depending on the sulfonic acid group content in the sulfonated polymer. The membranes exhibited good dimensional and thermal stability, and low methanol permeability compared to Nafion 117.


Assuntos
Eletroquímica/métodos , Metanol/química , Nanotecnologia/métodos , Polímeros/química , Poliestirenos/química , Materiais Biocompatíveis/química , Cloretos/química , Teste de Materiais , Membranas/química , Modelos Químicos , Prótons , Enxofre/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA