Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Neurobiol ; 32(4): 247-258, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37749926

RESUMO

Non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1), also known as growth differentiation factor-15 (GDF-15), is associated with cancer, diabetes, and inflammation, while there is limited understanding of the role of NAG-1 in nociception. Here, we examined the nociceptive behaviors of NAG-1 transgenic (TG) mice and wild-type (WT) littermates. Mechanical sensitivity was evaluated by using the von Frey filament test, and thermal sensitivity was assessed by the hot-plate, Hargreaves, and acetone tests. c-Fos, glial fibrillary acidic protein (GFAP), and ionized calcium binding adaptor molecule-1 (Iba-1) immunoreactivity was examined in the spinal cord following observation of the formalin-induced nociceptive behaviors. There was no difference in mechanical or thermal sensitivity for NAG-1 TG and WT mice. Intraplantar formalin injection induced nociceptive behaviors in both male and female NAG-1 TG and WT mice. The peak period in the second phase was delayed in NAG-1 TG female mice compared with that of WT female mice, while there was no difference in the cumulative time of nociceptive behaviors between the two groups of mice. Formalin increased spinal c-Fos immunoreactivity in both TG and WT female mice. Neither GFAP nor Iba-1 immunoreactivity was increased in the spinal cord of TG and WT female mice. These findings indicate that NAG-1 TG mice have comparable baseline sensitivity to mechanical and thermal stimulation as WT mice and that NAG-1 in female mice may have an inhibitory effect on the second phase of inflammatory pain. Therefore, it could be a novel target to inhibit central nervous system response in pain.

2.
Brain Res Bull ; 178: 69-81, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34813897

RESUMO

Recent studies have revealed that glial sigma-1 receptor (Sig-1R) in the spinal cord may be a critical factor to mediate sensory function. However, the functional role of Sig-1R in astrocyte has not been clearly elucidated. Here, we determined whether Sig-1Rs modulate calcium responses in primary cultured astrocytes and pathological changes in spinal astrocytes, and whether they contribute to pain hypersensitivity in naïve mice and neuropathic pain following chronic constriction injury (CCI) of the sciatic nerve in mice. Sig-1R was expressed in glial fibrillary acidic protein (GFAP)-positive cultured astrocytes. Treatment with the Sig-1R agonist, PRE-084 or neurosteroid dehydroepiandrosterone (DHEA) increased intracellular calcium responses in cultured astrocytes, and this increase was blocked by the pretreatment with the Sig-1R antagonist, BD-1047 or neurosteroid progesterone. Intrathecal administration of PRE-084 or DHEA for 10 days induced mechanical and thermal hypersensitivity and increased the number of Sig-1R-immunostained GFAP-positive cells in the superficial dorsal horn (SDH) region of the spinal cord in naïve mice, and these changes were inhibited by administration with BD-1047 or progesterone. In CCI mice, intrathecal administration of BD-1047 or progesterone at post-operative day 14 suppressed the developed mechanical allodynia and the number of Sig-1R-immunostained GFAP-positive cells that were increased in the SDH region of the spinal cord following CCI of the sciatic nerve. These results demonstrate that Sig-1Rs play an important role in the modulation of intracellular calcium responses in cultured astrocytes and pathological changes in spinal astrocytes and that administration of BD-1047 or progesterone alleviates the Sig-1R-induced pain hypersensitivity and the peripheral nerve injury-induced mechanical allodynia.


Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Neuroesteroides/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Receptores sigma/metabolismo , Medula Espinal/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Camundongos , Neuralgia/tratamento farmacológico , Neuralgia/fisiopatologia , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Traumatismos dos Nervos Periféricos/fisiopatologia , Progesterona/farmacologia , Receptores sigma/antagonistas & inibidores , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiopatologia , Receptor Sigma-1
3.
Biomed Pharmacother ; 144: 112272, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34607109

RESUMO

The sigma-1 receptor (Sig-1R) plays an important role in spinal pain transmission by increasing phosphorylation of the N-methyl-D-aspartate (NMDA) receptor GluN1 subunit (pGluN1). As a result Sig-1R has been suggested as a novel therapeutic target for prevention of chronic pain. Here we investigated whether interleukin-1ß (IL-1ß) modulates the expression of the Sig-1R in spinal astrocytes during the early phase of nerve injury, and whether this modulation affects spinal pGluN1 expression and the development of neuropathic pain following chronic constriction injury (CCI) of the sciatic nerve. Repeated intrathecal (i.t.) administration of IL-1ß from days 0-3 post-surgery significantly reduced the increased pGluN1 expression at the Ser896 and Ser897 sites in the ipsilateral spinal cord, as well as, the development of mechanical allodynia and thermal hyperalgesia in the ipsilateral hind paw of CCI mice, which were restored by co-administration of IL-1 receptor antagonist with IL-1ß. Sciatic nerve injury increased the expression of Sig-1R in astrocytes of the ipsilateral spinal cord, and this increase was suppressed by i.t. administration of IL-1ß. Agonistic stimulation of the Sig-1R with PRE084 restored pGluN1 expression and the development of mechanical allodynia that were originally suppressed by IL-1ß in CCI mice. Collectively these results demonstrate that IL-1ß administration during the induction phase of neuropathic pain produces an analgesic effect on neuropathic pain development by controlling the expression of Sig-1R in spinal astrocytes.


Assuntos
Analgésicos/administração & dosagem , Astrócitos/efeitos dos fármacos , Hiperalgesia/prevenção & controle , Interleucina-1beta/administração & dosagem , Neuralgia/prevenção & controle , Limiar da Dor/efeitos dos fármacos , Receptores sigma/metabolismo , Medula Espinal/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Injeções Espinhais , Masculino , Camundongos Endogâmicos ICR , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Fosforilação , Receptores de N-Metil-D-Aspartato/metabolismo , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Receptor Sigma-1
4.
Front Pharmacol ; 10: 1439, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866864

RESUMO

Research indicates that neurosteroids are locally synthesized in the central nervous system and play an important modulatory role in nociception. While the neurosteroidogenic enzyme, cytochrome P450 side-chain cleavage enzyme (P450scc), is the initiating enzyme of steroidogenesis, P450scc has not been examined under the pathophysiological conditions associated with peripheral neuropathy. Thus, we investigated whether chronic constriction injury (CCI) of the sciatic nerve increases the expression of P450scc in the spinal cord and whether this increase modulates serine racemase (Srr) expression and D-serine production contributing to the development of neuropathic pain. CCI increased the immunoreactivity of P450scc in astrocytes of the ipsilateral lumbar spinal cord dorsal horn. Intrathecal administration of the P450scc inhibitor, aminoglutethimide, during the induction phase of neuropathic pain (days 0 to 3 post-surgery) significantly suppressed the CCI-induced development of mechanical allodynia and thermal hyperalgesia, the increased expression of astrocyte Srr in both the total and cytosol levels, and the increases in D-serine immunoreactivity at day 3 post-surgery. By contrast, intrathecal administration of aminoglutethimide during the maintenance phase of pain (days 14 to 17 post-surgery) had no effect on the developed neuropathic pain nor the expression of spinal Srr and D-serine immunoreactivity at day 17 post-surgery. Intrathecal administration of exogenous D-serine during the induction phase of neuropathic pain (days 0 to 3 post-surgery) restored the development of mechanical allodynia, but not the thermal hyperalgesia, that were suppressed by aminoglutethimide administration. Collectively, these results demonstrate that spinal P450scc increases the expression of astrocyte Srr and D-serine production, ultimately contributing to the development of mechanical allodynia induced by peripheral nerve injury.

5.
Biomed Pharmacother ; 118: 109299, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31387001

RESUMO

We have recently demonstrated that the neurosteroid-metabolizing enzyme, cytochrome P450c17 is increased in spinal astrocytes contributing to the development of mechanical allodynia in chronic constriction injury (CCI)-induced neuropathic mice. However, the mechanisms by which spinal P450c17 modulates pathological changes in astrocytes remain unclear. In this study we investigated whether P450c17 modulates astrocyte activation and whether this process is mediated by spinal p38 mitogen-activated protein kinase phosphorylation ultimately leading to the development of mechanical allodynia in CCI mice. Sciatic nerve injury induced a significant increase in glial fibrillary acidic protein (GFAP) expression in the superficial dorsal horn (SDH, laminae I-II) and nucleus proprius (NP, laminae III-IV) regions of the spinal cord dorsal horn. Repeated daily (from days 0-3 post-surgery) intrathecal administration of the P450c17 inhibitor, ketoconazole (10 nmol) significantly inhibited the CCI-induced increase in GFAP-immunoreactivity, but had no effect on the CCI-induced increase in Iba-1-immunoreactivity. In addition, intrathecal administration of ketoconazole significantly inhibited the CCI-induced increase in p38 phosphorylation, while the levels of ERK and JNK phosphorylation remained unchanged. The CCI-induced development of mechanical allodynia was attenuated by administration of either ketoconazole (10 nmol) or the p38 MAPK inhibitor, SB203580 (5 nmol). Administration of a sub-effective dose of SB203580 (0.5 nmol) potentiated the pharmacological effect of ketoconazole (1 nmol) on spinal GFAP-immunostaining, as well as, the development of mechanical allodynia following CCI. Collectively these data suggest that spinal P450c17 activates astrocytes via p38 phosphorylation, ultimately leading to the development of mechanical allodynia in a model of peripheral neuropathy.


Assuntos
Astrócitos/enzimologia , Neuralgia/enzimologia , Neuralgia/patologia , Medula Espinal/patologia , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Constrição Patológica , Modelos Animais de Doenças , Hiperalgesia/complicações , Hiperalgesia/patologia , Imidazóis/farmacologia , Cetoconazol/administração & dosagem , Cetoconazol/farmacologia , Vértebras Lombares/enzimologia , Vértebras Lombares/patologia , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microglia/patologia , Fosforilação/efeitos dos fármacos , Piridinas/farmacologia , Corno Dorsal da Medula Espinal/enzimologia , Corno Dorsal da Medula Espinal/patologia , Esteroide 17-alfa-Hidroxilase/metabolismo
6.
Front Mol Neurosci ; 12: 153, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281242

RESUMO

We have recently demonstrated that sciatic nerve injury increases the expression of spinal cytochrome P450c17, a key neurosteroidogenic enzyme, which plays a critical role in the development of peripheral neuropathic pain. However, the modulatory mechanisms responsible for the expression of spinal P450c17 have yet to be examined. Here we investigated the possible involvement of interleukin-1ß (IL-1ß) in altering P450c17 expression during the induction phase of neuropathic pain. Neuropathic pain was produced by chronic constriction injury (CCI) of the right sciatic nerve in mice and mechanical allodynia was evaluated in the hind paws using a von-Frey filament (0.16 g). Western blotting and immunohistochemistry were performed to assess the expression of spinal IL-1ß, interleukin-1 receptor type 1 (IL-1R1), P450c17, and GFAP. Spinal IL-1ß was significantly increased on day 1 post-surgery and its receptor, IL-1R1 was expressed in GFAP-positive astrocytes. Intrathecal administration of the recombinant interleukin-1 receptor antagonist (IL-1ra, 20 ng) on days 0 and 1 post-surgery enhanced GFAP expression on day 1 post-surgery and induced an early increase in P450c17 expression in astrocytes, but not in neurons. Administration of IL-1ß (10 ng) on days 0 and 1 post-surgery blocked the enhancement of both spinal P450c17 and GFAP expression induced by IL-1ra (20 ng) administration. Intrathecal administration of IL-1ra (20 ng) on days 0 to 3 post-surgery also facilitated the CCI-induced development of mechanical allodynia, and this early developed pain was dose-dependently attenuated by the administration of the P450c17 inhibitor, ketoconazole (1, 3, or 10 nmol) or the astrocyte metabolic inhibitor, fluorocitrate (0.01, 0.03, or 0.1 nmol). These results demonstrate that early increases in spinal IL-1ß temporally inhibit astrocyte P450c17 expression and astrocyte activation ultimately controlling the development of mechanical allodynia induced by peripheral nerve injury. These findings imply that spinal IL-1ß plays an important role as an early, but transient, control mechanism in the development of peripheral neuropathic pain via the inhibition of astrocyte P450c17 expression and astrocyte activation.

7.
Mol Pain ; 15: 1744806919843046, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30900515

RESUMO

Spinal D-serine plays an important role in nociception via an increase in phosphorylation of the N-Methyl-D-aspartate (NMDA) receptor GluN1 subunit (pGluN1). However, the cellular mechanisms underlying this process have not been elucidated. Here, we investigate the possible role of neuronal nitric oxide synthase (nNOS) in the D-serine-induced potentiation of NMDA receptor function and the induction of neuropathic pain in a chronic constriction injury (CCI) model. Intrathecal administration of the serine racemase inhibitor, L-serine O-sulfate potassium salt (LSOS) or the D-serine degrading enzyme, D-amino acid oxidase (DAAO) on post-operative days 0-3 significantly reduced the CCI-induced increase in nitric oxide (NO) levels and nicotinamide adenine dinucleotide phosphate-diaphorase staining in lumbar dorsal horn neurons, as well as the CCI-induced decrease in phosphorylation (Ser847) of nNOS (pnNOS) on day 3 post-CCI surgery. LSOS or DAAO administration suppressed the CCI-induced development of mechanical allodynia and protein kinase C (PKC)-dependent (Ser896) phosphorylation of GluN1 on day 3 post-surgery, which were reversed by the co-administration of the NO donor, 3-morpholinosydnonimine hydrochloride (SIN-1). In naïve mice, exogenous D-serine increased NO levels via decreases in pnNOS. D-serine-induced increases in mechanical hypersensitivity, NO levels, PKC-dependent pGluN1, and NMDA-induced spontaneous nociception were reduced by pretreatment with the nNOS inhibitor, 7-nitroindazole or with the NMDA receptor antagonists, 7-chlorokynurenic acid and MK-801. Collectively, we show that spinal D-serine modulates nNOS activity and concomitant NO production leading to increases in PKC-dependent pGluN1 and ultimately contributing to the induction of mechanical allodynia following peripheral nerve injury.


Assuntos
Astrócitos/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Serina/farmacologia , Animais , Western Blotting , D-Aminoácido Oxidase/metabolismo , Hiperalgesia/etiologia , Masculino , Camundongos , Molsidomina/análogos & derivados , Molsidomina/farmacologia , N-Metilaspartato/metabolismo , Neuralgia/etiologia , Fosforilação/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/análogos & derivados , Serina/metabolismo
8.
Neurosci Lett ; 703: 156-161, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-30926374

RESUMO

It has been suggested that interactions of neuronal nitric oxide synthase (nNOS) with postsynaptic density 95 (PSD95) play important roles in the development of chronic neuropathic pain. Here we examine the possible role of nNOS-PSD95 interactions in central sensitization as represented by phosphorylation of the NMDA receptor GluN1 subunit (pGluN1) in mice with chronic constriction injury (CCI) of the sciatic nerve. Intrathecal administration of the nNOS-PSD95 interactions inhibitor, IC87201 on post-operative days 0-3 significantly reduced the CCI-induced increase in total NO levels in the lumbar spinal cord dorsal horn. IC87201 administration on post-operative days 0-3 also attenuated the CCI-induced development of mechanical allodynia (MA) and PKC-dependent (Ser896) pGluN1. Sciatic nerve injury elicited a significant translocation of the PKC-ε isoform from the cytosol to the membrane fraction in the lumbar spinal cord dorsal horn on day 3 post-CCI surgery. Administration of IC87201 significantly inhibited this translocation of PKC-ε, while the expression of PKC-α and -ξ in the cytosol and membrane fractions was unaffected by sciatic nerve injury or injection of IC87201. Furthermore, administration of the PKC-ε inhibitor, εV1-2 on post-operative days 0-3 attenuated the CCI-induced development of MA and pGluN1. Collectively these results demonstrate that spinal nNOS-PSD95 interactions play an important role in PKC-dependent GluN1 phosphorylation via activation of the PKC-ε isoform, and ultimately contributes to the development of MA in peripheral neuropathy.


Assuntos
Proteína 4 Homóloga a Disks-Large/metabolismo , Hiperalgesia/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Proteína Quinase C-épsilon/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Ativação Enzimática , Isoenzimas/metabolismo , Masculino , Camundongos Endogâmicos ICR , Fosforilação , Estimulação Física , Nervo Isquiático/lesões , Tato
9.
Neuropharmacology ; 149: 169-180, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30797030

RESUMO

While evidence indicates that sigma-1 receptors (Sig-1Rs) play an important role in the induction of peripheral neuropathic pain, there is limited understanding of the role that the neurosteroidogenic enzymes, which produce Sig-1R endogenous ligands, play during the development of neuropathic pain. We examined whether sciatic nerve injury upregulates the neurosteroidogenic enzymes, cytochrome P450c17 and 3ß-hydroxysteroid dehydrogenase (3ß-HSD), which modulate the expression and/or activation of Sig-1Rs leading to the development of peripheral neuropathic pain. Chronic constriction injury (CCI) of the sciatic nerve induced a significant increase in the expression of P450c17, but not 3ß-HSD, in the ipsilateral lumbar spinal cord dorsal horn at postoperative day 3. Intrathecal administration of the P450c17 inhibitor, ketoconazole during the induction phase of neuropathic pain (day 0 to day 3 post-surgery) significantly reduced the development of mechanical allodynia and thermal hyperalgesia in the ipsilateral hind paw. However, administration of the 3ß-HSD inhibitor, trilostane had no effect on the development of neuropathic pain. Sciatic nerve injury increased astrocyte Sig-1R expression as well as dissociation of Sig-1Rs from BiP in the spinal cord. These increases were suppressed by administration of ketoconazole, but not by administration of trilostane. Co-administration of the Sig-1R agonist, PRE084 restored the development of mechanical allodynia originally suppressed by the ketoconazole administration. However, ketoconazole-induced inhibition of thermal hyperalgesia was not affected by co-administration of PRE084. Collectively these results demonstrate that early activation of P450c17 modulates the expression and activation of astrocyte Sig-1Rs, ultimately contributing to the development of mechanical allodynia induced by peripheral nerve injury.


Assuntos
Hiperalgesia/metabolismo , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Receptores sigma/metabolismo , Medula Espinal/enzimologia , Esteroide 17-alfa-Hidroxilase/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Astrócitos , Di-Hidrotestosterona/análogos & derivados , Di-Hidrotestosterona/farmacologia , Modelos Animais de Doenças , Hiperalgesia/induzido quimicamente , Hiperalgesia/enzimologia , Hiperalgesia/prevenção & controle , Cetoconazol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neuralgia/enzimologia , Neuroesteroides/metabolismo , Traumatismos dos Nervos Periféricos/induzido quimicamente , Traumatismos dos Nervos Periféricos/enzimologia , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/patologia , Receptores sigma/agonistas , Nervo Isquiático/enzimologia , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/metabolismo , Receptor Sigma-1
10.
J Vet Sci ; 19(5): 708-715, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-29929357

RESUMO

Respiratory inflammation is a frequent and fatal pathologic state encountered in veterinary medicine. Although diluted bee venom (dBV) has potent anti-inflammatory effects, the clinical use of dBV is limited to several chronic inflammatory diseases. The present study was designed to propose an acupoint dBV treatment as a novel therapeutic strategy for respiratory inflammatory disease. Experimental pleurisy was induced by injection of carrageenan into the left pleural space in mouse. The dBV was injected into a specific lung meridian acupoint (LU-5) or into an arbitrary non-acupoint located near the midline of the back in mouse. The inflammatory responses were evaluated by analyzing inflammatory indicators in pleural exudate. The dBV injection into the LU-5 acupoint significantly suppressed the carrageenan-induced increase of pleural exudate volume, leukocyte accumulation, and myeloperoxidase activity. Moreover, dBV acupoint treatment effectively inhibited the production of interleukin 1 beta, but not tumor necrosis factor alpha in the pleural exudate. On the other hand, dBV treatment at non-acupoint did not inhibit the inflammatory responses in carrageenan-induced pleurisy. The present results demonstrate that dBV stimulation in the LU-5 lung meridian acupoint can produce significant anti-inflammatory effects on carrageenan-induced pleurisy suggesting that dBV acupuncture may be a promising alternative medicine therapy for respiratory inflammatory diseases.


Assuntos
Pontos de Acupuntura , Venenos de Abelha/uso terapêutico , Inflamação/terapia , Pleurisia/terapia , Animais , Carragenina/farmacologia , Inflamação/induzido quimicamente , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pleurisia/induzido quimicamente
11.
Neuroscience ; 372: 181-191, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29289721

RESUMO

Aromatase is a key enzyme responsible for the biosynthesis of estrogen from testosterone. Although recent evidence indicates that spinal cord aromatase participates in nociceptive processing, the mechanisms underlying its regulation and its involvement in nociception remain unclear. The present study focuses on the potential role of astrocyte aromatase in formalin-induced acute pain and begins to uncover one mechanism by which spinal aromatase activation is controlled. Following intraplantar formalin injection, nociceptive responses were quantified and immunohistochemistry/co-immunoprecipitation assays were used to investigate the changes in spinal Fos expression and the phospho-serine levels of spinal aromatase. Intrathecal (i.t.) injection of letrozole (an aromatase inhibitor) mitigated both the late phase formalin-induced nociceptive responses and formalin-induced spinal Fos expression. Furthermore, formalin-injected mice showed significantly reduced phospho-serine levels of aromatase, which is associated with the rapid activation of this enzyme. However, sigma-1 receptor inhibition with i.t. BD1047 blocked the dephosphorylation of aromatase and potentiated the pharmacological effect of letrozole on formalin-induced nociceptive responses. In addition, i.t. administration of a sub-effective dose of BD1047 potentiated the pharmacological effect of cyclosporin A (a calcineurin inhibitor) on both the formalin-induced reduction in phospho-serine levels of aromatase and nociceptive behavior. These results suggest that dephosphorylation is an important regulatory mechanism involved in the rapid activation of aromatase and that spinal sigma-1 receptors mediate this dephosphorylation of aromatase through an intrinsic calcineurin pathway.


Assuntos
Aromatase/metabolismo , Astrócitos/metabolismo , Inflamação/metabolismo , Dor Nociceptiva/metabolismo , Medula Espinal/metabolismo , Animais , Inibidores da Aromatase/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Calcineurina/metabolismo , Formaldeído , Proteína Glial Fibrilar Ácida/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Letrozol , Masculino , Camundongos Endogâmicos ICR , Nitrilas/farmacologia , Dor Nociceptiva/tratamento farmacológico , Dor Nociceptiva/patologia , Proteínas Oncogênicas v-fos/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Receptores sigma/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Triazóis/farmacologia , Receptor Sigma-1
12.
J Pain ; 18(4): 415-427, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27986591

RESUMO

We have recently shown that spinal sigma-1 receptor (Sig-1R) activation facilitates nociception via an increase in phosphorylation of the N-methyl-D-aspartate (NMDA) receptor GluN1 subunit (pGluN1). The present study was designed to examine whether the Sig-1R-induced facilitative effect on NMDA-induced nociception is mediated by D-serine, and whether D-serine modulates spinal pGluN1 expression and the development of neuropathic pain after chronic constriction injury (CCI) of the sciatic nerve. Intrathecal administration of the D-serine degrading enzyme, D-amino acid oxidase attenuated the facilitation of NMDA-induced nociception induced by the Sig-1R agonist, 2-(4-morpholinethyl)1-phenylcyclohexane carboxylate. Exogenous D-serine increased protein kinase C (PKC)-dependent (Ser896) pGluN1 expression and facilitated NMDA-induced nociception, which was attenuated by preteatment with the PKC inhibitor, chelerythrine. In CCI mice, administration of the serine racemase inhibitor, L-serine O-sulfate potassium salt or D-amino acid oxidase on postoperative days 0 to 3 suppressed CCI-induced mechanical allodynia (MA) and pGluN1 expression on day 3 after CCI surgery. Intrathecal administration of D-serine restored MA as well as the GluN1 phosphorylation on day 3 after surgery that was suppressed by the Sig-1R antagonist, N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine dihydrobromide or the astrocyte inhibitor, fluorocitrate. In contrast, D-serine had no effect on CCI-induced thermal hyperalgesia or GluN1 expression. These results indicate that spinal D-serine: 1) mediates the facilitative effect of Sig-1R on NMDA-induced nociception, 2) modulates PKC-dependent pGluN1 expression, and 3) ultimately contributes to the induction of MA after peripheral nerve injury. PERSPECTIVE: This report shows that reducing D-serine suppresses central sensitization and significantly alleviates peripheral nerve injury-induced chronic neuropathic pain and that this process is modulated by spinal Sig-1Rs. This preclinical evidence provides a strong rationale for using D-serine antagonists to treat peripheral nerve injury-induced neuropathy.


Assuntos
Hiperalgesia/etiologia , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/complicações , Proteína Quinase C/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores sigma/metabolismo , Serina/farmacologia , Animais , D-Aminoácido Oxidase/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Etilenodiaminas/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Morfolinas/farmacologia , N-Metilaspartato/farmacologia , N-Metilaspartato/toxicidade , Fosforilação/efeitos dos fármacos , Estimulação Física/efeitos adversos , Receptores sigma/antagonistas & inibidores , Medula Espinal/efeitos dos fármacos , Receptor Sigma-1
13.
Sci Rep ; 6: 37850, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27910870

RESUMO

We have recently reported that repeated systemic treatments of extract from Corydalis yanhusuo alleviate neuropathic pain and levo-tetrahydropalmatine (l-THP) is one of active components from Corydalis. We designed this study to investigate antinociceptive effect of l-THP in acute and chronic pain models and related mechanism within the spinal cord. We found that intraperitoneal pretreatment with l-THP significantly inhibited the second phase of formalin-induced pain behavior. In addition, intrathecal as well as intraperitoneal pretreatment with l-THP reduced the mechanical allodynia (MA) induced by direct activation of sigma-1 receptor (Sig-1). In chronic constriction injury mice, these treatments remarkably suppressed the increase in MA and spinal phosphorylation of the NMDA receptor NR1 subunit expression on day 7 after surgery. Intrathecal treatment with l-THP combined with the Sig-1R antagonist, BD1047 synergistically blocked MA suggesting that l-THP modulates spinal Sig-1R activation. CatWalk gait analysis also supported that antinociceptive effect of l-THP as demonstrated by restoration of percentages of print area and single stance. Meanwhile, intrathecal pretreatment with naloxone, non-selective opioid receptor antagonist, did not affect the effect of l-THP. In conclusion, these results demonstrate that l-THP possesses antinociceptive effects through spinal Sig-1R mechanism and may be a useful analgesic in the management of neuropathic pain.


Assuntos
Analgésicos/farmacologia , Alcaloides de Berberina/farmacologia , Dor Crônica/metabolismo , Dor Crônica/terapia , Receptores sigma/genética , Animais , Etilenodiaminas/farmacologia , Formaldeído , Regulação da Expressão Gênica , Hiperalgesia/metabolismo , Injeções Espinhais , Masculino , Camundongos , Camundongos Endogâmicos ICR , Naloxona/farmacologia , Neuralgia/metabolismo , Manejo da Dor , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Opioides/metabolismo , Receptores sigma/metabolismo , Medula Espinal/metabolismo , Receptor Sigma-1
14.
Biol Pharm Bull ; 39(12): 1922-1931, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27601184

RESUMO

We recently demonstrated that activation of spinal sigma-1 receptors (Sig-1Rs) induces pain hypersensitivity via the activation of neuronal nitric oxide synthase (nNOS) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (Nox2). However, the potential direct interaction between nNOS-derived nitric oxide (NO) and Nox2-derived reactive oxygen species (ROS) is poorly understood, particularly with respect to the potentiation of N-methyl-D-aspartate (NMDA) receptor activity in the spinal cord associated with the development of central sensitization. Thus, the main purpose of this study was to investigate whether Sig-1R-induced and nNOS-derived NO modulates spinal Nox2 activation leading to an increase in ROS production and ultimately to the potentiation of NMDA receptor activity and pain hypersensitivity. Intrathecal pretreatment with the nNOS inhibitor, 7-nitroindazole or with the Nox inhibitor, apocynin significantly inhibited the mechanical and thermal hypersensitivity induced by intrathecal administration of the Sig-1R agonist, 2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride (PRE084). Conversely, pretreatment with 5,10,15,20-tetrakis-(4-sulphonatophenyl)-porphyrinato iron(III) (FeTPPS; a scavenger of peroxynitrite, a toxic reaction product of NO and superoxide) had no effect on the PRE084-induced pain hypersensitivity. Pretreatment with 7-nitroindazole significantly reduced the PRE084-induced increase in Nox2 activity and concomitant ROS production in the lumbar spinal cord dorsal horn, whereas apocynin did not alter the PRE084-induced changes in nNOS phosphorylation. On the other hand pretreatment with apocynin suppressed the PRE084-induced increase in the protein kinase C (PKC)-dependent phosphorylation of NMDA receptor GluN1 subunit (pGluN1) at Ser896 site in the dorsal horn. These findings demonstrate that spinal Sig-1R-induced pain hypersensitivity is mediated by nNOS activation, which leads to an increase in Nox2 activity ultimately resulting in a ROS-induced increase in PKC-dependent pGluN1 expression.


Assuntos
Hiperalgesia/metabolismo , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores sigma/metabolismo , Animais , Temperatura Alta , Masculino , Camundongos Endogâmicos ICR , NADPH Oxidase 2 , Óxido Nítrico/metabolismo , Dor/metabolismo , Estimulação Física , Corno Dorsal da Medula Espinal/metabolismo , Receptor Sigma-1
15.
Brain Res Bull ; 121: 227-32, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26876754

RESUMO

The role of peripheral neurosteroids and their related mechanisms on nociception have not been thoroughly investigated. Based on emerging evidence in the literature indicating that neurosteroids and their main target receptors, i.e., sigma-1, GABAA and NMDA, affect P2X-induced changes in neuronal activity, this study was designed to investigate the effect of peripherally injected dehydroepiandrosterone sulphate (DHEAS) and pregnenolone sulfate (PREGS) on P2X receptor-mediated mechanical allodynia in rats. Intraplantar injection of either neurosteroids alone did not produced any detectable changes in paw withdrawal frequency to the innocuous mechanical stimulation in naïve rats. However, When DHEAS or PREGS were co-injected with a sub-effective dose of αßmeATP, mechanical allodynia was developed and this was dose dependently blocked by pre-injection of the P2X antagonist, TNP-ATP. These results demonstrates that DHEAS and PREGS potentiate the activity of P2X receptors which results in the enhancement of αßmeATP-induced mechanical allodynia. In order to investigate the potential role of peripheral sigma-1, GABAA and NMDA receptors in this facilitatory action, we pretreated animals with BD-1047 (a sigma-1 antagonist), muscimol (a GABAA agonist) or MK-801 (a NMDA antagonist) prior to DHEAS or PREGS+αßmeATP injection. Only BD-1047 effectively prevented the facilitatory effects induced by neurosteroids on αßmeATP-induced mechanical allodynia. Collectively, we have shown that peripheral neurosteroids potentiate P2X-induced mechanical allodynia and that this action is mediated by sigma-1, but not by GABAA nor NMDA, receptors.


Assuntos
Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Receptores Purinérgicos P2X/metabolismo , Receptores sigma/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Sulfato de Desidroepiandrosterona/toxicidade , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Esquema de Medicação , Etilenodiaminas/farmacologia , Hiperalgesia/tratamento farmacológico , Masculino , Medição da Dor , Pregnenolona/toxicidade , Agonistas do Receptor Purinérgico P2X/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores sigma/antagonistas & inibidores , Fatores de Tempo
16.
Int J Cancer ; 138(10): 2466-76, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26704560

RESUMO

Cancer chemotherapy with platinum-based antineoplastic agents including oxaliplatin frequently results in a debilitating and painful peripheral neuropathy. We evaluated the antinociceptive effects of the alpha-2 adrenoceptor agonist, clonidine on oxaliplatin-induced neuropathic pain. Specifically, we determined if (i) the intraperitoneal (i.p.) injection of clonidine reduces mechanical allodynia in mice with an oxaliplatin-induced neuropathy and (ii) concurrent inhibition of p38 mitogen-activated protein kinase (MAPK) activity by the p38 MAPK inhibitor SB203580 enhances clonidine's antiallodynic effect. Clonidine (0.01-0.1 mg kg(-1), i.p.), with or without SB203580(1-10 nmol, intrathecal) was administered two weeks after oxaliplatin injection(10 mg kg(-1), i.p.) to mice. Mechanical withdrawal threshold, motor coordination and blood pressure were measured. Postmortem expression of p38 MAPK and ERK as well as their phosphorylated forms(p-p38 and p-ERK) were quantified 30 min or 4 hr after drug injection in the spinal cord dorsal horn of treated and control mice. Clonidine dose-dependently reduced oxaliplatin-induced mechanical allodynia and spinal p-p38 MAPK expression, but not p-ERK. At 0.1 mg kg(-1), clonidine also impaired motor coordination and decreased blood pressure. A 10 nmol dose of SB203580 alone significantly reduced mechanical allodynia and p-p38 MAPK expression, while a subeffective dose(3 nmol) potentiated the antiallodynic effect of 0.03 mg kg(-1) clonidine and reduced the increased p-p38 MAPK. Coadministration of SB203580 and 0.03 mg kg(-1) clonidine decreased allodynia similar to that of 0.10 mg kg(-1) clonidine, but without significant motor or vascular effects. These findings demonstrate that clonidine treatment reduces oxaliplatin-induced mechanical allodynia. The concurrent administration of SB203580 reduces the dosage requirements for clonidine, thereby alleviating allodynia without producing undesirable motor or cardiovascular effects.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Antineoplásicos/efeitos adversos , Clonidina/farmacologia , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Compostos Organoplatínicos/efeitos adversos , Animais , Pressão Sanguínea/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hiperalgesia/diagnóstico , Hiperalgesia/tratamento farmacológico , Imidazóis/farmacologia , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Oxaliplatina , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Pharmacol Res ; 100: 353-64, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26316425

RESUMO

We have previously demonstrated that activation of the spinal sigma-1 receptor (Sig-1R) plays an important role in the development of mechanical allodynia (MA) via secondary activation of the N-methyl-d-aspartate (NMDA) receptor. Sig-1Rs have been shown to localize to astrocytes, and blockade of Sig-1Rs inhibits the pathologic activation of astrocytes in neuropathic mice. However, the mechanism by which Sig-1R activation in astrocytes modulates NMDA receptors in neurons is currently unknown. d-serine, synthesized from l-serine by serine racemase (Srr) in astrocytes, is an endogenous co-agonist for the NMDA receptor glycine site and can control NMDA receptor activity. Here, we investigated the role of d-serine in the development of MA induced by spinal Sig-1R activation in chronic constriction injury (CCI) mice. The production of d-serine and Srr expression were both significantly increased in the spinal cord dorsal horn post-CCI surgery. Srr and d-serine were only localized to astrocytes in the superficial dorsal horn, while d-serine was also localized to neurons in the deep dorsal horn. Moreover, we found that Srr exists in astrocytes that express Sig-1Rs. The CCI-induced increase in the levels of d-serine and Srr was attenuated by sustained intrathecal treatment with the Sig-1R antagonist, BD-1047 during the induction phase of neuropathic pain. In behavioral experiments, degradation of endogenous d-serine with DAAO, or selective blockade of Srr by LSOS, effectively reduced the development of MA, but not thermal hyperalgesia in CCI mice. Finally, BD-1047 administration inhibited the development of MA and this inhibition was reversed by intrathecal treatment with exogenous d-serine. These findings demonstrate for the first time that the activation of Sig-1Rs increases the expression of Srr and d-serine in astrocytes. The increased production of d-serine induced by CCI ultimately affects dorsal horn neurons that are involved in the development of MA in neuropathic mice.


Assuntos
Astrócitos/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Receptores sigma/metabolismo , Serina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Modelos Animais de Doenças , Etilenodiaminas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Células do Corno Posterior/metabolismo , Racemases e Epimerases/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Receptor Sigma-1
18.
Mol Pain ; 10: 2, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24401144

RESUMO

BACKGROUND: We previously developed a thrombus-induced ischemic pain (TIIP) animal model, which was characterized by chronic bilateral mechanical allodynia without thermal hyperalgesia (TH). On the other hand we had shown that intraplantar injection of acidic saline facilitated ATP-induced pain, which did result in the induction of TH in normal rats. Because acidic pH and increased ATP are closely associated with ischemic conditions, this study is designed to: (1) examine whether acidic saline injection into the hind paw causes the development of TH in TIIP, but not control, animals; and (2) determine which peripheral mechanisms are involved in the development of this TH. RESULTS: Repeated intraplantar injection of pH 4.0 saline, but not pH 5.5 and 7.0 saline, for 3 days following TIIP surgery resulted in the development of TH. After pH 4.0 saline injections, protein levels of hypoxia inducible factor-1α (HIF-1α) and carbonic anhydrase II (CA II) were elevated in the plantar muscle indicating that acidic stimulation intensified ischemic insults with decreased tissue acidity. At the same time point, there were no changes in the expression of TRPV1 in hind paw skin, whereas a significant increase in TRPV1 phosphorylation (pTRPV1) was shown in acidic saline (pH 4.0) injected TIIP (AS-TIIP) animals. Moreover, intraplantar injection of chelerythrine (a PKC inhibitor) and AMG9810 (a TRPV1 antagonist) effectively alleviated the established TH. In order to investigate which proton- or ATP-sensing receptors contributed to the development of TH, amiloride (an ASICs blocker), AMG9810, TNP-ATP (a P2Xs antagonist) or MRS2179 (a P2Y1 antagonist) were pre-injected before the pH 4.0 saline. Only MRS2179 significantly prevented the induction of TH, and the increased pTRPV1 ratio was also blocked in MRS2179 injected animals. CONCLUSION: Collectively these data show that maintenance of an acidic environment in the ischemic hind paw of TIIP rats results in the phosphorylation of TRPV1 receptors via a PKC-dependent pathway, which leads to the development of TH mimicking what occurs in chronic ischemic patients with severe acidosis. More importantly, peripheral P2Y1 receptors play a pivotal role in this process, suggesting a novel peripheral mechanism underlying the development of TH in these patients.


Assuntos
Membro Posterior/irrigação sanguínea , Hiperalgesia/complicações , Isquemia/etiologia , Dor/etiologia , Receptores Purinérgicos P2Y1/metabolismo , Canais de Cátion TRPV/metabolismo , Trombose/complicações , Ácidos , Acrilamidas/farmacologia , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Animais , Benzofenantridinas/farmacologia , Western Blotting , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Modelos Animais de Doenças , Diterpenos/farmacologia , Membro Posterior/patologia , Temperatura Alta , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Hipóxia/etiologia , Hipóxia/metabolismo , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Injeções , Canais Iônicos/metabolismo , Isquemia/metabolismo , Isquemia/patologia , Dor/metabolismo , Dor/patologia , Fosforilação/efeitos dos fármacos , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Cloreto de Sódio/administração & dosagem , Cloreto de Sódio/farmacologia , Trombose/metabolismo , Trombose/patologia , Extratos de Tecidos
19.
Neuropharmacology ; 79: 368-79, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24333674

RESUMO

Although previous reports have suggested that P2Y1 receptors (P2Y1Rs) are involved in cutaneous nociceptive signaling, it remains unclear how P2Y1Rs contribute to peripheral sensitization. The current study was designed to delineate the role of peripheral P2Y1Rs in pain and to investigate potential linkages to mitogen-activated protein kinase (MAPK) in DRGs and Transient Receptor Potential Vanilloid 1 (TRPV1) expression in a rodent inflammatory pain model. Following injection of 2% carrageenan into the hind paw, expressions of P2Y1 and TRPV1 and the phosphorylation rates of both p38 MAPK and ERK but not JNK were increased and peaked at day 2 post-injection. Blockade of peripheral P2Y1Rs by the P2Y1R antagonist, MRS2500 injection (i.pl, D0 to D2) significantly reduced the induction of thermal hyperalgesia, but not mechanical allodynia. Simultaneously, MRS2500 injections suppressed upregulated TRPV1 expression and DRG p38 phosphorylation, while pERK signaling was not affected. Furthermore, inhibition of p38 activation in the DRGs by SB203580 (a p38 inhibitor, i.t, D0 to D2) prevented the upregulation of TRPV1 and a single i.t injection of SB203580 reversed the established thermal hyperalgesia, but not mechanical allodynia. Lastly, to identify the mechanism of action of P2Y1Rs, we repeatedly injected the P2Y1 agonist, MRS2365 into the naïve rat's hind paw and observed a dose-dependent increase in TRPV1 expression and p38 MAPK phosphorylation. These data demonstrate a sequential role for P2Y1R, p38 MAPK and TRPV1 in inflammation-induced thermal hyperalgesia; thus, peripheral P2Y1Rs activation modulates p38 MAPK signaling and TRPV1 expression, which ultimately leads to the induction of thermal hyperalgesia.


Assuntos
Hiperalgesia/tratamento farmacológico , Inflamação/complicações , Dor/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y1/metabolismo , Canais de Cátion TRPV/metabolismo , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Animais , Carragenina , Nucleotídeos de Desoxiadenina/farmacologia , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Temperatura Alta , Hiperalgesia/metabolismo , Imidazóis/farmacologia , MAP Quinase Quinase 4/metabolismo , Masculino , Dor/metabolismo , Agonistas do Receptor Purinérgico P2Y/farmacologia , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Tato , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Stem Cell Res ; 12(1): 69-85, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24145189

RESUMO

Although recent findings showed that the bioactive lipid metabolites can regulate the ES cell functions, the physiological relevance of interaction between sphingosine-1-phosphate (S1P) and Flk-1 and its related signaling molecules are not yet clear in ES cell proliferation. In the present study, S1P1-5 receptors were expressed in mouse ES cells and S1P increased S1P1-3 receptor expression level. S1P treatment stimulated the cellular proliferation in S1P1/3-dependent manner, located in lipid rafts. In response to S1P, ß-arrestin was recruited to S1P1/3 receptor and c-Src was activated. S1P also increased the binding of S1P1/3 receptor with Flk-1. Similar to responses for VEGF, S1P increased Flk-1 phosphorylation, which was blocked by ß-arrestin siRNA, and PP2, but not by VEGF-A164 antibody or VEGF siRNA. In addition, S1P induced VEGF expression and VEGFR2 kinase inhibitor (SU1498) blocked the S1P-induced cellular proliferation. However, VEGF-A164 antibody or VEGF siRNA partially blocked S1P-induced cellular proliferation, suggesting that both VEGF-dependent Flk-1 activation and VEGF-independent Flk-1 activation are involved in S1P-induced ES cell proliferation. S1P and VEGF-induced phosphorylation of ERK and JNK were blocked by pretreatment with SU1498. Moreover, inhibition of ERK and JNK blocked S1P-induced cellular proliferation. In conclusion, S1P-elicited transactivation of Flk-1 mediated by S1P1/3-dependent ß-arrestin/c-Src pathways stimulated mouse ES cell proliferation.


Assuntos
Arrestinas/metabolismo , Células-Tronco Embrionárias/citologia , Lisofosfolipídeos/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Ativação Transcricional , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Quinases da Família src/metabolismo , Animais , Anticorpos/imunologia , Arrestinas/antagonistas & inibidores , Arrestinas/genética , Proteína Tirosina Quinase CSK , Linhagem Celular , Proliferação de Células , Células-Tronco Embrionárias/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lisofosfolipídeos/genética , Camundongos , Fosforilação , Ligação Proteica , Interferência de RNA , Receptores de Lisoesfingolipídeo/genética , Esfingosina/genética , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato , Ativação Transcricional/genética , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/imunologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , beta-Arrestinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA