Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Brain ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916065

RESUMO

Somatic mosaicism in a fraction of brain cells causes neurodevelopmental disorders, including childhood intractable epilepsy. However, the threshold for somatic mosaicism leading to brain dysfunction is unknown. In this study, we induced various mosaic burdens in focal cortical dysplasia type II (FCD II) mice, featuring mTOR somatic mosaicism and spontaneous behavioral seizures. The mosaic burdens ranged from approximately 1,000 to 40,000 neurons expressing the mTOR mutant in the somatosensory (SSC) or medial prefrontal (PFC) cortex. Surprisingly, approximately 8,000 to 9,000 neurons expressing the MTOR mutant, which are extrapolated to constitute 0.08-0.09% of total cells or roughly 0.04% of variant allele frequency (VAF) in the mouse hemicortex, were sufficient to trigger epileptic seizures. The mutational burden was correlated with seizure frequency and onset, with a higher tendency for electrographic inter-ictal spikes and beta- and gamma-frequency oscillations in FCD II mice exceeding the threshold. Moreover, mutation-negative FCD II patients in deep sequencing of their bulky brain tissues revealed somatic mosaicism of the mTOR pathway genes as low as 0.07% in resected brain tissues through ultra-deep targeted sequencing (up to 20 million reads). Thus, our study suggests that extremely low levels of somatic mosaicism can contribute to brain dysfunction.

2.
Food Sci Biotechnol ; 32(9): 1257-1268, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37362805

RESUMO

The limited yield of Ulmus davidiana var. japonica root bark (URB) extract is considered an economic loss to the food industry. Improving extraction yield and bioactivity through fermentation increase the industrial usage of URB. The study aims to optimize the fermentation with cellulolytic and pectinolytic bacteria and evaluate the bioactivity and anti-Helicobacter pylori activity of the fermented URB extract. URB fermentation with the Bacillus licheniformis FLa3, isolated from salted seafood (Sardinella zunasi), under optimal conditions (37 °C, pH 6, 10% inoculum dose, and 36 h) improved the extraction yield by 36% compared to the control. The antioxidant and antimicrobial activity of the fermented extract were significantly higher than non-fermented extract. High-performance liquid chromatography results confirmed that the fermentation increased the proportion of bioactive components such as catechin (171.7%), epicatechin (144.3%), quercetin (27.3%), and kaempferol (16.7%). The results confirmed that the fermentation increased both the extraction yield and bioactivity.

3.
Exp Mol Med ; 55(2): 470-484, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36828931

RESUMO

Tumor progression is intimately associated with the vasculature, as tumor proliferation induces angiogenesis and tumor cells metastasize to distant organs via blood vessels. However, whether tumor invasion is associated with blood vessels remains unknown. As glioblastoma (GBM) is featured by aggressive invasion and vascular abnormalities, we characterized the onset of vascular remodeling in the diffuse tumor infiltrating zone by establishing new spontaneous GBM models with robust invasion capacity. Normal brain vessels underwent a gradual transition to severely impaired tumor vessels at the GBM periphery over several days. Increasing vasodilation from the tumor periphery to the tumor core was also found in human GBM. The levels of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2) showed a spatial correlation with the extent of vascular abnormalities spanning the tumor-invading zone. Blockade of VEGFR2 suppressed vascular remodeling at the tumor periphery, confirming the role of VEGF-VEGFR2 signaling in the invasion-associated vascular transition. As angiopoietin-2 (ANGPT2) was expressed in only a portion of the central tumor vessels, we developed a ligand-independent tunica interna endothelial cell kinase 2 (Tie2)-activating antibody that can result in Tie2 phosphorylation in vivo. This agonistic anti-Tie2 antibody effectively normalized the vasculature in both the tumor periphery and tumor center, similar to the effects of VEGFR2 blockade. Mechanistically, this antibody-based Tie2 activation induced VE-PTP-mediated VEGFR2 dephosphorylation in vivo. Thus, our study reveals that the normal-to-tumor vascular transition is spatiotemporally associated with GBM invasion and may be controlled by Tie2 activation via a novel mechanism of action.


Assuntos
Glioblastoma , Humanos , Glioblastoma/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Remodelação Vascular , Transdução de Sinais , Fatores de Crescimento do Endotélio Vascular
4.
Ann Neurol ; 93(6): 1082-1093, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36700525

RESUMO

OBJECTIVE: Brain somatic mutations in mTOR pathway genes are a major genetic etiology of focal cortical dysplasia type II (FCDII). Despite a greater ability to detect low-level somatic mutations in the brain by deep sequencing and analytics, about 40% of cases remain genetically unexplained. METHODS: We included 2 independent cohorts consisting of 21 patients with mutation-negative FCDII without apparent mutations on conventional deep sequencing of bulk brain. To find ultra-low level somatic variants or structural variants, we isolated cells exhibiting phosphorylation of the S6 ribosomal protein (p-S6) in frozen brain tissues using fluorescence-activated cell sorting (FACS). We then performed deep whole-genome sequencing (WGS; >90×) in p-S6+ cells in a cohort of 11 patients with mutation-negative. Then, we simplified the method to whole-genome amplification and target gene sequencing of p-S6+ cells in independent cohort of 10 patients with mutation-negative followed by low-read depth WGS (10×). RESULTS: We found that 28.6% (6 of 21) of mutation-negative FCDII carries ultra-low level somatic mutations (less than 0.2% of variant allele frequency [VAF]) in mTOR pathway genes. Our method showed ~34 times increase of the average mutational burden in FACS mediated enrichment of p-S6+ cells (average VAF = 5.84%) than in bulky brain tissues (average VAF = 0.17%). We found that 19% (4 of 21) carried germline structural variations in GATOR1 complex undetectable in whole exome or targeted gene sequencing. CONCLUSIONS: Our method facilitates the detection of ultra-low level somatic mutations, in specifically p-S6+ cells, and germline structural variations and increases the genetic diagnostic rate up to ~80% for the entire FCDII cohort. ANN NEUROL 2023;93:1082-1093.


Assuntos
Epilepsia , Displasia Cortical Focal , Humanos , Serina-Treonina Quinases TOR/genética , Epilepsia/genética , Mutação/genética
5.
Neurology ; 100(5): e528-e542, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36307217

RESUMO

BACKGROUND AND OBJECTIVES: The SLC35A2 gene, located at chromosome Xp11.23, encodes for a uridine diphosphate-galactose transporter. We describe clinical, genetic, neuroimaging, EEG, and histopathologic findings and assess possible predictors of postoperative seizure and cognitive outcome in 47 patients with refractory epilepsy and brain somatic SLC35A2 gene variants. METHODS: This is a retrospective multicenter study where we performed a descriptive analysis and classical hypothesis testing. We included the variables of interest significantly associated with the outcomes in the generalized linear models. RESULTS: Two main phenotypes were associated with brain somatic SLC35A2 variants: (1) early epileptic encephalopathy (EE, 39 patients) with epileptic spasms as the predominant seizure type and moderate to severe intellectual disability and (2) drug-resistant focal epilepsy (DR-FE, 8 patients) associated with normal/borderline cognitive function and specific neuropsychological deficits. Brain MRI was abnormal in all patients with EE and in 50% of those with DR-FE. Histopathology review identified mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy in 44/47 patients and was inconclusive in 3. The 47 patients harbored 42 distinct mosaic SLC35A2 variants, including 14 (33.3%) missense, 13 (30.9%) frameshift, 10 (23.8%) nonsense, 4 (9.5%) in-frame deletions/duplications, and 1 (2.4%) splicing variant. Variant allele frequencies (VAFs) ranged from 1.4% to 52.6% (mean VAF: 17.3 ± 13.5). At last follow-up (35.5 ± 21.5 months), 30 patients (63.8%) were in Engel Class I, of which 26 (55.3%) were in Class IA. Cognitive performances remained unchanged in most patients after surgery. Regression analyses showed that the probability of achieving both Engel Class IA and Class I outcomes, adjusted by age at seizure onset, was lower when the duration of epilepsy increased and higher when postoperative EEG was normal or improved. Lower brain VAF was associated with improved postoperative cognitive outcome in the analysis of associations, but this finding was not confirmed in regression analyses. DISCUSSION: Brain somatic SLC35A2 gene variants are associated with 2 main clinical phenotypes, EE and DR-FE, and a histopathologic diagnosis of MOGHE. Additional studies will be needed to delineate any possible correlation between specific genetic variants, mutational load in the epileptogenic tissue, and surgical outcomes.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia Resistente a Medicamentos/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Encéfalo/patologia , Epilepsia/genética , Epilepsia/cirurgia , Epilepsia/diagnóstico , Convulsões/patologia , Estudos Retrospectivos , Resultado do Tratamento , Eletroencefalografia
6.
Biochem Biophys Res Commun ; 634: 108-113, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36242916

RESUMO

In this study, the levels of plasma estradiol-17ß (E2) in farmed Anguilla japonica were measured to determine their sex. The analyses were performed for two different size groups (large group, Total length (TL): 61-69 cm; small group, TL: 53-60 cm). The anatomical and histological observations showed that the large group consisted of 29% males and 71% females; the small group, 54% males and 45% females. The gonad histology showed that in the large group, 88% of the eels had immature gonads with ongoing sexual differentiation, 12% were mature with completed sexual differentiation. In the small group, 87% of the eels had immature gonads. The plasma E2 hormone levels were higher in the females of both sizes. In the large group, the average plasma E2 in females was 415 pg/ml, which was significantly higher than the average of 109 pg/ml in males (P < 0.05). In the small group, the average plasma E2 hormone level was 618 pg/ml, which was much higher than the average of 108 pg/ml in males. Quantitative real-time PCR showed that zygote arrest 1 (zar 1) and zona pellucida glycoprotein 3 (zp3) were more highly expressed in females than male. In the H-E staining, an eel in the oil droplet containing ovary stage had a high level of plasma E2 (1500 pg/ml), while an eel with testis in the spermatocyte stage had a low (60 pg/ml). E2 is a potentially useful tool and could play an important role in sex determination in broodstocks.


Assuntos
Anguilla , Animais , Feminino , Masculino , Estradiol , Gônadas , Ovário , Testículo
7.
PLoS Genet ; 18(9): e1010404, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121845

RESUMO

Most somatic mutations that arise during normal development are present at low levels in single or multiple tissues depending on the developmental stage and affected organs. However, the effect of human developmental stages or mutations of different organs on the features of somatic mutations is still unclear. Here, we performed a systemic and comprehensive analysis of low-level somatic mutations using deep whole-exome sequencing (average read depth ~500×) of 498 multiple organ tissues with matched controls from 190 individuals. Our results showed that early clone-forming mutations shared between multiple organs were lower in number but showed higher allele frequencies than late clone-forming mutations [0.54 vs. 5.83 variants per individual; 6.17% vs. 1.5% variant allele frequency (VAF)] along with less nonsynonymous mutations and lower functional impacts. Additionally, early and late clone-forming mutations had unique mutational signatures that were distinct from mutations that originated from tumors. Compared with early clone-forming mutations that showed a clock-like signature across all organs or tissues studied, late clone-forming mutations showed organ, tissue, and cell-type specificity in the mutation counts, VAFs, and mutational signatures. In particular, analysis of brain somatic mutations showed a bimodal occurrence and temporal-lobe-specific signature. These findings provide new insights into the features of somatic mosaicism that are dependent on developmental stage and brain regions.


Assuntos
Mosaicismo , Neoplasias , Frequência do Gene , Humanos , Mutação , Neoplasias/genética , Sequenciamento do Exoma
8.
J Pathol ; 258(3): 264-277, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36098211

RESUMO

Thyroid cancer is associated with genetic alterations, e.g. BRAFV600E , which may cause carcinomatous changes in hormone-secreting epithelial cells. Epidemiological studies have shown that overnutrition is related to the development and progression of cancer. In this study, we attempted to identify the cell nonautonomous factor responsible for the progression of BRAFV600E thyroid cancer under overnutrition conditions. We developed a mouse model for inducible thyrocyte-specific activation of BRAFV600E , which showed features similar to those of human papillary thyroid cancer. LSL-BrafV600E ;TgCreERT2 showed thyroid tumour development in the entire thyroid, and the tumour showed more abnormal cellular features with mitochondrial abnormalities in mice fed a high-fat diet (HFD). Transcriptomics revealed that adrenomedullin2 (Adm2) was increased in LSL-BrafV600E ;TgCreERT2 mice fed HFD. ADM2 was upregulated on the addition of a mitochondrial complex I inhibitor or palmitic acid with integrated stress response (ISR) in cancer cells. ADM2 stimulated protein kinase A and extracellular signal-regulated kinase in vitro. The knockdown of ADM2 suppressed the proliferation and migration of thyroid cancer cells. We searched The Cancer Genome Atlas and Genotype-Tissue Expression databases and found that increased ADM2 expression was associated with ISR and poor overall survival. Consistently, upregulated ADM2 expression in tumour cells and circulating ADM2 molecules were associated with aggressive clinicopathological parameters, including body mass index, in thyroid cancer patients. Collectively, we identified that ADM2 is released from cancer cells under mitochondrial stress resulting from overnutrition and acts as a secretory factor determining the progressive properties of thyroid cancer. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Hipernutrição , Hormônios Peptídicos , Neoplasias da Glândula Tireoide , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Hormônios , Humanos , Camundongos , Mutação , Nutrientes , Ácido Palmítico , Hormônios Peptídicos/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Neoplasias da Glândula Tireoide/patologia
9.
STAR Protoc ; 3(3): 101607, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35990740

RESUMO

Despite the recognized importance of antitumor immunity, our understanding of brain tumor immunity is poor. Orthotopic injection models have been widely used for immunological analyses. However, these models have limitations in analysis of antitumor immunity because the approach involves drilling skulls and injecting tumor cells, which can induce adverse effects. We describe a protocol for the induction of spontaneous brain tumor model, isolation of single cells from brain tumor microenvironment, and analysis of the immune responses using scRNA-seq and flow cytometry. For complete details on the use and execution of this protocol, please refer to Park et al. (2021).


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Neoplasias Encefálicas/genética , Citometria de Fluxo , Glioma/genética , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Microambiente Tumoral/genética
10.
Fish Shellfish Immunol ; 127: 666-671, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35803510

RESUMO

Tripartite motif-containing (TRIM) proteins are conserved throughout the metazoan kingdom, and the TRIM subset finTRIM is highly diversified in fish. We isolated TRIM16 cDNA, a member of the finTRIM family, from the olive flounder Paralichthys olivaceus (PoTRIM16). PoTRIM16 contained a 1,725-bp coding sequence encoding a 574-amino acid polypeptide, which in turn contained a really interesting new gene (RING) finger domain, B-box-type zinc finger (B-BOX), nuclease SbcCD subunit C (SbcC), structural maintenance of chromosome (SMC prok B), and stonustoxin (SNTX) subunit alpha (SPRY-PRY-SNTX). Multiple alignment of related sequences revealed that PoTRIM16 showed 86.63-97.40% identity with fish orthologues, and a phylogenetic tree was constructed of vertebrates. PoTRIM16 mRNA was detected in all tissues examined; levels were highest in the eye and ovary. PoTRIM16 mRNA expression was investigated during early development. Under VHSV infection, PoTRIM16 mRNA was downregulated in the liver of P. olivaceus. This is the first study to characterize fish-specific finTRIM in P. olivaceus, which may play a role in the immune response against virus infection.


Assuntos
Doenças dos Peixes , Linguado , Novirhabdovirus , Animais , Feminino , Novirhabdovirus/fisiologia , Filogenia , RNA Mensageiro/metabolismo
11.
Biomed Pharmacother ; 151: 113186, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35643063

RESUMO

Ulcerative colitis (UC) is a severe inflammatory disease that has spread throughout the world. Cirsium japonicum (CJ) and Aralia elata (AE) are natural herbs with potent antioxidative antidiabetics and anti-inflammatory effects. In this investigation, we studied the defensive role of the combination of CJ and AE against LPS-induced inflammation in RAW 264.7 cells, dextran sulfate sodium (DSS)-induced colitis in mice, and acetic acid-induced colitis in dogs. MTT assay was performed to identify the toxic effect of CJ and AE extracts. NO, and MDA level was also measured by NO and MDA assay. To measure the pro-inflammatory protein expression, a western blot was performed. To induce colitis, 3% DSS was used for mice and 6% acetic acid was used for dogs. Histopathology and colonoscopy were executed to detect the effect of extracts. CJ and AE pretreatment reduced the level of NO, MDA, and the expression of pro-inflammatory proteins cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) in RAW 264.7. Compared to the separate doses of CJ and AE, the combined dose of CJ and AE significantly reduced clinical symptoms induced by DSS in mice and acetic acid in dogs including weight loss, bloody stool, shortening of the colon, and the severity of colitis and degree of histological damage in the colon. Therefore, these results indicated that a combined dose of CJ and AE has a protective effect against LPS-induced RAW 264.7 cells, DSS-mediated colonic inflammation in mice, and acetic acid-induced colitis in dogs.


Assuntos
Aralia , Cirsium , Colite Ulcerativa , Colite , Animais , Anti-Inflamatórios/efeitos adversos , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colo , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Cães , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Camundongos , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Células RAW 264.7
12.
Epilepsia ; 63(8): 1899-1919, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35706131

RESUMO

Ongoing challenges in diagnosing focal cortical dysplasia (FCD) mandate continuous research and consensus agreement to improve disease definition and classification. An International League Against Epilepsy (ILAE) Task Force (TF) reviewed the FCD classification of 2011 to identify existing gaps and provide a timely update. The following methodology was applied to achieve this goal: a survey of published literature indexed with ((Focal Cortical Dysplasia) AND (epilepsy)) between 01/01/2012 and 06/30/2021 (n = 1349) in PubMed identified the knowledge gained since 2012 and new developments in the field. An online survey consulted the ILAE community about the current use of the FCD classification scheme with 367 people answering. The TF performed an iterative clinico-pathological and genetic agreement study to objectively measure the diagnostic gap in blood/brain samples from 22 patients suspicious for FCD and submitted to epilepsy surgery. The literature confirmed new molecular-genetic characterizations involving the mechanistic Target Of Rapamycin (mTOR) pathway in FCD type II (FCDII), and SLC35A2 in mild malformations of cortical development (mMCDs) with oligodendroglial hyperplasia (MOGHE). The electro-clinical-imaging phenotypes and surgical outcomes were better defined and validated for FCDII. Little new information was acquired on clinical, histopathological, or genetic characteristics of FCD type I (FCDI) and FCD type III (FCDIII). The survey identified mMCDs, FCDI, and genetic characterization as fields for improvement in an updated classification. Our iterative clinico-pathological and genetic agreement study confirmed the importance of immunohistochemical staining, neuroimaging, and genetic tests to improve the diagnostic yield. The TF proposes to include mMCDs, MOGHE, and "no definite FCD on histopathology" as new categories in the updated FCD classification. The histopathological classification can be further augmented by advanced neuroimaging and genetic studies to comprehensively diagnose FCD subtypes; these different levels should then be integrated into a multi-layered diagnostic scheme. This update may help to foster multidisciplinary efforts toward a better understanding of FCD and the development of novel targeted treatment options.


Assuntos
Epilepsia , Malformações do Desenvolvimento Cortical do Grupo I , Malformações do Desenvolvimento Cortical , Consenso , Epilepsia/diagnóstico , Epilepsia/patologia , Humanos , Imageamento por Ressonância Magnética , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical do Grupo I/diagnóstico , Neuroimagem , Estudos Retrospectivos
13.
Ann N Y Acad Sci ; 1514(1): 11-20, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35527236

RESUMO

Research into the genetic etiology of a neurological disorder can provide directions for genetic diagnosis and targeted therapy. In the past, germline mutations, which are transmitted from parents or newly arise from parental germ cells, were considered as major genetic causes of neurological disorders. However, recent evidence has shown that somatic mutations in the brain, which can arise from neural stem cells during development or over aging, account for a significant number of brain disorders, ranging from neurodevelopmental, neurodegenerative, and neuropsychiatric to neoplastic disease. Moreover, the identification of disease-causing somatic mutations or mutated genes has provided new insights into molecular pathogenesis and unveiled potential therapeutic targets for treating neurological disorders that have few, or no, therapeutic options. RNA therapeutics, including antisense oligonucleotide (ASO) and small interfering RNA (siRNA), are emerging as promising therapeutic tools for treating genetic neurological disorders. As the number of approved and investigational ASO and siRNA drugs for neurological disorders associated with germline mutations increases, they may also prove to be attractive modalities for treating neurologic disorders resulting from somatic mutations. In this perspective, we highlight several neurological diseases caused by brain somatic mutations and discuss the potential role of RNA therapeutics in these conditions.


Assuntos
Encéfalo , Doenças do Sistema Nervoso , Encéfalo/patologia , Humanos , Mutação , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/terapia , Oligonucleotídeos , Oligonucleotídeos Antissenso , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico
14.
J Cancer Prev ; 27(1): 42-49, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35419308

RESUMO

Chaenomeles sinensis is known to inhibit the development and progression of many age-related diseases, but the underlying molecular mechanisms are largely unclear. In the present study, we observed that the ethanol extract of Chaenomeles sinensis scavenged 2,2'-diphenylpicrylhydrazyl and 2,2'-azinobis diammonium radicals in vitro. The ethanol extract of Chaenomeles sinensis activated antioxidant response element-luciferase activity and induced expression of NRF2 target genes in HaCaT cells. The ethanol extract of Chaenomeles sinensis also suppressed LPS-induced expression of COX-2 and iNOS proteins, and mRNA expression of TNF-α and IL-2 in RAW264.7 cells. Finally, the ethanol extract of Chaenomeles sinensis significantly suppressed testosterone propionate-induced benign prostatic hyperplasia in mice. Together, our study provides the evidence that the ethanol extract of Chaenomeles sinensis inhibits the development of benign prostatic hyperplasia by exhibiting anti-oxidant and anti-inflammatory effects.

15.
J Clin Neurol ; 18(1): 71-78, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35021279

RESUMO

BACKGROUND AND PURPOSE: A multifactorial antiepileptic mechanism underlies the ketogenic diet (KD), and one of the proposed mechanisms of action is that the KD inhibits the mammalian target of rapamycin (mTOR) pathway. To test this clinically, this study aimed to determine the efficacy of the KD in patients with pathologically confirmed focal cortical dysplasia (FCD) due to genetically identifiable mTOR pathway dysregulation. METHODS: A cohort of patients with pathologically confirmed FCD after epilepsy surgery and who were screened for the presence of germline and somatic mutations related to the mTOR pathway in peripheral blood and resected brain tissue was constructed prospectively. A retrospective review of the efficacy of the prior KD in these patients was performed. RESULTS: Twenty-five patients with pathologically confirmed FCD and who were screened for the presence of detectable somatic mTOR pathway mutations had received a sufficient KD. Twelve of these patients (48.0%) had germline or somatic detectable mTOR pathway mutations. A response was defined as a ≥50% reduction in seizure frequency. The efficacy of the KD after 3 months of dietary therapy was superior in patients with detectable mTOR pathway mutations than in patients without detectable mTOR pathway mutations, although the difference was not statistically significant (responder rates of 58.3% vs. 38.5%, p=0.434). CONCLUSIONS: A greater proportion of patients with mTOR pathway responded to the KD, but there was no statistically significant difference in efficacy of the KD between patients with and without detectable mTOR pathway mutations. Further study is warranted due to the smallness of the sample and the limited number of mTOR pathway genes tested in this study.

16.
Brain Tumor Res Treat ; 9(2): 111-116, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34725994

RESUMO

A 25-year-old female presented with a generalized tonic-clonic seizure. She had no previous history of seizures. A brain magnetic resonance imaging scan revealed a solitary enhancing mass in the right fronto-parietal cortex. During surgery, the mass was noted to be pure cortical with no connection to the ventricular lining. The tumor was completely resected. After surgery, the patient had no further seizures. The biopsy result showed a supratentorial ependymoma, which was C11orf95-RELA-fusionpositive.

18.
Brain Pathol ; 31(4): e12963, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34196984

RESUMO

Structural brain lesions, including the broad range of malformations of cortical development (MCD) and glioneuronal tumors, are among the most common causes of drug-resistant focal epilepsy. Epilepsy surgery can provide a curative treatment option in respective patients. The currently available pre-surgical multi-modal diagnostic armamentarium includes high- and ultra-high resolution magnetic resonance imaging (MRI) and intracerebral EEG to identify a focal structural brain lesion as epilepsy underlying etiology. However, specificity and accuracy in diagnosing the type of lesion have proven to be limited. Moreover, the diagnostic process does not stop with the decision for surgery. The neuropathological diagnosis remains the gold standard for disease classification and patient stratification, but is particularly complex with high inter-observer variability. Here, the identification of lesion-specific mosaic variants together with epigenetic profiling of lesional brain tissue became new tools to more reliably identify disease entities. In this review, we will discuss how the paradigm shifts from histopathology toward an integrated diagnostic approach in cancer and the more recent development of the DNA methylation-based brain tumor classifier have started to influence epilepsy diagnostics. Some examples will be highlighted showing how the diagnosis and our mechanistic understanding of difficult to classify structural brain lesions associated with focal epilepsy has improved with molecular genetic data being considered in decision making.


Assuntos
Neoplasias Encefálicas/patologia , Epilepsia Resistente a Medicamentos/patologia , Epilepsias Parciais/patologia , Malformações do Desenvolvimento Cortical/patologia , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsias Parciais/diagnóstico , Humanos , Patologia Molecular/métodos
19.
Oxid Med Cell Longev ; 2021: 9951712, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34306318

RESUMO

Mitochondrial targeted therapy is a next-generation therapeutic approach for cancer that is refractory to conventional treatments. Mitochondrial damage caused by the excessive accumulation of reactive oxygen species (ROS) is a principle of mitochondrial targeted therapy. ROS in nonthermal plasma-activated media (NTPAM) are known to mediate anticancer effects in various cancers including head and neck cancer (HNC). However, the signaling mechanism of HNC cell death via NTPAM-induced ROS has not been fully elucidated. This study evaluated the anticancer effects of NTPAM in HNC and investigated the mechanism using transcriptomic analysis. The viability of HNC cells decreased after NTPAM treatment due to enhanced apoptosis. A human fibroblast cell line and three HNC cell lines were profiled by RNA sequencing. In total, 1 610 differentially expressed genes were identified. Pathway analysis showed that activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) were upstream regulators. Mitochondrial damage was induced by NTPAM, which was associated with enhancements of mitochondrial ROS (mtROS) and ATF4/CHOP regulation. These results suggest that NTPAM induces HNC cell death through the upregulation of ATF4/CHOP activity by damaging mitochondria via excessive mtROS accumulation, similar to mitochondrial targeted therapy.


Assuntos
Neoplasias de Cabeça e Pescoço/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Mitocôndrias/efeitos dos fármacos , Transcriptoma/fisiologia
20.
Ann Neurol ; 90(2): 285-299, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34180075

RESUMO

OBJECTIVE: Low-level somatic mosaicism in the brain has been shown to be a major genetic cause of intractable focal epilepsy. However, how a relatively few mutation-carrying neurons are able to induce epileptogenesis at the local network level remains poorly understood. METHODS: To probe the origin of epileptogenesis, we measured the excitability of neurons with MTOR mutation and nearby nonmutated neurons recorded by whole-cell patch-clamp and array-based electrodes comparing the topographic distribution of mutation. Computational simulation is used to understand neural network-level changes based on electrophysiological properties. To examine the underlying mechanism, we measured inhibitory and excitatory synaptic inputs in mutated neurons and nearby neurons by electrophysiological and histological methods using the mouse model and postoperative human brain tissue for cortical dysplasia. To explain non-cell-autonomous hyperexcitability, an inhibitor of adenosine kinase was injected into mice to enhance adenosine signaling and to mitigate hyperactivity of nearby nonmutated neurons. RESULTS: We generated mice with a low-level somatic mutation in MTOR presenting spontaneous seizures. The seizure-triggering hyperexcitability originated from nonmutated neurons near mutation-carrying neurons, which proved to be less excitable than nonmutated neurons. Interestingly, the net balance between excitatory and inhibitory synaptic inputs onto mutated neurons remained unchanged. Additionally, we found that inhibition of adenosine kinase, which affects adenosine metabolism and neuronal excitability, reduced the hyperexcitability of nonmutated neurons. INTERPRETATION: This study shows that neurons carrying somatic mutations in MTOR lead to focal epileptogenesis via non-cell-autonomous hyperexcitability of nearby nonmutated neurons. ANN NEUROL 2021;90:285-299.


Assuntos
Epilepsias Parciais/genética , Epilepsias Parciais/fisiopatologia , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/fisiopatologia , Serina-Treonina Quinases TOR/genética , Adolescente , Animais , Criança , Pré-Escolar , Eletroencefalografia/métodos , Epilepsias Parciais/diagnóstico por imagem , Feminino , Humanos , Masculino , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA