RESUMO
Activating point mutations in the MET tyrosine kinase domain (TKD) are oncogenic in a subset of papillary renal cell carcinomas. Here, using comprehensive genomic profiling among >600,000 patients, we identify activating MET TKD point mutations as putative oncogenic driver across diverse cancers, with a frequency of â¼0.5%. The most common mutations in the MET TKD defined as oncogenic or likely oncogenic according to OncoKB resulted in amino acid substitutions at positions H1094, L1195, F1200, D1228, Y1230, M1250, and others. Preclinical modeling of these alterations confirmed their oncogenic potential and also demonstrated differential patterns of sensitivity to type I and type II MET inhibitors. Two patients with metastatic lung adenocarcinoma harboring MET TKD mutations (H1094Y, F1200I) and no other known oncogenic drivers achieved confirmed partial responses to a type I MET inhibitor. Activating MET TKD mutations occur in multiple malignancies and may confer clinical sensitivity to currently available MET inhibitors. Significance: The identification of targetable genomic subsets of cancer has revolutionized precision oncology and offers patients treatments with more selective and effective agents. Here, we demonstrate that activating, oncogenic MET tyrosine kinase domain mutations are found across a diversity of cancer types and are responsive to MET tyrosine kinase inhibitors.
Assuntos
Neoplasias Pulmonares , Mutação Puntual , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-met , Humanos , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Animais , Camundongos , Linhagem Celular TumoralRESUMO
PURPOSE: Timely biomarker testing remains out of reach for many patients with advanced non-small-cell lung cancer (aNSCLC). Here, we studied the quality-of-care implications of closing the gap in timely receipt of comprehensive genomic profiling (CGP) to inform first-line (1L) decisions. METHODS: Using a real-world clinicogenomic database, we studied testing and 1L treatment patterns in aNSCLC after the approval of pembrolizumab in combination with pemetrexed and carboplatin (May 10, 2017). To estimate the association of timely CGP results with therapy selection and patient outcomes, we identified patients with no previous genomic testing beyond PD-L1 immunohistochemistry and dichotomized patients by whether CGP results were available before or after 1L therapy initiation. RESULTS: In total, 2,694 patients were included in the 1L therapy decision impact assessment. Timely CGP increased matched targeted therapy use by 14 percentage points (17% with CGP v 2.8% without) and precision immune checkpoint inhibitor (ICPI) use by 14 percentage points (18% with CGP v 3.9% without). Receipt of timely CGP resulted in an estimated 31 percentage point decrease in ICPI use among ALK/EGFR/RET/ROS1-positive patients at an expected per-patient reduction in ineffective ICPI therapy cost of $13,659.37 with timely CGP to inform 1L treatment selection. Patient benefit of CGP extended to real-world time to therapy discontinuation (median time to therapy discontinuation: 3.9 v 10 months [hazard ratio, HR, 0.54 [95% CI, 0.42 to 0.70]; P = 1.9E-06; adjusted hazard ratio [aHR], 0.50 [95% CI, 0.38 to 0.67]; P = 2.0E-06) in 1L driver-positive patients. This effect was not significant for real-world overall survival (median overall survival: 32 v 29 months [HR, 1.2 [95% CI, 0.84 to 1.67]; P = .33; aHR, 1.4 [95% CI, 0.92 to 1.99]; P = .12). CONCLUSION: Timely CGP is associated with the quality of patient care as measured by 1L matched targeted therapy use, time to therapy discontinuation, and avoidance of ineffective, costly ICPIs.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas Tirosina Quinases , Medicina de Precisão/métodos , Proteínas Proto-Oncogênicas , Genômica/métodosRESUMO
AIMS: Liquid biopsy (LBx)-based next-generation sequencing (NGS) of circulating tumour DNA (ctDNA) can facilitate molecular profiling of haematopoietic neoplasms (HNs), particularly when tissue-based NGS is infeasible. METHODS AND RESULTS: We studied HN LBx samples tested with FoundationOne Liquid CDx, FoundationOne Liquid, or FoundationACT between July 2016 and March 2022. We identified 271 samples: 89 non-Hodgkin lymphoma (NHL), 43 plasma-cell neoplasm (PCN), 41 histiocytoses, 27 myelodysplastic syndrome (MDS), 25 diffuse large B-cell lymphoma (DLBCL), 22 myeloproliferative neoplasm (MPN), 14 Hodgkin lymphoma (HL), and 10 acute myeloid leukaemia (AML). Among 73.4% with detectable pathogenic alterations, median maximum somatic allele frequency (MSAF) was 16.6%, with AML (36.2%), MDS (19.7%), and MPN (44.5%) having higher MSAFs than DLBCL (3.9%), NHL (8.4%), HL (1.5%), PCN (2.8%), and histiocytoses (1.8%) (P = 0.001). LBx detected characteristic alterations across HNs, including in TP53, KRAS, MYD88, and BTK in NHLs; TP53, KRAS, NRAS, and BRAF in PCNs; IGH in DLBCL; TP53, ATM, and PDCD1LG2 in HL; BRAF and MAP2K1 in histiocytoses; TP53, SF3B1, DNMT3A, TET2, and ASXL1 in MDS; JAK2 in MPNs; and FLT3, IDH2, and NPM1 in AML. Among 24 samples, the positive percent agreement by LBx was 75.7% for variants present in paired buffy coat, marrow, or tissues. Also, 75.0% of pairs exhibited alterations only present on LBx. These were predominantly subclonal (clonal fraction of 3.8%), reflecting the analytical sensitivity of LBx. CONCLUSION: These data demonstrate that LBx can detect relevant genomic alterations across HNs, including at low clonal fractions, suggesting a potential clinical utility for identifying residual or emerging therapy-resistant clones that may be undetectable in site-specific tissue biopsies.
Assuntos
Biomarcadores Tumorais , DNA Tumoral Circulante , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biópsia Líquida , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/análise , Biomarcadores Tumorais/genética , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Adulto , Mutação , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Neoplasias Hematológicas/diagnóstico , Nucleofosmina , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/patologia , Transtornos Mieloproliferativos/sangueRESUMO
PURPOSE: ERBB2-amplified colorectal cancer is a distinct molecular subtype with expanding treatments. Implications of concurrent oncogenic RAS/RAF alterations are not known. EXPERIMENTAL DESIGN: Dana-Farber and Foundation Medicine Inc. Colorectal cancer cohorts with genomic profiling were used to identify ERBB2-amplified cases [Dana-Farber, n = 47/2,729 (1.7%); FMI, n = 1857/49,839 (3.7%)]. Outcomes of patients receiving HER2-directed therapies are reported (Dana-Farber, n = 9; Flatiron Health-Foundation Medicine clinicogenomic database, FH-FMI CGDB, n = 38). Multisite HER2 IHC and genomic profiling were performed to understand HER2 intratumoral and interlesional heterogeneity. The impact of concurrent RAS comutations on the effectiveness of HER2-directed therapies were studied in isogenic colorectal cancer cell lines and xenografts. RESULTS: ERBB2 amplifications are enriched in left-sided colorectal cancer. Twenty percent of ERBB2-amplified colorectal cancers have co-occurring oncogenic RAS/RAF alterations. While RAS/RAF WT colorectal cancers typically have clonal ERBB2 amplification, colorectal cancers with co-occurring RAS/RAF alterations have lower level ERRB2 amplification, higher intratumoral heterogeneity, and interlesional ERBB2 discordance. These distinct genomic patterns lead to differential responsiveness and patterns of resistance to HER2-directed therapy. ERBB2-amplified colorectal cancer with RAS/RAF alterations are resistant to trastuzumab-based combinations, such as trastuzumab/tucatinib, but retain sensitivity to trastuzumab deruxtecan in in vitro and murine models. Trastuzumab deruxtecan shows clinical efficacy in cases with high-level ERBB2-amplified RAS/RAF coaltered colorectal cancer. CONCLUSIONS: Co-occurring RAS/RAF alterations define a unique subtype of ERBB2-amplified colorectal cancer that has increased intratumoral heterogeneity, interlesional discordance, and resistance to trastuzumab-based combinations. Further examination of trastuzumab deruxtecan in this previously understudied cohort of ERBB2-amplified colorectal cancer is warranted.
Assuntos
Neoplasias Colorretais , Variações do Número de Cópias de DNA , Humanos , Animais , Camundongos , Amplificação de Genes , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Resultado do Tratamento , MutaçãoRESUMO
PURPOSE: Studies have investigated the early use of liquid biopsy (LBx) during the diagnostic workup of patients presenting with clinical evidence of advanced lung cancer, but real-world adoption and impact has not been characterized. The aim of this study was to determine whether the use of LBx before diagnosis (Dx; LBx-Dx) enables timely comprehensive genomic profiling (CGP) and shortens time until treatment initiation for advanced non-small-cell lung cancer (aNSCLC). MATERIALS AND METHODS: This study used the Flatiron Health-Foundation Medicine electronic health record-derived deidentified clinicogenomic database of patients with aNSCLC from approximately 280 US cancer clinics. RESULTS: Of 1,076 patients with LBx CGP ordered within 30 days prediagnosis/postdiagnosis, we focused on 56 (5.2%) patients who ordered LBx before diagnosis date (median 8 days between order and diagnosis, range, 1-28). Compared with 1,020 patients who ordered LBx after diagnosis (Dx-LBx), LBx-Dx patients had similar stage and ctDNA tumor fraction (TF). LBx-Dx patients received CGP results a median of 1 day after Dx versus 25 days for Dx-LBx patients. Forty-three percent of LBx-Dx were positive for an National Comprehensive Cancer Network driver, and 32% had ctDNA TF >1% but were driver negative (presumed true negatives). In 748 patients with previously untreated aNSCLC, median time from Dx to therapy was shorter in the LBx-Dx versus Dx-LBx group (21 v 35 days; P < .001). CONCLUSION: Early LBx in anticipation of pathologic diagnosis of aNSCLC was uncommon in this real-world cohort, yet this emerging paradigm was associated with an abbreviated time to CGP results and faster therapy initiation. Forthcoming prospective studies will clarify the utility of LBx in parallel with biopsy for diagnostic confirmation for patients presenting with suspected advanced lung cancer.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Estudos Prospectivos , Biópsia Líquida , Tempo para o TratamentoRESUMO
INTRODUCTION: The emergence of osimertinib as standard of care for EGFR-mutant NSCLC has renewed the need to understand and overcome drug resistance. We sought to understand the genomics and real-world treatment landscape of NSCLC with EGFR C797S and other on- and off-target resistance mechanisms. METHODS: Comprehensive genomic profiling (CGP) results from tissue or blood samples from 93,065 patients with NSCLC were queried for osimertinib EGFR second-site resistance mutations (ssEGFRms; C797, L718, G724, G796, L792). A real-world electronic health record-derived deidentified clinicogenomic database of patients with NSCLC undergoing CGP from approximately 280 U.S. cancer clinics was queried to assess post-osimertinib resistance and clinical treatment outcomes. RESULTS: A ssEGFRm was identified in 239 of 8845 (2.7%) EGFR-driven (L858R or exon 19 deletion) NSCLCs, most frequently C797 (71%), L718 (15%), and G724 (9.5%). ssEGFRms were not equally distributed across drivers; C797 and G724 changes strongly favored exon 19 deletion and L718, G796 and L792 favored L858R. Post-osimertinib CGP detected ssEGFRm in 19% of the cases (39 of 205); in paired pre-/post-osimertinib samples, on- and off-target resistance was largely mutually exclusive and observed in 24% and 27% of the cases, respectively. Of 391 patients with post-osimertinib treatment data, 62% received a chemotherapy-based regimen, whereas 25% received a targeted therapy or clinical study drug. Median real-world overall survival was 11.4 months from osimertinib progression. CONCLUSIONS: The osimertinib resistance landscape is diverse with on-target ssEGFRm and off-target resistance detected in tissue and liquid biopsy. Post-osimertinib, patients are receiving primarily chemotherapy-based regimens with poor outcomes, and CGP at resistance may offer an opportunity to inform therapeutic development and improve treatment selection.
Assuntos
Acrilamidas , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Pirimidinas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Receptores ErbB/genética , Receptores ErbB/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Mutação , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , GenômicaRESUMO
PURPOSE: Genomic rearrangements can generate potent oncogenic drivers or disrupt tumor suppressor genes. This study examines the landscape of fusions and rearrangements detected by liquid biopsy (LBx) of circulating tumor DNA (ctDNA) across different cancer types. EXPERIMENTAL DESIGN: LBx from 53,842 patients with 66 solid tumor types were profiled using FoundationOneLiquid CDx, a hybrid-capture sequencing platform that queries 324 cancer-related genes. Tissue biopsies (TBx) profiled using FoundationOneCDx were used as a comparator. RESULTS: Among all LBx, 7,377 (14%) had ≥1 pathogenic rearrangement detected. A total of 3,648 (6.8%) LBx had ≥1 gain-of-function (GOF) oncogene rearrangement, and 4,428 (8.2%) LBx had ≥1 loss-of-function rearrangement detected. Cancer types with higher prevalence of GOF rearrangements included those with canonical fusion drivers: prostate cancer (19%), cholangiocarcinoma (6.4%), bladder (5.5%), and non-small cell lung cancer (4.4%). Although the prevalence of driver rearrangements was lower in LBx than TBx overall, the frequency of detection was comparable in LBx with a tumor fraction (TF) ≥1%. Rearrangements in FGFR2, BRAF, RET, and ALK, were detected across cancer types, but tended to be clonal variants in some cancer types and potential acquired resistance variants in others. CONCLUSIONS: In contrast to some prior literature, this study reports detection of a wide variety of rearrangements in ctDNA. The prevalence of driver rearrangements in tissue and LBx was comparable when TF ≥1%. LBx presents a viable alternative when TBx is not available, and there may be less value in confirmatory testing when TF is sufficient.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Neoplasias Pulmonares , Masculino , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , DNA Tumoral Circulante/genética , Genômica , Fusão Gênica , Rearranjo GênicoRESUMO
BACKGROUND: Men of African ancestry experience the greatest burden of prostate cancer globally, but they are under-represented in genomic and precision medicine studies. Therefore, we sought to characterise the genomic landscape, comprehensive genomic profiling (CGP) utilisation patterns, and treatment patterns across ancestries in a large, diverse, advanced prostate cancer cohort, to determine the impact of genomics on ancestral disparities. METHODS: In this large-scale retrospective analysis, the CGP-based genomic landscape was evaluated in biopsy sections from 11â741 patients with prostate cancer, with ancestry inferred using a single nucleotide polymorphism-based approach. Admixture-derived ancestry fractions for each patient were also interrogated. Independently, clinical and treatment information was retrospectively reviewed for 1234 patients in a de-identified US-based clinicogenomic database. Prevalence of gene alterations, including actionable gene alterations, was assessed across ancestries (n=11â741). Furthermore, real-world treatment patterns and overall survival was assessed in the subset of patients with linked clincogenomic information (n=1234). FINDINGS: The CGP cohort included 1422 (12%) men of African ancestry and 9244 (79%) men of European ancestry; the clinicogenomic database cohort included 130 (11%) men of African ancestry and 1017 (82%) men of European ancestry. Men of African ancestry received more lines of therapy before CGP than men of European ancestry (median of two lines [IQR 0-8] vs one line [0-10], p=0·029). In genomic analyses, ancestry-specific mutational landscapes were observed, but the prevalence of alterations in AR, the DNA damage response pathway, and other actionable genes were similar across ancestries. Similar genomic landscapes were observed in analyses that accounted for admixture-derived ancestry fractions. After undergoing CGP, men of African ancestry were less likely to receive a clinical study drug compared with men of European ancestry (12 [10%] of 118 vs 246 [26%] of 938, p=0·0005). INTERPRETATION: Similar rates of gene alterations with therapy implications suggest that differences in actionable genes (including AR and DNA damage response pathway genes) might not be a main driver of disparities across ancestries in advanced prostate cancer. Later CGP utilisation and a lower rate of clinical trial enrolment observed in men of African ancestry could affect genomics, outcomes, and disparities. FUNDING: American Society for Radiation Oncology, Department of Defense, Flatiron Health, Foundation Medicine, Prostate Cancer Foundation, and Sylvester Comprehensive Cancer Center.
Assuntos
Neoplasias da Próstata , Masculino , Humanos , Estados Unidos , Estudos Retrospectivos , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Medicina de Precisão , GenômicaRESUMO
There is an urgent need to identify biomarkers of early response that can accurately predict the benefit of immune checkpoint inhibitors (ICI). Patients receiving durvalumab/tremelimumab had tumor samples sequenced before treatment (baseline) to identify variants for the design of a personalized circulating tumor (ctDNA) assay. ctDNA was assessed at baseline and at 4 and/or 8 weeks into treatment. Correlations between ctDNA changes to radiographic response and overall survival (OS) were made to assess potential clinical benefit. 35/40 patients (87.5%) had personalized ctDNA assays designed, and 29/35 (82.9%) had plasma available for baseline analysis, representing 16 unique solid tumor histologies. As early as 4 weeks after treatment, decline in ctDNA from baseline predicted improved OS (P = 0.0144; HR = 9.98) and ctDNA changes on treatment-supported and refined radiographic response calls. ctDNA clearance at any time through week 8 identified complete responders by a median lead time of 11.5 months ahead of radiographic imaging. ctDNA response monitoring is emerging as a dynamic, personalized biomarker method that may predict survival outcomes in patients with diverse solid tumor histologies, complementing and sometimes preceding standard-of-care imaging assessments.
Assuntos
DNA Tumoral Circulante , Humanos , DNA Tumoral Circulante/genética , Biomarcadores Tumorais/genética , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , MutaçãoRESUMO
PURPOSE: Alpelisib is a PI3K alpha (PI3Kα)-selective inhibitor approved for the treatment of hormone receptor-positive/HER2-negative (HR+/HER2-) PIK3CA-mutated advanced breast cancer (ABC) based on the SOLAR-1 trial, which defined 11 substitutions in exons 7, 9, and 20 in PIK3CA (SOLAR1m). We report alpelisib effectiveness for ABC harboring SOLAR1m, as well as other pathogenic PIK3CA mutations (OTHERm) using comprehensive genomic profiling (CGP). EXPERIMENTAL DESIGN: A total of 33,977 tissue and 1,587 liquid biopsies were analyzed using hybrid capture-based CGP covering the entire coding sequence of PIK3CA. Clinical characteristics and treatment history were available for 10,750 patients with ABC in the deidentified Flatiron Health-Foundation Medicine clinico-genomic database (FH-FMI CGDB). RESULTS: PIK3CAm were detected in 11,767/33,977 (35%) of tissue biopsies, including 2,300 (7%) samples with OTHERm and no SOLAR1m. Liquid biopsy had 77% sensitivity detecting PIK3CAm, increasing to 95% with circulating tumor DNA fraction ≥2%. In patients with HR+/HER2- ABC and PIK3CAm receiving alpelisib/fulvestrant (ALP+FUL; n = 182) or fulvestrant alone (FUL; n = 119), median real-world progression-free survival (rwPFS) was 5.9 months on ALP+FUL [95% confidence interval (CI): 5.1-7.4] versus 3.1 months on FUL (95% CI: 2.7-3.7; P < 0.0001). In patients with OTHERm, median rwPFS was 4.0 months on ALP+FUL (95% CI: 2.8-10.1) versus 2.5 months on FUL (95% CI: 2.2-3.7; P = 0.0054). CONCLUSIONS: CGP detects diverse PIK3CAm in a greater number of patients with ABC than PCR hotspot testing; 20% of patients with PIK3CAm do not have SOLAR1m. These patients may derive benefit from alpelisib. See related commentary by Tau and Miller, p. 989.
Assuntos
Neoplasias da Mama , Receptor ErbB-2 , Humanos , Feminino , Fulvestranto/efeitos adversos , Receptor ErbB-2/genética , Receptor ErbB-2/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Mutação , Classe I de Fosfatidilinositol 3-Quinases/genética , BiologiaRESUMO
Recent clinical development of KRAS inhibitors has heightened interest in the genomic landscape of KRAS-altered cancers. We performed a pan-cancer analysis of KRAS-altered samples from 426,706 adult patients with solid or hematologic malignancies using comprehensive genomic profiling; additional analyses included 62,369 liquid biopsy and 7241 pediatric samples. 23% of adult pan-cancer samples had KRAS alterations; 88% were mutations, most commonly G12D/G12V/G12C/G13D/G12R, and prevalence was similar in liquid biopsies. Co-alteration landscapes were largely similar across KRAS mutations but distinct from KRAS wild-type, though differences were observed in some tumor types for tumor mutational burden, PD-L1 expression, microsatellite instability, and other mutational signatures. Prognosis of KRAS-mutant versus other genomic cohorts of lung, pancreatic, and colorectal cancer were assessed using a real-world clinicogenomic database. As specific KRAS inhibitors and combination therapeutic strategies are being developed, genomic profiling to understand co-alterations and other biomarkers that may modulate response to targeted or immunotherapies will be imperative.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Genômica , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , MAP Quinase Quinase 1/genética , Mutação , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
Introduction: Germline CHEK2 mutations are rare and have not been associated with increased risk of NSCLC. Methods: We identified two sequential primary NSCLCs harboring distinct actionable driver alterations (EGFR E746 _S752 delinsV and CD74-ROS1) in a patient with NSCLC with a novel germline CHEK2 mutation S5fs∗54 (c.14_20delCGGATGT). We queried a genomic database of NSCLC samples profiled by plasma next-generation sequencing (Foundation Medicine Inc.) and performed a literature search of germline CHEK2 mutations in NSCLC. Results: Of 6101 patients with unique NSCLC profiled by plasma next-generation sequencing, 53 cases (0.87%) of germline CHEK2 mutation were identified (male-to-female ratio, 49%:51%; median age = 75 y). The median allele frequency of CHEK2 was 49% (interquartile range: 49%-51%). Ten unique CHEK2 germline mutations were identified. Literature review identified 15 additional cases of germline CHEK2 mutations in NSCLC. Overall, a total of 70 CHEK2 germline mutations (21 unique CHEK2 alterations) were identified. Among these 70 CHEK2 germline mutations, 54.3% were amino acid substitutions (point mutation), 40.0% were frameshift mutations, and 5.7% were splice site mutations. Of these 70 total cases assessed, 29 (41.4%) potentially actionable driver alterations were identified with KRAS G12C mutation (27.6%) being the most common and KRAS G12A/C/D/R/S/V mutations together constituting 51.7% of these driver mutations. Conclusions: Germline CHEK2 mutations are rare in NSCLC. A large proportion of these cases harbor actionable driver alterations. The relationship between germline CHEK2 mutations and actionable driver alterations in NSCLC may be worth further investigation.
RESUMO
Somatic hotspot mutations and structural amplifications and fusions that affect fibroblast growth factor receptor 2 (encoded by FGFR2) occur in multiple types of cancer1. However, clinical responses to FGFR inhibitors have remained variable1-9, emphasizing the need to better understand which FGFR2 alterations are oncogenic and therapeutically targetable. Here we apply transposon-based screening10,11 and tumour modelling in mice12,13, and find that the truncation of exon 18 (E18) of Fgfr2 is a potent driver mutation. Human oncogenomic datasets revealed a diverse set of FGFR2 alterations, including rearrangements, E1-E17 partial amplifications, and E18 nonsense and frameshift mutations, each causing the transcription of E18-truncated FGFR2 (FGFR2ΔE18). Functional in vitro and in vivo examination of a compendium of FGFR2ΔE18 and full-length variants pinpointed FGFR2-E18 truncation as single-driver alteration in cancer. By contrast, the oncogenic competence of FGFR2 full-length amplifications depended on a distinct landscape of cooperating driver genes. This suggests that genomic alterations that generate stable FGFR2ΔE18 variants are actionable therapeutic targets, which we confirmed in preclinical mouse and human tumour models, and in a clinical trial. We propose that cancers containing any FGFR2 variant with a truncated E18 should be considered for FGFR-targeted therapies.
Assuntos
Éxons , Deleção de Genes , Terapia de Alvo Molecular , Neoplasias , Oncogenes , Inibidores de Proteínas Quinases , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Animais , Éxons/genética , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Oncogenes/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismoRESUMO
Activation of the tyrosine kinase receptor IGF1R is targetable with existing tyrosine kinase inhibitors (TKIs) and monoclonal antibodies, but mutations in IGF1R have not been systematically characterized. Pan-cancer analysis of 326,911 tumors identified two distinct, activating non-frameshift insertion hotspots in IGF1R, which were significantly enriched in adenoid cystic carcinomas (ACCs). IGF1R alterations from 326,911 subjects were analyzed by variant effect prediction class, position within the gene, and cancer type. 6502 (2.0%) samples harbored one or more alterations in IGF1R. Two regions were enriched for non-frameshift insertions: codons 663-666 at the hinge region of the fibronectin type 3 domain and codons 1034-1049 in the tyrosine kinase domain. Hotspot insertions were highly enriched in ACCs (27.3-fold higher than in the remainder of the pan-cancer dataset; P = 2.3 × 10-17). Among salivary gland tumors, IGF1R hotspot insertions were entirely specific to ACCs. IGF1R alterations were most often mutually exclusive with other ACC drivers (9/15, 60%). Tumors with non-frameshift hotspot IGF1R insertions represent a novel, potentially targetable subtype of ACC. Additional studies are needed to determine whether these patients respond to existing IGF1R inhibitors.
Assuntos
Carcinoma Adenoide Cístico , Neoplasias das Glândulas Salivares , Humanos , Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/patologia , Fibronectinas , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/patologia , Inibidores de Proteínas Quinases , Anticorpos Monoclonais , Receptor IGF Tipo 1/genéticaRESUMO
Black people have a higher incidence of colorectal cancer and worse survival rates when compared with white people. Comprehensive genomic profiling was performed in 46,140 colorectal adenocarcinoma cases. Ancestry-informative markers identified 5,301 patients of African descent (AFR) and 33,770 patients of European descent (EUR). AFR were younger, had fewer microsatellite instability-high (MSI-H) tumors, and had significantly more frequent alterations in KRAS, APC, and PIK3CA. AFR had increased frequency of KRAS mutations, specifically KRASG12D and KRASG13. There were no differences in rates of actionable kinase driver alterations (HER2, MET, NTRK, ALK, ROS1, and RET). In patients with young-onset colorectal cancer (<50 years), AFR and EUR had a similar frequency of MSI-H and tumor mutational burden-high (TMB-H) tumors, and strikingly different trends in APC mutations by age, as well as differences in MAPK pathway alterations. These findings inform treatment decisions, impact prognosis, and underscore the need for model systems representative of the diverse U.S. population. SIGNIFICANCE: KRAS (particularly KRASG12D/G13), APC, and PIK3CA were more frequently altered in AFR who had a lower frequency of MSI-H tumors. There were no differences in actionable kinase driver alterations. In young-onset colorectal cancer, both ancestries had a similar frequency of MSI-H/TMB-H tumors, but strikingly different trends in APC. See related commentary by Eng and Holowatyj, p. 1187. This article is highlighted in the In This Issue feature, p. 1171.
Assuntos
Neoplasias Colorretais , Proteínas Tirosina Quinases , Classe I de Fosfatidilinositol 3-Quinases/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Genômica , Humanos , Instabilidade de Microssatélites , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras)/genéticaRESUMO
PURPOSE: Oncogenic kinase fusions are targetable with approved and investigational therapies and can also mediate acquired resistance (AR) to targeted therapy. We aimed to understand the clinical validity of liquid biopsy comprehensive genomic profiling (CGP) to detect kinase fusions pan tumor. EXPERIMENTAL DESIGN: CGP was performed on plasma and tissue samples during clinical care. All exons plus selected introns of 16 kinases involved in oncogenic fusions (ALK, BRAF, EGFR, ERBB2, FGFR1/2/3, MET, NTRK1/2/3, PDGFRA/B, RAF1, RET, and ROS1) were sequenced to capture fusions, including well-characterized and novel breakpoints. Plasma circulating tumor DNA (ctDNA) fraction was estimated to inform sensitivity. RESULTS: Of 36,916 plasma cases, 32,492 (88%) had detectable ctDNA. Kinase fusions were detected in 1.8% of ctDNA-positive cases (571/32,492) and were most prevalent in patients with cholangiocarcinoma (4.2%), bladder cancer (3.6%), and non-small cell lung cancer (NSCLC; 3.1%). Of the 63 paired patient samples that had tissue and ctDNA specimens collected within 1 year and with estimated plasma ctDNA fraction >1%, fusions were detected in 47 of 51 (92%) liquid specimens with a fusion in the tissue sample. In 32 patients with fusions detected in liquid but not in tissue, 21 (66%) had evidence of putative acquired resistance. CONCLUSIONS: Targetable kinase fusions are identified in ctDNA across cancer types. In pairs with tissue-identified fusions, fusion detection in ctDNA is reliable with elevated ctDNA fraction. These data support the validity of CGP to enable ctDNA-based fusion detection for informing clinical care in patients with advanced cancer.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , DNA Tumoral Circulante/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genéticaRESUMO
PURPOSE: MET exon 14 (METex14) skipping alterations are oncogenic drivers in non-small-cell lung cancer (NSCLC). We present a comprehensive overview of METex14 samples from 1,592 patients with NSCLC, associated clinicogenomic characteristics, potential mechanisms of acquired resistance, treatment patterns, and outcomes to MET inhibitors. METHODS: Hybrid capture-based comprehensive genomic profiling (CGP) was performed on samples from 69,219 patients with NSCLC. For treatment patterns and outcomes analysis, patients with advanced METex14-altered NSCLC were selected from the Flatiron Health-Foundation Medicine clinicogenomic database, a nationwide deidentified electronic health record-derived database linked to Foundation Medicine CGP for patients treated between January 2011 and March 2020. RESULTS: A total of 1,592 patients with NSCLC (2.3%) were identified with 1,599 METex14 alterations spanning multiple functional sites (1,458 of 60,244 tissue samples and 134 of 8,975 liquid samples). Low tumor mutational burden and high programmed death ligand 1 expression were enriched in METex14-altered samples. MDM2, CDK4, and MET coamplifications and TP53 mutations were present in 34%, 19%, 11%, and 42% of tissue samples, respectively. Comparing tissue and liquid cohorts, coalteration frequency and acquired resistance mechanisms, including multiple MET mutations, EGFR, ERBB2, KRAS, and PI3K pathway alterations, were generally similar. Positive percent agreement with the tissue was 100% for METex14 pairs collected within 1 year (n = 7). Treatment patterns showed increasing adoption of MET inhibitors in METex14-altered NSCLC after receipt of CGP results; the real-world response rate to MET inhibitors was 45%, and time to treatment discontinuation was 4.4 months. CONCLUSION: Diverse METex14 alterations were present in 2%-3% of NSCLC cases. Tissue and liquid comparisons showed high concordance and similar coalteration profiles. Characterizing common co-occurring alterations and immunotherapy biomarkers, including those present before or acquired after treatment, may be critical for predicting responses to MET inhibitors and informing rational combination strategies.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas Proto-Oncogênicas c-met/genética , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Proteínas Proto-Oncogênicas c-met/análiseRESUMO
NEW FINDINGS: What is the central question of this study? While muscle fibre atrophy in response to immobilisation has been extensively examined, intramuscular connective tissue, particularly endomysium, has been largely neglected: does endomysium content of the soleus muscle increase during bed rest? What is the main finding and its importance? Absolute endomysium content did not change, and previous studies reporting an increase are explicable by muscle fibre atrophy. It must be expected that even a relative connective tissue accumulation will lead to an increase in muscle stiffness. ABSTRACT: Muscle fibres atrophy during conditions of disuse. Whilst animal data suggest an increase in endomysium content with disuse, that information is not available for humans. We hypothesised that endomysium content increases during immobilisation. To test this hypothesis, biopsy samples of the soleus muscle obtained from 21 volunteers who underwent 60 days of bed rest were analysed using immunofluorescence-labelled laminin γ-1 to delineate individual muscle fibres as well as the endomysium space. The endomysium-to-fibre-area ratio (EFAr, as a percentage) was assessed as a measure related to stiffness, and the endomysium-to-fibre-number ratio (EFNr) was calculated to determine whether any increase in EFAr was absolute, or could be attributed to muscle fibre shrinkage. As expected, we found muscle fibre atrophy (P = 0.0031) that amounted to shrinkage by 16.6% (SD 28.2%) on day 55 of bed rest. ENAr increased on day 55 of bed rest (P < 0.001). However, when analysing EFNr, no effect of bed rest was found (P = 0.62). These results demonstrate that an increase in EFAr is likely to be a direct effect of muscle fibre atrophy. Based on the assumption that the total number of muscle fibres remains unchanged during 55 days of bed rest, this implies that the absolute amount of connective tissue in the soleus muscle remained unchanged. The increased relative endomysium content, however, could be functionally related to an increase in muscle stiffness.