Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Extracell Vesicles ; 13(1): e12398, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38191961

RESUMO

Brain-derived extracellular vesicles (EVs) play an active role in Alzheimer's disease (AD), relaying important physiological information about their host tissues. The internal cargo of EVs is protected from degradation, making EVs attractive AD biomarkers. However, it is unclear how circulating EVs relate to EVs isolated from disease-vulnerable brain regions. We developed a novel method for collecting EVs from the hippocampal interstitial fluid (ISF) of live mice. EVs (EVISF ) were isolated via ultracentrifugation and characterized by nanoparticle tracking analysis, immunogold labelling, and flow cytometry. Mass spectrometry and proteomic analyses were performed on EVISF cargo. EVISF were 40-150 nm in size and expressed CD63, CD9, and CD81. Using a model of cerebral amyloidosis (e.g., APPswe, PSEN1dE9 mice), we found protein concentration increased but protein diversity decreased with Aß deposition. Genotype, age, and Aß deposition modulated proteostasis- and immunometabolic-related pathways. Changes in the microglial EVISF proteome were sexually dimorphic and associated with a differential response of plaque associated microglia. We found that female APP/PS1 mice have more amyloid plaques, less plaque associated microglia, and a less robust- and diverse- EVISF microglial proteome. Thus, in vivo microdialysis is a novel technique for collecting EVISF and offers a unique opportunity to explore the role of EVs in AD.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Placa Aterosclerótica , Feminino , Animais , Camundongos , Proteoma , Líquido Extracelular , Microglia , Proteômica , Hipocampo
2.
ACS Nano ; 17(11): 10252-10268, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37224410

RESUMO

Obesity is a major risk factor for multiple chronic diseases. Anthropometric and imaging approaches are primarily used to assess adiposity, and there is a dearth of techniques to determine the changes in adipose tissue (AT) at the molecular level. Extracellular vesicles (EVs) have emerged as a novel and less invasive source of biomarkers for various pathologies. Furthermore, the possibility of enriching cell or tissue-specific EVs from the biofluids based on their unique surface markers has led to classifying these vesicles as "liquid biopsies", offering valuable molecular information on hard-to-access tissues. Here, we isolated small EVs from AT (sEVAT) of lean and diet-induced obese (DIO) mice, identified unique surface proteins on sEVAT by surface shaving followed by mass spectrometry, and developed a signature of five unique proteins. Using this signature, we pulled out sEVAT from the blood of mice and validated the specificity of isolated sEVAT by measuring the expression of adiponectin, 38 adipokines on an array, and several adipose tissue-related miRNAs. Furthermore, we provided evidence of sEV applicability in disease prediction by characterizing sEVAT from the blood of lean and DIO mice. Interestingly, sEVAT-DIO cargo showed a stronger pro-inflammatory effect on THP1 monocytes compared to sEVAT-Lean and a significant increase in obesity-associated miRNA expression. Equally important, sEVAT cargo revealed an obesity-associated aberrant amino acid metabolism that was subsequently validated in the corresponding AT. Lastly, we show a significant increase in inflammation-related molecules in sEVAT isolated from the blood of nondiabetic obese (>30 kg/m2) individuals. Overall, the present study offers a less-invasive approach to characterize AT.


Assuntos
Tecido Adiposo , Vesículas Extracelulares , Tecido Adiposo/química , Biópsia Líquida , Vesículas Extracelulares/química , Obesidade , Humanos , Animais , Camundongos , Biomarcadores
3.
Nat Commun ; 14(1): 2123, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37055412

RESUMO

Redox signaling and cardiac function are tightly linked. However, it is largely unknown which protein targets are affected by hydrogen peroxide (H2O2) in cardiomyocytes that underly impaired inotropic effects during oxidative stress. Here, we combine a chemogenetic mouse model (HyPer-DAO mice) and a redox-proteomics approach to identify redox sensitive proteins. Using the HyPer-DAO mice, we demonstrate that increased endogenous production of H2O2 in cardiomyocytes leads to a reversible impairment of cardiac contractility in vivo. Notably, we identify the γ-subunit of the TCA cycle enzyme isocitrate dehydrogenase (IDH)3 as a redox switch, linking its modification to altered mitochondrial metabolism. Using microsecond molecular dynamics simulations and experiments using cysteine-gene-edited cells reveal that IDH3γ Cys148 and 284 are critically involved in the H2O2-dependent regulation of IDH3 activity. Our findings provide an unexpected mechanism by which mitochondrial metabolism can be modulated through redox signaling processes.


Assuntos
Peróxido de Hidrogênio , Mitocôndrias , Camundongos , Animais , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Metabolismo Energético , Miócitos Cardíacos/metabolismo , Estresse Oxidativo
4.
bioRxiv ; 2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36945515

RESUMO

Brain-derived extracellular vesicles (EVs) play an active role in Alzheimer's disease (AD), relaying important physiological information about their host tissues. Circulating EVs are protected from degradation, making them attractive AD biomarkers. However, it is unclear how circulating EVs relate to EVs isolated from disease-vulnerable brain regions. We developed a novel method for collecting EVs from the hippocampal interstitial fluid (ISF) of live mice. EVs (EVISF) were isolated via ultracentrifugation and characterized by nanoparticle tracking analysis, immunogold labeling, and flow cytometry. Mass spectrometry and proteomic analyses were performed on EVISF cargo. EVISF were 40-150 nm in size and expressed CD63, CD9, and CD81. Using a model of cerebral amyloidosis (e.g. APPswe,PSEN1dE9 mice), we found protein concentration increased but protein diversity decreased with A deposition. Genotype, age, and Aß deposition modulated proteostasis- and immunometabolic-related pathways. Changes in the microglial EVISF proteome were sexually dimorphic and associated with a differential response of plaque associated microglia. We found that female APP/PS1 mice have more amyloid plaques, less plaque associated microglia, and a less robust- and diverse- EVISF microglial proteome. Thus, in vivo microdialysis is a novel technique for collecting EVISF and offers a unique opportunity to explore the role of EVs in AD.

5.
Neurooncol Adv ; 5(1): vdac186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36789023

RESUMO

Background: Leptomeningeal failure (LMF) represents a devastating progression of disease following resection of brain metastases (BrM). We sought to identify a biomarker at time of BrM resection that predicts for LMF using mass spectrometry-based proteomic analysis of resected BrM and to translate this finding with histochemical assays. Methods: We retrospectively reviewed 39 patients with proteomic data available from resected BrM. We performed an unsupervised analysis with false discovery rate adjustment (FDR) to compare proteomic signature of BrM from patients that developed LMF versus those that did not. Based on proteomic analysis, we applied trichrome stain to a total of 55 patients who specifically underwent resection and adjuvant radiosurgery. We used competing risks regression to assess predictors of LMF. Results: Of 39 patients with proteomic data, FDR revealed type I collagen-alpha-1 (COL1A1, P = .045) was associated with LMF. The degree of trichrome stain in each block correlated with COL1A1 expression (ß = 1.849, P = .001). In a cohort of 55 patients, a higher degree of trichrome staining was associated with an increased hazard of LMF in resected BrM (Hazard Ratio 1.58, 95% CI 1.11-2.26, P = .01). Conclusion: The degree of trichrome staining correlated with COL1A1 and portended a higher risk of LMF in patients with resected brain metastases treated with adjuvant radiosurgery. Collagen deposition and degree of fibrosis may be able to serve as a biomarker for LMF.

6.
J Biol Chem ; 298(8): 102186, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35753348

RESUMO

The recent development of mutant-selective inhibitors for the oncogenic KRASG12C allele has generated considerable excitement. These inhibitors covalently engage the mutant C12 thiol located within the phosphoryl binding loop of RAS, locking the KRASG12C protein in an inactive state. While clinical trials of these inhibitors have been promising, mechanistic questions regarding the reactivity of this thiol remain. Here, we show by NMR and an independent biochemical assay that the pKa of the C12 thiol is depressed (pKa ∼7.6), consistent with susceptibility to chemical ligation. Using a validated fluorescent KRASY137W variant amenable to stopped-flow spectroscopy, we characterized the kinetics of KRASG12C fluorescence changes upon addition of ARS-853 or AMG 510, noting that at low temperatures, ARS-853 addition elicited both a rapid first phase of fluorescence change (attributed to binding, Kd = 36.0 ± 0.7 µM) and a second, slower pH-dependent phase, taken to represent covalent ligation. Consistent with the lower pKa of the C12 thiol, we found that reversible and irreversible oxidation of KRASG12C occurred readily both in vitro and in the cellular environment, preventing the covalent binding of ARS-853. Moreover, we found that oxidation of the KRASG12C Cys12 to a sulfinate altered RAS conformation and dynamics to be more similar to KRASG12D in comparison to the unmodified protein, as assessed by molecular dynamics simulations. Taken together, these findings provide insight for future KRASG12C drug discovery efforts, and identify the occurrence of G12C oxidation with currently unknown biological ramifications.


Assuntos
Proteínas Proto-Oncogênicas p21(ras) , Compostos de Sulfidrila , Cinética , Mutação , Oxirredução , Proteínas Proto-Oncogênicas p21(ras)/genética
7.
Cell Chem Biol ; 29(6): 970-984.e6, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35148834

RESUMO

Signal transduction pathways post-translationally regulating nucleotide metabolism remain largely unknown. Guanosine monophosphate reductase (GMPR) is a nucleotide metabolism enzyme that decreases GTP pools by converting GMP to IMP. We observed that phosphorylation of GMPR at Tyr267 is critical for its activity and found that this phosphorylation by ephrin receptor tyrosine kinase EPHA4 decreases GTP pools in cell protrusions and levels of GTP-bound RAC1. EPHs possess oncogenic and tumor-suppressor activities, although the mechanisms underlying switches between these two modes are poorly understood. We demonstrated that GMPR plays a key role in EPHA4-mediated RAC1 suppression. This supersedes GMPR-independent activation of RAC1 by EPHA4, resulting in a negative overall effect on melanoma cell invasion and tumorigenicity. Accordingly, EPHA4 levels increase during melanoma progression and inversely correlate with GMPR levels in individual melanoma tumors. Therefore, phosphorylation of GMPR at Tyr267 is a metabolic signal transduction switch controlling GTP biosynthesis and transformed phenotypes.


Assuntos
Melanoma , Receptor EphA4/metabolismo , GMP Redutase/genética , GMP Redutase/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Melanoma/metabolismo , Nucleotídeos/metabolismo , Fosforilação
8.
Blood Adv ; 5(7): 1933-1946, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33821992

RESUMO

Resistance to the proteasome inhibitor bortezomib (BTZ) represents a major obstacle in the treatment of multiple myeloma (MM). The contribution of lipid metabolism in the resistance of MM cells to BTZ is mostly unknown. Here we report that levels of fatty acid elongase 6 (ELOVL6) were lower in MM cells from BTZ-nonresponsive vs BTZ-responsive patients and in cultured MM cells selected for BTZ resistance compared with parental counterparts. Accordingly, depletion of ELOVL6 in parental MM cells suppressed BTZ-induced endoplasmic reticulum (ER) stress and cytotoxicity, whereas restoration of ELOVL6 levels in BTZ-resistant MM cells sensitized them to BTZ in tissue culture settings and, as xenografts, in a plasmacytoma mouse model. Furthermore, for the first time, we identified changes in the BTZ-induced lipidome between parental and BTZ-resistant MM cell lines underlying a functional difference in their response to BTZ. We demonstrated that restoration of ELOVL6 levels in BTZ-resistant MM cells resensitized them to BTZ largely via upregulation of ELOVL6-dependent ceramide species, which was a prerequisite for BTZ-induced ER stress and cell death in these cells. Our data characterize ELOVL6 as a major clinically relevant regulator of MM cell resistance to BTZ, which can emerge from the impaired ability of these cells to alter ceramide composition in response to BTZ.


Assuntos
Mieloma Múltiplo , Animais , Bortezomib/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Elongases de Ácidos Graxos , Humanos , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética
9.
Mol Cell Proteomics ; 20: 100073, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33757833

RESUMO

Silver nanoparticles (AgNPs) are widely used nanomaterials in both commercial and clinical biomedical applications, but the molecular mechanisms underlying their activity remain elusive. In this study we profiled proteomics and redox proteomics changes induced by AgNPs in two lung cancer cell lines: AgNPs-sensitive Calu-1 and AgNPs-resistant NCI-H358. We show that AgNPs induce changes in protein abundance and reversible oxidation in a time and cell-line-dependent manner impacting critical cellular processes such as protein translation and modification, lipid metabolism, bioenergetics, and mitochondrial dynamics. Supporting confocal microscopy and transmission electron microscopy (TEM) data further emphasize mitochondria as a target of AgNPs toxicity differentially impacting mitochondrial networks and morphology in Calu-1 and NCI-H358 lung cells. Proteomics data are available via ProteomeXchange with identifier PXD021493.


Assuntos
Neoplasias Pulmonares/metabolismo , Nanopartículas Metálicas/administração & dosagem , Prata/administração & dosagem , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Oxirredução , Proteômica
10.
Mol Ther Oncolytics ; 17: 496-507, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32529027

RESUMO

A key principle of oncolytic viral therapy is that many cancers develop defects in their antiviral responses, making them more susceptible to virus infection. However, some cancers display resistance to viral infection. Many of these resistant cancers constitutively express interferon-stimulated genes (ISGs). The goal of these experiments was to determine the role of two tumor suppressor genes, MAP3K7 and CHD1, in viral resistance and ISG expression in PC3 prostate cancer cells resistant to oncolytic vesicular stomatitis virus (VSV). MAP3K7 and CHD1 are often co-deleted in aggressive prostate cancers. Silencing expression of MAP3K7 and CHD1 in PC3 cells increased susceptibility to the matrix (M) gene mutant M51R-VSV, as shown by increased expression of viral genes, increased yield of progeny virus, and reduction of tumor growth in nude mice. Silencing MAP3K7 alone had a greater effect on virus susceptibility than did silencing CHD1. Silencing MAP3K7 and CHD1 decreased constitutive expression of ISG mRNAs and proteins, whereas silencing MAP3K7 alone decreased expression of ISG proteins, but actually increased expression of ISG mRNAs. These results suggest a role for the protein product of MAP3K7, transforming growth factor ß-activated kinase 1 (TAK1), in regulating translation of ISG mRNAs and a role of CHD1 in maintaining the transcription of ISGs.

11.
Front Oncol ; 10: 615472, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33889540

RESUMO

BACKGROUND: The incidence of brain metastasis continues to increase as therapeutic strategies have improved for a number of solid tumors. The presence of brain metastasis is associated with worse prognosis but it is unclear if distinctive biomarkers can separate patients at risk for CNS related death. METHODS: We executed a single institution retrospective collection of brain metastasis from patients who were diagnosed with lung, breast, and other primary tumors. The brain metastatic samples were sent for RNA sequencing, proteomic and metabolomic analysis of brain metastasis. The primary outcome was distant brain failure after definitive therapies that included craniotomy resection and radiation to surgical bed. Novel prognostic subtypes were discovered using transcriptomic data and sparse non-negative matrix factorization. RESULTS: We discovered two molecular subtypes showing statistically significant differential prognosis irrespective of tumor subtype. The median survival time of the good and the poor prognostic subtypes were 7.89 and 42.27 months, respectively. Further integrated characterization and analysis of these two distinctive prognostic subtypes using transcriptomic, proteomic, and metabolomic molecular profiles of patients identified key pathways and metabolites. The analysis suggested that immune microenvironment landscape as well as proliferation and migration signaling pathways may be responsible to the observed survival difference. CONCLUSION: A multi-omics approach to characterization of brain metastasis provides an opportunity to identify clinically impactful biomarkers and associated prognostic subtypes and generate provocative integrative understanding of disease.

12.
Cancer Res ; 79(20): 5355-5366, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31270077

RESUMO

Activation of ferroptosis, a recently described mechanism of regulated cell death, dramatically inhibits growth of ovarian cancer cells. Given the importance of lipid metabolism in ferroptosis and the key role of lipids in ovarian cancer, we examined the contribution to ferroptosis of stearoyl-CoA desaturase (SCD1, SCD), an enzyme that catalyzes the rate-limiting step in monounsaturated fatty acid synthesis in ovarian cancer cells. SCD1 was highly expressed in ovarian cancer tissue, cell lines, and a genetic model of ovarian cancer stem cells. Inhibition of SCD1 induced lipid oxidation and cell death. Conversely, overexpression of SCD or exogenous administration of its C16:1 and C18:1 products, palmitoleic acid or oleate, protected cells from death. Inhibition of SCD1 induced both ferroptosis and apoptosis. Inhibition of SCD1 decreased CoQ10, an endogenous membrane antioxidant whose depletion has been linked to ferroptosis, while concomitantly decreasing unsaturated fatty acyl chains in membrane phospholipids and increasing long-chain saturated ceramides, changes previously linked to apoptosis. Simultaneous triggering of two death pathways suggests SCD1 inhibition may be an effective component of antitumor therapy, because overcoming this dual mechanism of cell death may present a significant barrier to the emergence of drug resistance. Supporting this concept, we observed that inhibition of SCD1 significantly potentiated the antitumor effect of ferroptosis inducers in both ovarian cancer cell lines and a mouse orthotopic xenograft model. Our results suggest that the use of combined treatment with SCD1 inhibitors and ferroptosis inducers may provide a new therapeutic strategy for patients with ovarian cancer. SIGNIFICANCE: The combination of SCD1 inhibitors and ferroptosis inducers may provide a new therapeutic strategy for the treatment of ovarian cancer patients.See related commentary by Carbone and Melino, p. 5149.


Assuntos
Neoplasias Ovarianas , Estearoil-CoA Dessaturase , Animais , Apoptose , Morte Celular , Feminino , Ferroptose , Humanos , Camundongos
13.
Adv Exp Med Biol ; 1140: 327-358, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31347057

RESUMO

Redox (portmanteau of reduction-oxidation) reactions involve the transfer of electrons between chemical species in biological processes fundamental to life. It is of outmost importance that cells maintain a healthy redox state by balancing the action of oxidants and antioxidants; failure to do so leads to a multitude of diseases including cancer, diabetes, fibrosis, autoimmune diseases, and cardiovascular and neurodegenerative diseases. From the perspective of precision medicine, it is therefore beneficial to interrogate the redox phenotype of the individual-similar to the use of genomic sequencing-in order to design tailored strategies for disease prevention and treatment. This chapter provides an overview of redox metabolism and focuses on how mass spectrometry (MS) can be applied to advance our knowledge in redox biology and precision medicine.


Assuntos
Espectrometria de Massas , Oxirredução , Estresse Oxidativo , Medicina de Precisão , Antioxidantes , Humanos , Oxidantes
14.
Radiat Res ; 191(6): 497-506, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30925135

RESUMO

Reduced weight bearing, and to a lesser extent radiation, during spaceflight have been shown as potential hazards to astronaut joint health. These hazards combined effect to the knee and hip joints are not well defined, particularly with low-dose exposure to radiation. In this study, we examined the individual and combined effects of varying low-dose radiation (≤1 Gy) and reduced weight bearing on the cartilage of the knee and hip joints. C57BL/6J mice (n = 80) were either tail suspended via hindlimb unloading (HLU) or remained full-weight bearing (ground). On day 6, each group was divided and irradiated with 0 Gy (sham), 0.1 Gy, 0.5 Gy or 1.0 Gy (n = 10/group), yielding eight groups: ground-sham; ground-0.1 Gy; ground-0.5 Gy; ground-1.0 Gy; HLU-sham; HLU-0.1 Gy; HLU-0.5 Gy; and HLU-1.0 Gy. On day 30, the hindlimbs, hip cartilage and serum were collected from the mice. Significant differences were identified statistically between treatment groups and the ground-sham control group, but no significant differences were observed between HLU and/or radiation groups. Contrast-enhanced micro-computed tomography (microCECT) demonstrated decrease in volume and thickness at the weight-bearing femoral-tibial cartilage-cartilage contact point in all treatment groups compared to ground-sham. Lower collagen was observed in all groups compared to ground-sham. Circulating serum cartilage oligomeric matrix protein (sCOMP), a biomarker for ongoing cartilage degradation, was increased in all of the irradiated groups compared to ground-sham, regardless of unloading. Mass spectrometry of the cartilage lining the femoral head and subsequent Ingenuity Pathway Analysis (IPA) identified a decrease in cartilage compositional proteins indicative of osteoarthritis. Our findings demonstrate that both individually and combined, HLU and exposure to spaceflight relevant radiation doses lead to cartilage degradation of the knee and hip with expression of an arthritic phenotype. Moreover, early administration of low-dose irradiation (0.1, 0.5 or 1.0 Gy) causes an active catabolic response in cartilage 24 days postirradiation. Further research is warranted with a focus on the prevention of cartilage degradation from long-term periods of reduced weight bearing and spaceflight-relevant low doses and qualities of radiation.


Assuntos
Cartilagem Articular/patologia , Cartilagem Articular/efeitos da radiação , Elevação dos Membros Posteriores/efeitos adversos , Articulação do Quadril/efeitos da radiação , Articulação do Joelho/efeitos da radiação , Voo Espacial , Animais , Cartilagem Articular/diagnóstico por imagem , Relação Dose-Resposta à Radiação , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo , Microtomografia por Raio-X
15.
J Biol Chem ; 293(30): 11901-11912, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29884768

RESUMO

2-Cys peroxiredoxins (Prxs) modulate hydrogen peroxide (H2O2)-mediated cell signaling. At high H2O2 levels, eukaryotic Prxs can be inactivated by hyperoxidation and are classified as sensitive Prxs. In contrast, prokaryotic Prxs are categorized as being resistant to hyperoxidation and lack the GGLG and C-terminal YF motifs present in the sensitive Prxs. Additional molecular determinants that account for the subtle differences in the susceptibility to hyperoxidation remain to be identified. A comparison of a new, 2.15-Å-resolution crystal structure of Prx2 in the oxidized, disulfide-bonded state with the hyperoxidized structure of Prx2 and Prx1 in complex with sulfiredoxin revealed three structural regions that rearrange during catalysis. With these regions in hand, focused sequence analyses were performed comparing sensitive and resistant Prx groups. From this combinatorial approach, we discovered two novel hyperoxidation resistance motifs, motifs A and B, which were validated using mutagenesis of sensitive human Prxs and resistant Salmonella enterica serovar Typhimurium AhpC. Introduction and removal of these motifs, respectively, resulted in drastic changes in the sensitivity to hyperoxidation with Prx1 becoming 100-fold more resistant to hyperoxidation and AhpC becoming 800-fold more sensitive to hyperoxidation. The increased sensitivity of the latter AhpC variant was also confirmed in vivo These results support the function of motifs A and B as primary drivers for tuning the sensitivity of Prxs to different levels of H2O2, thus enabling the initiation of variable signaling or antioxidant responses in cells.


Assuntos
Peroxirredoxinas/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Modelos Moleculares , Oxirredução , Peroxirredoxinas/metabolismo
16.
Mol Cells ; 41(3): 179-187, 2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-29562735

RESUMO

Proteomic analysis of extracellular vesicles (EVs) from biological fluid is a powerful approach to discover potential biomarkers for human diseases including cancers, as EV secreted to biological fluids are originated from the affected tissue. In order to investigate significant molecules related to the pathogenesis of bladder cancer, EVs were isolated from patient urine which was analyzed by mass spectrometry based proteomics. Comparison of the EV proteome to the whole urine proteome demonstrated an increased number of protein identification in EV. Comparative MS analyses of urinary EV from control subjects and bladder cancer patients identified a total of 1,222 proteins. Statistical analyses provided 56 proteins significantly increased in bladder cancer urine, including proteins for which expression levels varied by cancer stage (P-value < 0.05). While urine represents a valuable, noninvasive specimen for biomarker discovery in urologic cancers, there is a high degree of intra- and inter-individual variability in urine samples. The enrichment of urinary EV demonstrated its capability and applicability of providing a focused identification of biologically relevant proteins in urological diseases.


Assuntos
Biomarcadores/urina , Proteômica/métodos , Vesículas Extracelulares , Feminino , Humanos , Masculino , Proteoma/análise , Neoplasias da Bexiga Urinária
17.
ACS Med Chem Lett ; 8(5): 572-576, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28523113

RESUMO

Using a modular library format in conjunction with cell viability (MTS) and flow cytometry assays, 90 cationic complexes [AuPL] n+ (P = phosphine ligand; L = thiourea derivative or chloride) were studied for their antiproliferative activity in CD8+ T lymphocyte cells. The activity of the compounds correlates with the steric bulk of the phosphine ligands. Thiourea serves as a leaving group that is readily replaced by cysteine thiol (NMR, ESI-MS). Taking advantage of selective thiourea ligand exchange, the fragments [Au(PEt3)]+ and [Au(JohnPhos)]+ (JohnPhos = 1,1'-biphenyl-2-yl)di-tert-butylphosphine) in compounds 1 and 2 were transferred to recombinant human serum albumin (rHSA). PEt3 promoted efficient modification of Cys34 in HSA (HSA-1), whereas use of bulky JohnPhos as a carrier ligand led to serum protein nonspecifically modified with multiple gold adducts (HSA-2) (Ellman's test, ESI-TOF MS). HSA-1, but not HSA-2, strongly inhibits T cell proliferation at nanomolar doses. The potential role of HSA as a delivery vehicle in gold-based autoimmune disease treatment is discussed.

18.
J Cachexia Sarcopenia Muscle ; 8(5): 808-823, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28419739

RESUMO

BACKGROUND: Ageing skeletal muscle undergoes chronic denervation, and the neuromuscular junction (NMJ), the key structure that connects motor neuron nerves with muscle cells, shows increased defects with ageing. Previous studies in various species have shown that with ageing, type II fast-twitch skeletal muscle fibres show more atrophy and NMJ deterioration than type I slow-twitch fibres. However, how this process is regulated is largely unknown. A better understanding of the mechanisms regulating skeletal muscle fibre-type specific denervation at the NMJ could be critical to identifying novel treatments for sarcopenia. Cardiac troponin T (cTnT), the heart muscle-specific isoform of TnT, is a key component of the mechanisms of muscle contraction. It is expressed in skeletal muscle during early development, after acute sciatic nerve denervation, in various neuromuscular diseases and possibly in ageing muscle. Yet the subcellular localization and function of cTnT in skeletal muscle is largely unknown. METHODS: Studies were carried out on isolated skeletal muscles from mice, vervet monkeys, and humans. Immunoblotting, immunoprecipitation, and mass spectrometry were used to analyse protein expression, real-time reverse transcription polymerase chain reaction was used to measure gene expression, immunofluorescence staining was performed for subcellular distribution assay of proteins, and electromyographic recording was used to analyse neurotransmission at the NMJ. RESULTS: Levels of cTnT expression in skeletal muscle increased with ageing in mice. In addition, cTnT was highly enriched at the NMJ region-but mainly in the fast-twitch, not the slow-twitch, muscle of old mice. We further found that the protein kinase A (PKA) RIα subunit was largely removed from, while PKA RIIα and RIIß are enriched at, the NMJ-again, preferentially in fast-twitch but not slow-twitch muscle in old mice. Knocking down cTnT in fast skeletal muscle of old mice: (i) increased PKA RIα and reduced PKA RIIα at the NMJ; (ii) decreased the levels of gene expression of muscle denervation markers; and (iii) enhanced neurotransmission efficiency at NMJ. CONCLUSIONS: Cardiac troponin T at the NMJ region contributes to NMJ functional decline with ageing mainly in the fast-twitch skeletal muscle through interfering with PKA signalling. This knowledge could inform useful targets for prevention and therapy of age-related decline in muscle function.


Assuntos
Envelhecimento , Denervação Muscular , Fibras Musculares de Contração Rápida/metabolismo , Troponina T/metabolismo , Potenciais de Ação , Fatores Etários , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Chlorocebus aethiops , Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Imunofluorescência , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Contração Muscular , Junção Neuromuscular/fisiologia , Transmissão Sináptica , Troponina T/genética
19.
Eur J Clin Invest ; 45(10): 1032-41, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26199063

RESUMO

BACKGROUND: Erythropoietic protoporphyria (EPP) and X-linked protoporphyria (XLP) are genetic abnormalities of heme synthesis that result in excess production of protoporphyrin and that manifest as severe photosensitivity. These disorders are often associated with iron deficiency anaemia (IDA). Our aim was to determine whether hepcidin is increased in EPP/XLP patients, resulting in decreased enteral iron absorption and IDA. MATERIAL AND METHODS: Eight subjects with EPP, one with XLP and nine controls had baseline blood and urine samples collected, and thereafter were given oral ferrous sulphate (660 mg). Post-iron blood and urine samples were collected at 2, 4, 6 and 8 h. Blood counts, serum cytokines, ferritin and iron studies were analysed at baseline. Serum iron studies, serum and urine hepcidin, and erythropoietin (Epo) were analysed at baseline and subsequent time points. RESULTS: At baseline, EPP-XLP subjects had lower mean blood haemoglobin (13·9/15·3 g/dL) and serum ferritin (31·6/115 ng/mL) than controls. Serum iron levels increased markedly in both cohorts. Mean serum and urine hepcidin levels were significantly lower in the EPP-XLP group at 4 and 8 h post-iron (serum - 4 h, 3·79/26·6, 8 h, 5·79/34·6 nM; urine - 4 h, 0·85/2·50, 8 h, 1·44/6·63 nM/mM creatinine). Serum cytokines and Epo were normal and not different between groups. CONCLUSIONS: We conclude that serum and urine hepcidin are not inappropriately increased in EPP/XLP subjects at baseline and do not increase over time as serum iron increases after oral ferrous sulphate. Levels of serum cytokines and Epo are normal in EPP/XLP. The molecular basis for the iron-deficient phenotype in EPP/XLP remains unknown.


Assuntos
Hepcidinas/metabolismo , Ferro/metabolismo , Protoporfiria Eritropoética/metabolismo , Adulto , Idoso , Estudos de Casos e Controles , Citocinas/metabolismo , Eritropoetina/metabolismo , Ferritinas/metabolismo , Homeostase/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade
20.
J Proteomics ; 113: 326-36, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25451013

RESUMO

Therapeutic strategies for cancer treatment often remain challenging due to the cumulative risk derived from metastasis, which has been described as an aggressive state of cancer cell proliferation often resulting in failure of clinical therapy. In the current study, anti-metastatic properties of three chemotherapeutic drugs and three compounds from natural sources were investigated by comparative proteomic analysis. Proteomic profile comparison of the isogenic primary and metastatic colon cancer cell lines SW480 and SW620 identified two potential metastasis related molecular targets: fatty acid synthase and histone H4. To demonstrate their biological roles in cancer metastasis, the expression of these target genes was suppressed by siRNA transfection. Subsequent cell migration assays demonstrated reduced migratory effects. SW620 cells were treated with six anti-cancerous components. Through comprehensive proteomic analysis, three of the tested compounds, oxaliplatin, ginsenoside 20(S)-Rg3 and curcumin, were revealed to have a suppressive effect on FASN and histone H4 expression. SW620 cells treated with these drugs showed significantly reduced migratory activity, which suggests that drug-induced targeted suppression of these genes may affect cell migration. The validity of the proteomic datasets was verified by knowledgebase pathway analysis and immunoblotting assays. The anti-metastatic components revealed by the current proteomic analysis represent promising chemotherapeutic candidates for the treatment of colorectal adenocarcinoma. BIOLOGICAL SIGNIFICANCE: The current study demonstrates anti-metastatic activity of chemotherapeutics and natural components by the suppression of target molecules, fatty acid synthase and histone H4 identified by a comparative proteomic analysis employing the isogenic primary and metastatic colon cancer cell lines, SW480 and SW620. Three tested drugs, namely, oxaliplatin, ginsenoside 20(S)-Rg3 and curcumin were revealed to possess suppressive effects on fatty acid synthase and histone H4 and reduce metastasis as determined by cell migration assay. Data were confirmed by the correlation between spectral counts from proteomic data and Western blot analysis, which were in good agreement with immunohistochemistry.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos , Neoplasias Colorretais/tratamento farmacológico , Ácido Graxo Sintase Tipo I/biossíntese , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histonas/biossíntese , Proteínas de Neoplasias/biossíntese , Proteômica , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ácido Graxo Sintase Tipo I/genética , Histonas/genética , Humanos , Metástase Neoplásica , Proteínas de Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA