RESUMO
Obesity requires treatment to mitigate the potential development of further metabolic disorders, including diabetes, hyperlipidemia, tumor growth, and non-alcoholic fatty liver disease. We investigated the anti-obesity effect of a 30% ethanol extract of Eisenia bicyclis (Kjellman) Setchell (EEB) on 3T3-L1 preadipocytes and high-fat diet (HFD)-induced obese C57BL/6 mice. Adipogenesis transcription factors including peroxisome proliferator-activated receptor (PPAR)γ, CCAAT/enhancer-binding protein-alpha (C/EBPα), and sterol regulatory element-binding protein-1 (SREBP-1) were ameliorated through the AMP-activated protein kinase (AMPK) pathway by EEB treatment in differentiated 3T3-L1 cells. EEB attenuated mitotic clonal expansion by upregulating cyclin-dependent kinase inhibitors (CDKIs) while downregulating cyclins and CDKs. In HFD-fed mice, EEB significantly decreased the total body weight, fat tissue weight, and fat in the tissue. The protein expression of PPARγ, C/EBPα, and SREBP-1 was increased in the subcutaneous fat and liver tissues, while EEB decreased the expression levels of these transcription factors. EEB also inhibited lipogenesis by downregulating acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) expression in the subcutaneous fat and liver tissues. Moreover, the phosphorylation of AMPK and ACC was downregulated in the HFD-induced mouse group, whereas the administration of EEB improved AMPK and ACC phosphorylation; thus, EEB treatment may be related to the AMPK pathway. Histological analysis showed that EEB reduced the adipocyte size and fat accumulation in subcutaneous fat and liver tissues, respectively. EEB promotes thermogenesis in brown adipose tissue and improves insulin and leptin levels and blood lipid profiles. Our results suggest that EEB could be used as a potential agent to prevent obesity.
Assuntos
Células 3T3-L1 , Proteínas Quinases Ativadas por AMP , Fármacos Antiobesidade , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Obesidade , Extratos Vegetais , Transdução de Sinais , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Extratos Vegetais/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Masculino , Fármacos Antiobesidade/farmacologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Adipogenia/efeitos dos fármacos , PPAR gama/metabolismo , PPAR gama/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Algas Comestíveis , KelpRESUMO
Inflammatory Bowel Disease (IBD) is a chronic and relapsing inflammatory condition characterized by severe symptoms such as diarrhea, fatigue, and weight loss. Growing evidence underscores the direct involvement of the nuclear factor-erythroid 2-related factor 2 (NRF2) in the development and progression of IBD, along with its associated complications, including colorectal cancer. The NRF2 pathway plays a crucial role in cellular responses to oxidative stress, and dysregulation of this pathway has been implicated in IBD. Flavones, a significant subclass of flavonoids, have shown pharmacological impacts in various diseases including IBD, through the NRF2 signaling pathway. In this study, we conducted a screening of compounds with a flavone structure and identified NJK15003 as a promising NRF2 activator. NJK15003 demonstrated potent NRF2 activation, as evidenced by the upregulation of downstream proteins, promoter activation, and NRF2 nuclear translocation in IBD cellular models. Treatment with NJK15003 effectively restored the protein levels of tight junctions in cells treated with dextran sodium sulfate (DSS) and in DSS-treated mice, suggesting its potential to protect cells from barrier integrity disruption in IBD. In DSS-treated mice, the administration of NJK15003 resulted in the prevention of body weight loss, a reduction in colon length shortening, and a decrease in the disease activity index. Furthermore, NJK15003 treatment substantially alleviated inflammatory responses and apoptotic cell death in the colon of DSS-treated mice. Taken together, this study proposes the potential utility of NRF2-activating flavone compounds, exemplified by NJK15003, for the treatment of IBD.
Assuntos
Colite , Flavonas , Doenças Inflamatórias Intestinais , Sulfatos , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Dextranos/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Flavonas/farmacologia , Flavonas/uso terapêutico , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/metabolismoRESUMO
AIMS: Cognitive impairment is associated with reduced hippocampal neurogenesis; however, the causes of decreased hippocampal neurogenesis remain highly controversial. Here, we investigated the role of survivin in the modulation of hippocampal neurogenesis in AD. METHODS: To investigate the effect of survivin on neurogenesis in neural stem cells (NSCs), we treated mouse embryonic NSCs with a survivin inhibitor (YM155) and adeno-associated viral survivin (AAV-Survivin). To explore the potential role of survivin expression in AD, AAV9-Survivin or AAV9-GFP were injected into the dentate gyrus (DG) of hippocampus of 7-month-old wild-type and 5XFAD mice. Cognitive function was measured by the Y maze and Morris water maze. Neurogenesis was investigated by BrdU staining, immature, and mature neuron markers. RESULTS: Our results indicate that suppression of survivin expression resulted in decreased neurogenesis. Conversely, overexpression of survivin using AAV-Survivin restored neurogenesis in NSCs that had been suppressed by YM155 treatment. Furthermore, the expression level of survivin decreased in the 9-month-old 5XFAD compared with that in wild-type mice. AAV-Survivin-mediated overexpression of survivin in the DG in 5XFAD mice enhanced neurogenesis and cognitive function. CONCLUSION: Hippocampal neurogenesis can be enhanced by survivin overexpression, suggesting that survivin could serve as a promising therapeutic target for the treatment of AD.
Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Survivina/farmacologia , Survivina/uso terapêutico , Hipocampo , Neurogênese/fisiologia , Cognição , Modelos Animais de Doenças , Camundongos TransgênicosRESUMO
Hydrangenol, a dihydroisocoumarin, isolated from the leaves of Hydrangea serrata, possesses anti-inflammatory, anti-obesity, and anti-photoaging activities. In this study, we investigated the protective effects of hydrangenol (HG) against lipopolysaccharide (LPS)-induced endotoxemia and elucidated the underlying molecular mechanisms of action in C57BL/6 mice. Oral administration of HG (20 or 40 mg/kg) significantly restored the survival rate and population of macrophages, T helper cells (CD3+/CD4+), and Th17 cells (CD3+/CD4+/CCR6+) in the spleens of mice with LPS-induced endotoxemia. HG suppressed the expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1ß, and Interferon (IFN)-γ and the mRNA and protein expressions of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in the intestine and lung of LPS-treated mice. Molecular data showed that HG ameliorated the activation of nuclear factor kappa B (NF-κB) p65, signal transducers and activators of transcription 3 (STAT3), and c-Fos and c-Jun (AP-1 subunits) via the myeloid differentiation primary response 88 (MyD88) dependent toll-like receptor 4 (TLR4) signaling pathway in the LPS-treated mouse intestines. HG treatment caused the recovery of LPS-induced impaired tight junction (occludin and claudin-2) protein and mRNA expressions. Furthermore, HG improved LPS-induced gut dysbiosis in mice. Taken together, our results suggest that HG protects against LPS-induced endotoxemia by restoring immune cells and the capacity of the intestinal barrier, reducing intestinal inflammation, and improving the composition of the gut microbiota.
Assuntos
Endotoxemia , Lipopolissacarídeos , Animais , Camundongos , Endotoxemia/induzido quimicamente , Endotoxemia/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Interleucina-6/metabolismo , RNA MensageiroRESUMO
Ulcerative colitis (UC) is a chronic disease of the colon characterized by mucosal damage and relapsing gastrointestinal inflammation. Hydrangea serrata (Thunb.) Ser. and its bioactive compound, hydrangenol, are reported to have anti-inflammatory effects, but few studies have investigated the effects of hydrangenol in colitis. In the present study, we evaluated for the first time the anti-colitic effects and molecular mechanisms of hydrangenol in a dextran sodium sulfate (DSS)-induced mouse colitis model. To investigate the anti-colitic effects of hydrangenol, DSS-induced colitis mice, HT-29 colonic epithelial cells treated with supernatant from LPS-inflamed THP-1 macrophages, and LPS-induced RAW264.7 macrophages were used. In addition, to clarify the molecular mechanisms of this study, quantitative real time-PCR, western blot analysis, TUNEL assay, and annexin V-FITC/PI double staining analysis were conducted. Oral administration of hydrangenol (15 or 30 mg kg-1) significantly alleviated DSS-induced colitis by preventing DAI scores, shortening colon length, and colonic structural damage. F4/80+ macrophage numbers in mesenteric lymph nodes and macrophage infiltration in colonic tissues were significantly suppressed following hydrangenol treatment in DSS-exposed mice. Hydrangenol significantly attenuated DSS-induced destruction of the colonic epithelial cell layer through regulation of pro-caspase-3, occludin, and claudin-1 protein expression. Moreover, hydrangenol ameliorated abnormal tight junction protein expression and apoptosis in HT-29 colonic epithelial cells treated with supernatant from LPS-inflamed THP-1 macrophages. Hydrangenol suppressed the expression of pro-inflammatory mediators, such as iNOS, COX-2, TNF-α, IL-6, and IL-1ß through NF-κB, AP-1, and STAT1/3 inactivation in DSS-induced colon tissue and LPS-induced RAW264.7 macrophages. Taken together, our findings suggest that hydrangenol recovers the tight junction proteins and down-regulates the expression of the pro-inflammatory mediators by interfering with the macrophage infiltration in DSS-induced colitis. Our study provides compelling evidence that hydrangenol may be a candidate for inflammatory bowel disease therapy.
Assuntos
Colite Ulcerativa , Colite , Hydrangea , Animais , Camundongos , Sulfato de Dextrana/efeitos adversos , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Colite Ulcerativa/induzido quimicamente , Colo/metabolismo , Macrófagos , NF-kappa B/genética , NF-kappa B/metabolismo , Mediadores da Inflamação/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BLRESUMO
Excessive lipid accumulation in white adipose tissue (WAT) is the major cause of obesity. Herein, we investigated the anti-obesity effect and molecular mechanism of a botanical mixture of 30% EtOH extract from the leaves of Inula japonica and Potentilla chinensis (EEIP) in 3T3-L1 preadipocytes and high-fat diet (HFD)-fed obese mice. In vitro, EEIP prevented lipid accumulation by downregulating the expression of lipogenesis-related transcription factors such as CCAAT/enhancer binding protein (C/EBP)α, peroxisome proliferator-activated receptor (PPAR)γ, and sterol regulatory element binding protein (SREBP)-1 via AMP-activated protein kinase (AMPK) activation and G0/G1 cell cycle arrest by regulating the Akt-mTOR pathways without inducing cytotoxicity. In vivo, EEIP significantly reduced body weight gain and body fat mass in the group administered concurrently with HFD (pre-) or administered during the maintenance of HFD (post-) including subcutaneous, gonadal, renal, and mesenteric fats, and improved blood lipid profiles and metabolic hormones. EEIP pre-administration also alleviated WAT hypertrophy and liver lipid accumulation by reducing C/EBPα, PPARγ, and SREBP-1 expression via AMPK activation. In the brown adipose tissue, EEIP pre-administration upregulated the expression of thermogenic factors. Furthermore, EEIP improved the HFD-induced altered gut microbiota in mice. Taken together, our data indicated that EEIP improves HFD-induced obesity through adipogenesis inhibition in the WAT and liver and is a promising dietary natural material for improving obesity.
Assuntos
Inula , Potentilla , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos , Adipogenia , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Dieta Hiperlipídica , Hormônios/metabolismo , Inula/metabolismo , Camundongos , Camundongos Obesos , Obesidade/metabolismo , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Serina-Treonina Quinases TOR/metabolismoRESUMO
Alzheimer's disease (AD) is an irreversible neurodegenerative disease characterized by memory and cognitive impairments. Neurogenesis, which is related to memory and cognitive function, is reduced in the brains of patients with AD. Therefore, enhancing neurogenesis is a potential therapeutic strategy for neurodegenerative diseases, including AD. Hesperidin (HSP), a bioflavonoid found primarily in citrus plants, has anti-inflammatory, antioxidant, and neuroprotective effects. The objective of this study was to determine the effects of HSP on neurogenesis in neural stem cells (NSCs) isolated from the brain of mouse embryos and five familial AD (5xFAD) mice. In NSCs, HSP significantly increased the proliferation of NSCs by activating adenosine monophosphate (AMP)-activated protein kinase (AMPK)/cAMP-response element-binding protein (CREB) signaling, but did not affect NSC differentiation into neurons and astrocytes. HSP administration restored neurogenesis in the hippocampus of 5xFAD mice via AMPK/brain-derived neurotrophic factor/tropomyosin receptor kinase B/CREB signaling, thereby decreasing amyloid-beta accumulation and ameliorating memory dysfunction. Collectively, these preclinical findings suggest that HSP is a promising candidate for the prevention and treatment of AD.
Assuntos
Doença de Alzheimer , Hesperidina , Doenças Neurodegenerativas , Proteínas Quinases Ativadas por AMP/metabolismo , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Hesperidina/metabolismo , Hesperidina/farmacologia , Hesperidina/uso terapêutico , Hipocampo/metabolismo , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/metabolismo , NeurogêneseRESUMO
Multifunctional molecules might offer better treatment of complex multifactorial neurological diseases. Monoaminergic pathways dysregulation and neuroinflammation are common convergence points in diverse neurodegenerative and neuropsychiatric disorders. Aiming to target these diseases, polypharmacological agents modulating both monoaminergic pathways and neuroinflammatory were addressed. A library of analogues of the natural product hispidol was prepared and evaluated for inhibition of monoamine oxidases (MAOs) isoforms. Several molecules emerged as selective potential MAO B inhibitors. The most promising compounds were further evaluated in vitro for their impact on microglia viability, induced production of proinflammatory mediators and MAO-B inhibition mechanism. Amongst tested compounds, 1p was a safe potent competitive reversible MAO-B inhibitor and inhibitor of microglial production of neuroinflammatory mediators; NO and PGE2. In-silico study provided insights into molecular basis of the observed selective MAO B inhibition. This study presents compound 1p as a promising lead compound for management of neurodegenerative disease.
Assuntos
Benzofuranos/farmacologia , Compostos de Benzilideno/farmacologia , Produtos Biológicos/farmacologia , Inflamação/tratamento farmacológico , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Benzofuranos/síntese química , Benzofuranos/química , Compostos de Benzilideno/síntese química , Compostos de Benzilideno/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Descoberta de Drogas , Humanos , Inflamação/metabolismo , Estrutura Molecular , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Doenças Neurodegenerativas/metabolismo , Relação Estrutura-AtividadeRESUMO
Alzheimer's disease (AD) is a neurodegenerative disease that causes memory and cognitive decline. Although many studies have attempted to clarify the causes of AD occurrence, it is not clearly understood. Recently, the emerging role of the gut microbiota in neurodegenerative diseases, including AD, has received much attention. The gut microbiota composition of AD patients and AD mouse models is different from that of healthy controls, and these changes may affect the brain environment. However, the specific mechanisms by which gut microbiota that influence memory decline are currently unclear. In this study, we performed fecal microbiota transplantation (FMT) to clarify the role of 5xFAD mouse-derived microbiota in memory decline. We observed that FMT from 5xFAD mice into normal C57BL/6 mice (5xFAD-FMT) decreased adult hippocampal neurogenesis and brain-derived neurotrophic factor expression and increased p21 expression, resulting in memory impairment. Microglia in the hippocampus of the 5xFAD-FMT mice were activated, which caused the elevation of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-1ß). Moreover, we observed that pro-inflammatory cytokines increased in the colon and plasma of 5xFAD-FMT mice. The gut microbiota composition of the 5xFAD-FMT mice was different from that of the control mice or wild type-FMT mice. Collectively, 5xFAD mouse-derived microbiota decreased neurogenesis by increasing colonic inflammation, thereby contributing to memory loss. Our findings provide further evidence concerning the role of gut microbial dysbiosis in AD pathogenesis and suggest that targeting the gut microbiota may be a useful therapeutic strategy for the development of novel candidates for the treatment of AD.
Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Doenças Neurodegenerativas , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , NeurogêneseRESUMO
A series of PROTACs (PROteolysis-TArgeting Chimeras) consisting of bicalutamide analogs and thalidomides were designed, synthesized, and biologically evaluated as novel androgen receptor (AR) degraders. In particular, we found that PROTAC compound 13b could successfully demonstrate a targeted degradation of AR in AR-positive cancer cells and might be a useful chemical probe for the investigation of AR-dependent cancer cells, as well as a potential therapeutic candidate for prostate cancers.
Assuntos
Antagonistas de Androgênios/química , Anilidas/química , Nitrilas/química , Receptores Androgênicos/química , Talidomida/química , Compostos de Tosil/química , Antagonistas de Androgênios/síntese química , Antagonistas de Androgênios/farmacologia , Anilidas/farmacologia , Sítios de Ligação , Linhagem Celular , Técnicas de Química Sintética , Humanos , Modelos Biológicos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Nitrilas/farmacologia , Ligação Proteica , Proteólise/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Relação Estrutura-Atividade , Talidomida/farmacologia , Compostos de Tosil/farmacologiaRESUMO
Mild cognitive impairment (MCI) generally refers to impairment in cognition above that which accompanies the normal age-related cognitive decline and has attracted attention in recent years. Trans-cinnamaldehyde (TCA), which is isolated from cinnamon, has anti-inflammatory and antioxidant properties. Treadmill exercise also has diverse positive effects. The purpose of this study was to investigate the combination effects of TCA and treadmill exercise on learning and memory in a cognitive impairment mouse induced by a combination of d-galactose (d-gal) and aluminum chloride (AlCl3). We found that exercise and TCA attenuated cognitive impairment in mice with induced MCI. This effect was further increased by costimulation of exercise and TCA. To clarify the mechanisms of the positive effects of TCA and exercise, we analyzed the nuclear factor erythroid 2-related factor (Nrf2) and related signaling pathways. We found that TCA and exercise upregulated Nrf2, NAD(P)H dehydrogenase quinone 1 (NQO-1), heme oxygenase 1 (HO-1), and superoxide dismutase 1 (SOD-1); this suggests that TCA and exercise attenuate cognitive dysfunction by reducing oxidative stress. We also found that Nrf2-related signaling pathways, i.e., the AMP-activated protein kinase (AMPK)/Nrf2 and SIRT1/PGC-1a/Nrf2-ARE pathways, exerted antioxidant effects. Together, these results suggest that costimulation with TCA and exercise may be a therapeutic candidate for mild cognitive impairment.
RESUMO
Alzheimer's disease (AD) is the most common type of dementia. AD involves major pathologies such as amyloid-ß (Aß) plaques and neurofibrillary tangles in the brain. During the progression of AD, microglia can be polarized from anti-inflammatory M2 to pro-inflammatory M1 phenotype. The activation of triggering receptor expressed on myeloid cells 2 (TREM2) may result in microglia phenotype switching from M1 to M2, which finally attenuated Aß deposition and memory loss in AD. Low-dose ionizing radiation (LDIR) is known to ameliorate Aß pathology and cognitive deficits in AD; however, the therapeutic mechanisms of LDIR against AD-related pathology have been little studied. First, we reconfirm that LDIR (two Gy per fraction for five times)-treated six-month 5XFAD mice exhibited (1) the reduction of Aß deposition, as reflected by thioflavins S staining, and (2) the improvement of cognitive deficits, as revealed by Morris water maze test, compared to sham-exposed 5XFAD mice. To elucidate the mechanisms of LDIR-induced inhibition of Aß accumulation and memory loss in AD, we examined whether LDIR regulates the microglial phenotype through the examination of levels of M1 and M2 cytokines in 5XFAD mice. In addition, we investigated the direct effects of LDIR on lipopolysaccharide (LPS)-induced production and secretion of M1/M2 cytokines in the BV-2 microglial cells. In the LPS- and LDIR-treated BV-2 cells, the M2 phenotypic marker CD206 was significantly increased, compared with LPS- and sham-treated BV-2 cells. Finally, the effect of LDIR on M2 polarization was confirmed by detection of increased expression of TREM2 in LPS-induced BV2 cells. These results suggest that LDIR directly induced phenotype switching from M1 to M2 in the brain with AD. Taken together, our results indicated that LDIR modulates LPS- and Aß-induced neuroinflammation by promoting M2 polarization via TREM2 expression, and has beneficial effects in the AD-related pathology such as Aß deposition and memory loss.
Assuntos
Doença de Alzheimer/metabolismo , Microglia/metabolismo , Microglia/efeitos da radiação , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Biomarcadores/metabolismo , Encéfalo/metabolismo , Transtornos Cognitivos/metabolismo , Disfunção Cognitiva/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Lipopolissacarídeos/farmacologia , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Fenótipo , Radiação Ionizante , Receptores Imunológicos/metabolismoRESUMO
Flavone derivatives have been shown to possess anti-inflammatory properties in various inflammation model systems; however, their underlying molecular mechanisms remain elusive. In this study, a flavone derivative 3',4',5'-trihydroxyflavone (THF; NJK16003) was synthesized, and its anti-inflammatory effects and molecular targets were investigated using in vitro systems and an in vivo colitis model. NJK16003 showed potent anti-inflammatory activities in cell-based assays using macrophages. In vitro enzyme activity assays using various inflammation-related kinases revealed the mammalian target of rapamycin (mTOR) as a possible molecular target. Treatment of RAW264.7 cells with NJK16003 resulted in an increase in light chain 3B protein lipidation and a decrease in p62 protein levels and ribosomal S6 kinase phosphorylation, indicating that NJK16003 induces autophagy through mTOR inhibition. NJK16003 treatment resulted in significant induction of autophagy and suppression of inflammatory responses in intestinal epithelial cells. Autophagy induction has been shown to alleviate colitis by suppressing inflammatory responses and apoptotic cell death of intestinal epithelial cells. Indeed, inflammatory responses and intestinal epithelial cell death in our DSS-induced colitis mouse model were significantly suppressed by NJK16003 treatment. Our results indicate that NJK16003 could suppress inflammation by inducing autophagy through its mTOR inhibitory activity. These results suggest that NJK16003 could be a possible therapeutic agent for the treatment of inflammatory bowel diseases including colitis.
Assuntos
Anti-Inflamatórios/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Flavonas/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Anti-Inflamatórios/farmacologia , Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Sulfato de Dextrana , Flavonas/farmacologia , Células HCT116 , Células HT29 , Humanos , Interleucina-1beta/genética , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/imunologia , Óxido Nítrico Sintase Tipo II/genética , Células RAW 264.7 , Fator de Necrose Tumoral alfa/genéticaRESUMO
Inflammatory bowel disease (IBD) is a major risk factor of colorectal cancer. Drugs currently used for IBD exhibit adverse effects including vomiting, nausea, and diarrhea. Naturally derived novel alternative therapies are required to overcome these limitations. In this study, we investigated the protective effects of ethanol extract of Cicer arietinum (CEE) in a dextran sodium sulfate (DSS)-induced mouse model of colitis. CEE markedly improved DSS-induced clinical symptoms and histological status, such as the disease activity index, spleen weight, and colon length. Moreover, CEE-treated mice showed significant recovery of DSS-induced crypt damage and cell death. CEE suppressed myeloperoxidase (MPO) activity and macrophage marker F4/80 mRNA expression in colonic tissue of mice with DSS-induced colitis, indicating neutrophil infiltration and macrophage accumulation, respectively. Although DSS upregulated pro-inflammatory mediators and activated transcription factors, CEE downregulated the mRNA expression of cytokines including interleukin-6, interleukin-1ß, and tumor necrosis factor-α, protein expression of cyclooxygenase-2 and inducible nitric oxide synthase, as well as activation of nuclear factor-kappa B (NF-кB) and signal transducer and activator of transcription 3 (STAT3). Hence, our findings reveal that the anti-inflammatory properties of CEE, involving the downregulation of the expression of pro-inflammatory mediators by inactivating NF-кB and STAT3 in DSS-induced colitis mice.
Assuntos
Anti-Inflamatórios , Cicer/química , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Sulfato de Dextrana/efeitos adversos , Etanol , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Animais , Colite Ulcerativa/etiologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos ICR , NF-kappa B/genética , NF-kappa B/metabolismo , Extratos Vegetais/isolamento & purificação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismoRESUMO
Abnormal inflammatory response in the central nervous system plays a critical role in various neurological disorders such as Parkinson's disease, Alzheimer's disease and Huntington's disease. Therefore, modulation of abnormal neuroinflammation is thought to be a promising therapeutic strategy for these diseases. Based on this idea, we focused on finding a potential candidate material that would regulate excessive neuroinflammation. Iresine celosia has long been used as a traditional Mexican medicine to treat fever and oral disorders. In the present study, we evaluated the anti-neuroinflammatory effects of Iresine celosia extract (ICE) in lipopolysaccharide (LPS)-stimulated BV2 microglia cells and mice models. In BV2 microglia cells, ICE markedly inhibited production of nitric oxide and proinflammatory cytokines such as tumor necrosis factor-α, interleukin-1ß, and interleukin-6 without causing cytotoxicity. ICE also ameliorated translocation of nuclear factor-κB from cytosol to nucleus by LPS. Moreover, ICE attenuated behavioral disturbances by inhibiting activation of microglia and astrocytes in LPS-treated mice. Collectively, these data indicate that ICE is a potential therapeutic agent for treating inflammation-related diseases.
Assuntos
Anti-Inflamatórios/farmacologia , Celosia/química , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Linhagem Celular , Citocinas/metabolismo , Inflamação/metabolismo , Medicina Tradicional/métodos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Óxido Nítrico/metabolismoRESUMO
Respiratory syncytial virus (RSV) causes severe acute lower respiratory tract disease. Retinoic acid-inducible gene-I (RIG-I) serves as an innate immune sensor and triggers antiviral responses upon recognizing viral infections including RSV. Since tripartite motif-containing protein 25 (TRIM25)-mediated K63-polyubiquitination is crucial for RIG-I activation, several viruses target initial RIG-I activation through ubiquitination. RSV NS1 and NS2 have been shown to interfere with RIG-I-mediated antiviral signaling. In this study, we explored the possibility that NS1 suppresses RIG-I-mediated antiviral signaling by targeting TRIM25. Ubiquitination of ectopically expressed RIG-I-2Cards domain was decreased by RSV infection, indicating that RSV possesses ability to inhibit TRIM25-mediated RIG-I ubiquitination. Similarly, ectopic expression of NS1 sufficiently suppressed TRIM25-mediated RIG-I ubiquitination. Furthermore, interaction between NS1 and TRIM25 was detected by a co-immunoprecipitation assay. Further biochemical assays showed that the SPRY domain of TRIM25, which is responsible for interaction with RIG-I, interacted sufficiently with NS1. Suppression of RIG-I ubiquitination by NS1 resulted in decreased interaction between RIG-I and its downstream molecule, MAVS. The suppressive effect of NS1 on RIG-I signaling could be abrogated by overexpression of TRIM25. Collectively, this study suggests that RSV NS1 interacts with TRIM25 and interferes with RIG-I ubiquitination to suppress type-I interferon signaling.
Assuntos
Proteína DEAD-box 58/genética , Vírus Sincicial Respiratório Humano/fisiologia , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Proteínas não Estruturais Virais/genética , Células A549 , Linhagem Celular , Proteína DEAD-box 58/imunologia , Proteína DEAD-box 58/metabolismo , Células HEK293 , Humanos , Imunidade Inata , Reação em Cadeia da Polimerase , Ligação Proteica , Receptores Imunológicos , Vírus Sincicial Respiratório Humano/genética , Transdução de Sinais , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/imunologia , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/imunologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas não Estruturais Virais/metabolismoRESUMO
Neuroinflammation is an important pathological feature in neurodegenerative diseases. Accumulating evidence has suggested that neuroinflammation is mainly aggravated by activated microglia, which are macrophage like cells in the central nervous system. Therefore, the inhibition of microglial activation may be considered for treating neuroinflammatory diseases. p38 mitogen-activated protein kinase (MAPK) has been identified as a crucial enzyme with inflammatory roles in several immune cells, and its activation also relates to neuroinflammation. Considering the proinflammatory roles of p38 MAPK, its inhibitors can be potential therapeutic agents for neurodegenerative diseases relating to neuroinflammation initiated by microglia activation. This study was designed to evaluate whether NJK14047, a recently identified novel and selective p38 MAPK inhibitor, could modulate microglia-mediated neuroinflammation by utilizing lipopolysaccharide (LPS)-stimulated BV2 cells and an LPS-injected mice model. Our results showed that NJK14047 markedly reduced the production of nitric oxide and prostaglandin E2 by downregulating the expression of various proinflammatory mediators such as nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-α and interleukin-1ß in LPS-induced BV2 microglia. Moreover, NJK14047 significantly reduced microglial activation in the brains of LPS-injected mice. Overall, these results suggest that NJK14047 significantly reduces neuroinflammation in cellular/vivo model and would be a therapeutic candidate for various neuroinflammatory diseases.
Assuntos
Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Microglia/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêuticoRESUMO
Autophagy has been implicated in innate immune responses against various intracellular pathogens. Recent studies have reported that autophagy can be triggered by pathogen recognizing sensors, including Toll-like receptors and cyclic guanosine monophosphate-adenosine monophosphate synthase, to participate in innate immunity. In the present study, we examined whether the RIG-I signaling pathway, which detects viral infections by recognizing viral RNA, triggers the autophagic process. The introduction of polyI:C into the cytoplasm, or Sendai virus infection, significantly induced autophagy in normal cells but not in RIG-I-deficient cells. PolyI:C transfection or Sendai virus infection induced autophagy in the cells lacking type-I interferon signaling. This demonstrated that the effect was not due to interferon signaling. RIG-I-mediated autophagy diminished by the deficiency of mitochondrial antiviral signaling protein (MAVS) or tumor necrosis factor receptor-associated factor (TRAF)6, showing that the RIG-I-MAVS-TRAF6 signaling axis was critical for RIG-I-mediated autophagy. We also found that Beclin-1 was translocated to the mitochondria, and it interacted with TRAF6 upon RIG-I activation. Furthermore, Beclin-1 underwent K63-polyubiquitination upon RIG-I activation, and the ubiquitination decreased in TRAF6-deficient cells. This suggests that the RIG-I-MAVS-TRAF6 axis induced K63-linked polyubiquitination of Beclin-1, which has been implicated in triggering autophagy. As deficient autophagy increases the type-I interferon response, the induction of autophagy by the RIG-I pathway might also contribute to preventing an excessive interferon response as a negative-feedback mechanism.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Autofagia/imunologia , Proteína Beclina-1/imunologia , Proteína DEAD-box 58/imunologia , Transdução de Sinais/imunologia , Fator 6 Associado a Receptor de TNF/imunologia , Viroses/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Receptores ImunológicosRESUMO
Neuroinflammation is an inflammatory process within the central nervous system that is mediated by microglial activation, which releases pro-inflammatory mediators leading to neurodegeneration. In this study, we investigated the effects of Peucedani Japonici Radix (PJR), a medicinal herb traditionally used in East Asia to treat neuroinflammation both in vitro and in vivo. First, we examined the effects of PJR on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. The results showed that PJR suppressed the LPS-induced increase of several inflammatory factors, such as nitric oxide, inducible nitric oxide synthase, cyclooxygenase-2, prostaglandin E2, interleukin-1ß, and tumor necrosis factor-α. We also revealed that PJR inhibited the nuclear factor kappa B (NF-κB) pathway, which is the upstream modulator of inflammatory processes. Furthermore, to confirm the regulatory effects of PJR on microglia in vivo, we measured the number of ionized calcium-binding adapter molecule 1-positive cells in mouse brains and found that PJR treatment reduced microglial activation. Taken together, these results suggest that PJR inhibits microglia-mediated neuroinflammation through the modulation of NF-κB signaling and has the therapeutic potential to prevent inflammation-related neurodegenerative diseases.
Assuntos
Mediadores da Inflamação/farmacologia , Inflamação/tratamento farmacológico , Microglia/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Microglia/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Retinoic acid-inducible gene I (RIG-I) detects viral RNAs and induces antiviral responses. During viral RNA recognition by RIG-I, tripartite motif protein 25 (TRIM25) plays a critical regulatory role by inducing K63-linked RIG-I polyubiquitination. Previous proteomics analysis revealed several phosphorylation sites on TRIM25, including tyrosine 278 (Y278), yet the roles of these modifications remain elusive. Here, we demonstrated that TRIM25 interacted with c-Src and underwent tyrosine phosphorylation by c-Src kinase upon viral infection and the phosphorylation is required for the complete activation of RIG-I signaling. Analysis using a c-Src inhibitor and TRIM25 mutant, in which tyrosine 278 is substituted by phenylalanine (Y278F), suggested that the phosphorylation positively regulates K63-linked polyubiquitination of RIG-I and subsequent antiviral signaling. The TRIM25 Y278F mutant displayed decreased E3-ubiquitin ligase activity in vitro, suggesting that this phosphorylation event affects the E3-ligase activity of TRIM25. Thus, we provide a molecular mechanism of c-Src-mediated positive regulation of RIG-I signaling.